ANC"TA
AS4AC A VAV

OSTA-2
Optical Storage Revisien2.00
Technology Association April-3-1998

ANOTA il
W IrL\J| \\:ﬂ

Universal Disk
For mat™®

Specification

March 15, 2000

Aprik-3,1998
© Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000
Optical Storage Technology Association

ALL RIGHTSRESERVED

REVISION HISTORY

1.00 October 24, 1995 Original Release

1.01 November 3, 1995 DVD appendix added

1.02 August 30, 1996 Incorporates Document Change Notices DCN 2-001
through DCN 2-024

1.50 February 4, 1997 Integrated support for CD-R and CD-RW media (DCN 2-
025 through DCN 2-032)

2.00 April 3, 1998 Integrated support for ECMA 167 3 Ediition which

included the support for named streams.
(DCN 2-033 through DCN 2-064)

201 March 15, 2000 Incorporates DCNs 5000, 5002, 5004, 5006-5009, 5013-
5015, 5018-5021, 5024-5027, 5029-5032, 5034-5042,
5044-5048, 5050

POINTS OF CONTACT

Optical Storage Technology Association OSTA UDF E-Mail Reflector

Ray Freeman To subscribe: address request@list.osta.org with
311 East Carrillo Street “subscribe udf” in the subject.

Santa Barbara, CA 93101 To unsubscribe: address request@list.osta.org with
Td: +1 805 963-3853 “unsubscribe udf” in the subject.

Fax: +1 805 962-1541 Send messages to: udf@list.osta.org

Email: ray@osta.org

http://www.osta.org

Technical Editor
editor.udf @osta.org

Important Notices

This document is a specification adopted by Optical Storage Technology Association (OSTA). This document may be revised by OSTA. It isintended solely
as aguide for companies interested in devel oping products which can be compatible with other products devel oped using this document. OSTA makes no
representation or warranty regarding this document, and any company using this document shall do so at its sole risk, including specificaly the risks that a
product developed will not be compatible with any other product or that any particular performance will not be achieved. OSTA shal not be ligble for any
exemplary, incidental, proximate or consequential damages or expenses arising from the use of this document. This document defines only one approach to
compatibility, and other approaches may be available in the industry.

This document is an authorized and gpproved publication of OSTA. The underlying information and materids contained herein are the exclusive property of
OSTA but may be referred to and utilized by the genera public for any legitimate purpose, particularly in the design and devel opment of writable optical
systems and subsystems. This document may be copied in whole or in part provided that no revisions, dterations, or changes of any kind are made to the
materids contained herein. Only OSTA has the right and authority to revise or change the materia contained in this document, and any revisions by any party
other than OSTA are totally unauthorized and specifically prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the subject of a patent, patent
gpplication, copyright, mask work right or trade secret right). By publication of this document, no position is taken by OSTA with respect to the validity or
infringement of any patent or other proprietary right, whether owned by aMember or Associate of OSTA or otherwise. OSTA hereby expressly disclaims any

ligbility for infringement of intellectua property rights of others by virtue of the use of this document. OSTA has not and does not investigate any notices or
alegations of infringement prompted by publication of any OSTA document, nor does OSTA undertake a duty to advise users or potentia users of OSTA
documents of such notices or alegations. OSTA hereby expressly advises al users or potentia users of this document to investigate and andyze any potential
infringement situation, seek the advice of intellectua property counsel, and, if indicated, obtain alicense under any applicable intellectua property right or teke
the necessary steps to avoid infringement of any intellectua property right. OSTA expressly disclaims any intent to promote infringement of any intellectua
property right by virtue of the evolution, adoption, or publication of this OSTA document.

Universal Disk Format™® and UDF™® are traceregistered marks of the Optical Storage Technology Association.

CONTENTS

1.

INTRODUGCTION .ot e e e e e e e e e e e e e e e e e e aeeanans 1
11 DOCUMENT L AYOUL ...ttt et snee e 2
12 COMPIIANCE ...ttt bt bbbttt en e 3
1.3 GENET Al REFEIBINCES......ceeeeeeeeeeeeeeeeeeeeeeee e 3

131 REEENCES.. ..o 3

1.3.2 DEfNITIONS ..o 4

IS T T 1= £ 1 21T 6

RSN X o o117 11 ST PP DT PP PP TP TOPPTPPTIN 7

BASIC RESTRICTIONS & REQUIREMENTS ... 8
2.1 [T A 1< o 1= o= TR 11

2 O O g == Tox £ G = TR RSTURTRRPRRRRRRTN 11

202 OSTA CSO CRAISIEC. .. eeeeiueeeiueeeiutee ittt aateeesteeesseeessteessteeeateeesseeesstessnbeesaseessseeessseesnsessnseeans 12

N G B B] 1o TSSOSO TSP UR PP 12

N 1111 = o o F OO P PO P OPTPPOP 13

215 ENELY TENMTTTEN .ot 14

2.2 Part 3 - Volume SErUCTUN € ..o 21
221 DESCIIPLON TAY .ttt 21
222 Primary VOIUME DESCIIPLOc.uiiutiiieiiiiiiee st siee sttt sttt sre et sb b e eane s 22
223 Anchor Volume DeSCriptor POINESoiuiiiieiieiieiteeie et 24
224 Logical VOIUME DESCIIPLONocueiiieiiieeiieeitee sttt st sttt sb et e e 25
225 Unallocated SPace DESCIIPLONcueiiteeiieeiteeiteeiteeste et et ettt sreennee 27
226 Logical Volume INtegrity DESCIIPLONcoviiieiieiiiiiee ittt sttt 27
227 Implemention Use VolumME DESCIIPLON........cciuiiiiiiiiieeiiec ettt 30
2.2.8 Virtual Partition MaD......co.eeieeiiieiieiiee ettt 32
229 Sparable Partition IM8D........cc.eoiioiieieie s 32
2.2.10 Virtual AlOCAETON TaIE......eiiiiiei e 33
2211 SPAINTNG TADIE. ... 36
2212 Partiti ON DESCITIEON ...ttt 39

23 Part 4 - File SYSIEM ...t 40
PG R R B == o] o1 (o g =T PSP U SO PR PRRPROP 40
2.3.2 FilE SO DESCIIPLOLeeiieiiieiiieeeie ettt ekttt ettt en 41
2.3.3 Partition Header DESCIIPIONcivieiieteeii ettt st b e 43
234 Fleldentifier DESCIIPLONciie ettt sb bbbt et b e neeneeane s 44
G T [@2 B 1= o DO PP P PP PP 46
236 FHIEENIIY .o 49
237 Unallocated SPACE ENLIYc.iiiiiiiiieiee ittt 51
2.3.8 SPACE BIitMaP DESCIIPIONeeuteetieti ettt neas 52

19

2.3.9 Partition INtEGIitY ENTIYcoiiiiieiieii ettt nnee 52

2.3.10 Al OCALTON DESCIIPLOISttt be b 52
2311 Al10Cati 0N EXIENE DESCIILONvveaeeeiieieei ettt 54
2.3.12 PAENNAIMIE ... bbbt 55

24 Part 5 - RECON SIIUCTUN ...ttt 55

3. SYSTEM DEPENDENT REQUIREMENTS.....ccii e 56
31 PArt 1 - GENEI@I ...t 56
N 1111 = o o TSP P PO P UPTPPROT 56

3.2 Part 3 - VOIUME SEFUCEUN € ...ttt sttt sttt bbb nreesreennee 57
321 Logical Volume Header DESCIIION.c.viieeiieeiieerieesteesieestee sttt 57

3.3 Part 4 - File SYSIEM ...t 58
3.3 1 Fleldentifier DESCIIPLONccuietieiiete ettt sttt ettt sr e sbeennee 58
I [@2 B I o DO OO P PP OPTOPROT 59

333 R ENIIY et 62

334 EXteNded ALIITDULES........ooiiiiiiece et 66

335 NAMED SITEAIMS. ...ttt ettt ettt et e be e be e enas 76

3.3.6 Extended AttributeS as Named SIFEAMSocviiiiiiiiee e 79

3.3.7 UDF Defined SYSIEM SITEAIMScoieiiiiiitie ittt sttt ettt 80

3.3.8 UDF Defined NON-SySteM SITEAIMScoiuiiiiiiiiieitee sttt sttt 87

4. USER INTERFACE REQUIREMENTS.......ootiiee e 89
4.1 Part 3 -— VOlUME SEIUCLUN ...ttt 89
4.2 Part 4 —— File SYSIEM ... e 89
R 11 = N I OSSOSO URUTURURRTN 89

4.2.2 File 1dentifier DESCITPIONi eeieeeieee ettt 90

5. INFORMATIVE ... ettt e e e e e e e e e e e e e e e aaans 100
51 DeSCriptor LeNGENS ... s 100
52 UsSiNg IMpIementation USE AT GBSoouiiuiiiiiieieesiee ettt 100
521 ENLY TAENMUTIENS ..o 100

522 OFPNEN SPACE.......eeitietiet ettt 100

53 B OOt DESCI IPLON ...ttt ettt st 101
54 Clarification of Unrecorded SECLONS. .. .uuiuiiiiiiiiise s 101
55 TECHNICAl CONTACES.....cueiitiiiiei ittt ettt ettt b e e n e neene e 102
6. APPENDICESt e e e e e e e e e e e e e e e e e e 103
6.1 UDF Entity Identifier DefiNitioNS..........cuoiiiiiiiiiiieieiee e 103

6.2 UDF Entity [dentifier VAIUESc.oouiiiiiiiieiie e 104

6.3 Operating SysStem TAeNTIfIEr Soiiiie e 105
6.4 OSTA Compressed Unicode AIGOritRMooiiiiiieie e 107
6.5 CRC CalCUIBLION ...ttt nb bbb nb e bt bbb b 109
6.6 Algorithm for Strategy TYPE A0cooueerieiiieeriieriiesiie et 112
6.7 Identifier Trandation AlGOritNMS.......oouiiiiii e 113
B.7.1 DOS ALGONTTNIM. ...ttt 113
6.7.2 OS2, Macintosh,Windows 95, Windows NT and UNIX Algorithmcccocviiinnene 124
6.8 Extended Attribute Checksum AIGOrithm ... 129
6.9 RequirementSfor DVD-ROMccoiiiiiiiiiiieiieie e 130
6.9.1 Constraintsimposed by-0n UDF fer-Dy DVD-VIGEOc.oovviiiiiiiieiieieee e 130
6.9.2 Howtoread a UDF DVD-Vide0 diSC......cccueiieiiiiiiiiiiieiieie ettt e 131
6.9.3 ObtaiNiNg DV D DOCUMENESciiuiiiiiiitie ittt ettt ettt 133
6.10 RecommendationSTor CD MEdI@ccouiiiiiiiiieiieiieee s 134
6.10.1 Use Of UDF ON CD-R MEAIA........ceiiiiiiiiiiiiii it 134
6.10.2 Use of UDF 0N CD-RW MEAIA.ctiieiiiiiiiiiiiie e 136
6.10.3 Multisession and MiXed MOOE..........cocuiiiiiiirii e 139
6.11 REAI-TIME FIlES. it 141
6.12 UDF Media Format ReVISION HiSIOIYooiiiiiiiiieiieice s 142
6.1213 Developer RegiStration FOrM ..ottt 143

This page left intentionally blank

1. Introduction

The OSTA Universal Disk Format (UDF™)®) specification defines a subset of the |
standard ECMA 167 3™ edition. The primary goal of the OSTA UDF is to maximize data
interchange and minimize the cost and complexity of implementing ECMA 167.

To accomplish this task this document defines a Domain. A domain defines rules and
restrictions on the use of ECMA 167. The domain defined in this specification is known
asthe “OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of ECMA
167 on a per operating system basis:

Given some ECMA 167 sructure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading thisfield: If the operating system supports the data in
_thisfield then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in
this field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the
data for thisfield then to what value should the field be set?

For some structures of ECMA 167 the answers to the above questions were self-
explanatory and therefore those structures are not included in this document.

In some cases additiona information is provided for each structure to help clarify the
standard.

This document should help make the task of implementing the ECMA 167 standard easier.

To be informed of changes to this document please fill out and return the OSTA UDF
Devel opers Registration Form located in appendix 6.13.

YDF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

1.1 Document Layout

This document presents information on the treatment of structures defined under standard
ECMA 167.

This document is separated into the following 4 basic sections:

 Basic Redrictions and Requirements - defines the restrictions and
requirements whichthat are operating system independent. |

» System Dependent Requirements - defines the restrictions and requirements
whichthat are operating system dependent.

* User Interface Requirements - defines the restrictions and requirements which
arerelated to the user interface.

* Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard
ECMA 167. The following areas are covered:

& Interpretation of a structure/field upon reading from media

&5 Contents of a structure/field upon writing to media. Unless specified otherwise
writing refers only to creating a new structure on the media. When it applies to
updating an existing structure on the media it will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with
respect to the categories listed above. In certain cases, one or more fields of a structure
are not described if the semantics associated with the field are obvious.

A word on terminology: in common with ECMA 167, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optional action or
requirement, and should to indicate a preferred, but still optional action or requirement.

Also, specia comments associated with fields and/or structures are prefaced by the
notification: " NOTE:"

9DF 2.01 March 15, 2000
UDF2.00 Aprit-3-1998

1.2 Compliance

This document requires conformance to parts 1, 2, 3 and 4 of ECMA 167. Compliance to
part 5 of ECMA 167 is not supported by this document. Part 5 may be supported in a
later revision of this document.

For an implementation to claim compliance to this document the implementation shall
meet all the requirements (indicated by the word shall) specified in this document.

The following are a few points of clarification in regards to compliance:

* Multi-Volume support is optional. An implementation can claim compliance
and only support single volumes.

* Multi-Partition support is optional. Animplementation can claim compliance
without supporting the special multi-partition case on a single volume defined
in this specification.

» Media support. Animplementation can claim compliance and support asingle
media type or any combination. All implementations should be able to read
any mediathat is physically accessible.

* Multisession support. Any implementation that supports reading of CD-R
media shall support reading of CD-R Multisessions as defined in 6.10.3.

» File Name Trandation - Any time an implementation has the need to transform
afilename to meet operating system restrictions it shall use the algorithms
specified in this document.

» Extended Attributes - All compliant implementations shall preserve existing
extended attributes encountered on the media. Implementations shall create
and maintain the extended attributes for the operating systems they support.
For example, an implementation that supports Macintosh shall preserve any
0S/2 extended attributes encountered on the media. An implementation that
supports Macintosh shall also create and maintain all Macintosh extended
attributes specified in this document.

» Backwards Read Compatibility — A-An implementation compliant UB=2.00
Hplementationto this version of the UDF specification shall be able to read
al media written under UBF1.50-and-1.02previous versions of the UDF
specification.

» Backwards Write Compatibility — UDF 2.000x structures shall not be written
to media whichcontainsthat contain UDF 1.50 or UDF 1.02 structures. UDF
1.50 and UDF 1.02 structures shall not be written to media which-contains
UDBE2.00that contain UDF 2.0x structures. These two requirements prevent
media from containing different versions of the UDF structures.

1.3 General References

1.3.1 References
SO 9660:1988 Information Processing - Volume and File Structure of CD-ROM for
Information Interchange

QDF 2.01 March 15, 2000
J
UDF2.00 Apri-3-1998

IEC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data Interchange on read-only 120mm optical data
discs (CD-ROM based on the Philips/Sony “Y ellow Book™)

Orange Book part-I1 Recordable Compact Disc System Part-11, N.V. Philips and Sony Corporation
Orange Book part-11l Recordable Compact Disc System Part-111, N.V. Philips and Sony Corporation

ISO/IEC 13346:1995 Volume and file structure of write-once and rewritable media using non-
sequential recording for information interchange. This1SO standard is
equivalent to ECMA 167 2™ edition..

ECMA 167 ECMA 167 3 edition is an update to ECMA 167 2™ edition that adds the
support for multiple data stream files, and is available from http://mwww.ecma.ch. |
The previous edition of ECMA 167 (2") wasis equivalent to ISO/IEC
13346:1995. References enclosed in [] in this document are referencesto
ECMA 167 3% edition. Thereferencesarein the form [x/ab.c], wherex isthe
section number and a.b.c is the paragraph or figure number.

1.3.2 Definitions

Audio session Audio session contains one or more audio tracks, and no data track. |

Audio track Audio tracks are tracks that are designated to contain audio sectors specified in
|SO/IEC 908.

CD-R CD-Recordable. A write once CD defined in Orange Book, part-11.

CD-RW CD-Rewritable. An overwritable CD defined in Orange Book, part-111. |

Clean File System The file system on the media conforms to this specification.

Data track Data tracks are tracks that are designated to contain data sectors specified in
ISO/IEC 10149.

Dirty File System A file system that is not a clean file system.

Fixed Packet An incremental recording method in which al packetsin agiven track are of a

length specified in the Track Descriptor Block. Addresses presented to a CD
drive are trandated according to the Method 2 addressing specified in Orange
Book parts-1l and -111.

ICB A control nodein ECMA 167.
Logical Block Address A logical block number [3/8.8.1].

NOTE 1: Thisisnot to be confused with alogical block address[4/7.1], given
by the Ib_addr structure which contains both alogical block number [3/8.8.1]
and a partition reference number [3/8.8], the latter identifying the partition
[3/8.7] which contains the addressed logical block [3/8.8.1].

NOTE 2: A logical block number [3/8.8.1] trandates to alogical sector number
[3/8.1.2] according to the scheme indicated by the partition map [3/10.7] of the
partition [3/8.7}], which contains the addressed logical block [3/8.8.1]

Media Block Address A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

MrDF 2.01 March 15, 2000
UDF2.00 Aprit-3-1998

Packet

Physical Address

Physical Block Address

physical sector

A recordable unit, which is an integer number of contiguous sectors[1/5.9],
which consist of user data sectors, and may include additional sectors[1/5.9]
which are recorded as overhead of the Packet-writing operation and are
addressable according to the relevant standard for recording [1/5.10].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

A sector [1/5.9] given by arelevant standard for recording [1/5.10]. In this
specification, a sector [1/5.9] isequivalent to aalogical sector [3/8.1.2].

Random Access File System A file system for randomly writable media, either write once or

Sequential File System
Session

Track

UDF

user data blocks

user data sectors

EDF 2.01
I

rewritable
A file system for sequentially written media (e.g. CD-R)

The tracks of a volume shall be organized into one or more sessions as specified
by the Orange Book part-11. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending sequence.

The sectors of a volume shall be organized into one or moretracks. A track
shall be a sequence of sectors, the sector numbers of which form a contiguous
ascending sequence. No sector shall belong to more than one track.

Note: There may be gaps between tracks; that is, the last sector of a track need
not be adjacent to the first sector of the next track.

OSTA Universal Disk Format

Thelogical blocks[3/8.8.1] which were recorded in the sectors [1/5.9]
(equivalent in this specification to logical sectors[3/8.1.2]) of a Packet and
which contain the data intentionally recorded by the user of the drive. This
specifically does not include the logical blocks[3/8.8.1], if any, whose
congtituent sectors[1/5.9] were used for the overhead of recording the Packet,
even though those sectors [1/5.9] are addressable according to the relevant
standard for recording [1/5.10]. Likeany logical blocks[3/8.8.1], user data
blocks are identified by logical block numbers[3/8.8.1].

The sectors [1/5.9] of a Packet which contain the data intentionally recorded by
the user of the drive, specifically not including those sectors [1/5.9] used for the
overhead of recording the Packet, even though those sectors [1/5.9] may be
addressable according to the relevant standard for recording [1/5.10]. Like any
sectors[1/5.9], user data sectors are identified by sector numbers[3/8.1.1]. In
this specification, a sector number [3/8.1.1] is equivalent to aalogical sector
number [3/8.1.2].

March 15, 2000

UBbF200
tH 0

Variable Packet

Virtual Address

virtual partition

An incremental recording method in which each packet in a given track is of a
host determined length. Addresses presented to a CD drive are as specified in
Method 1 addressing in Orange Book parts|l and I11.

A logical block number [3/8.8.1] of alogical block [3/8.8.1] in avirtual
partition. Such alogical block [3/8.8.1] is recorded using the space of alogical
block [3/8.8.1] of a corresponding non-virtual partition. The Nth Uint32 in the
VAT representsthe logical block number [3/8.8.1] in a non-virtual partition
used to record logical block number N of its corresponding virtual partition. The
first virtual addressisO.

A partition of alogical volume[3/8.8] identified in alogical volume descriptor
[3/10.6] by a Type 2 partition map [3/10.7.3] recorded according section 2.2.8 of
to this specification. Thevirtual partition map contains a partition number
which- that isthe same as the partition number [3/10.7.2.4] in a Type 1 partition
map [3/10.7.2] in the same logical volume descriptor [3/10.6]. Each logical
block [3/8.8.1] in the virtual partition is recorded using the space of alogical
block [3/8.8.1] of that corresponding non-virtual partition. A VAT liststhe
logical blocks [3/8.8.1] of the non-virtual partition, which have been used to
record the logical blocks [3/8.8.1] of its corresponding virtual partition.

virtual sector A logical block [3/8.8.1] in avirtual partition. Such alogical block [3/8.8.1] is
recorded using the space of alogical block [3/8.8.1] of a corresponding non-
virtual partition. A virtual sector should not be confused with a sector [1/5.9] or
alogical sector [3/8.1.2].

VAT A file[4/8.8] recorded in the space of a non-virtual partition which hasa
corresponding virtual partition, and whose data space [4/8.8.2] is structured
according to section 2.2.10 of this specification. Thisfile provides an ordered list
of Uint32s, where the Nth Uint32 represents the logical block number [3/8.8.1]
of anon-virtual partition used to record logical block number N of its
corresponding virtual partition. Thisfile[4/8.8] isnot necessarily referenced by
afileidentifier descriptor [4/14.4] of adirectory [4/8.6] in the file set [4/8.5] of
the logical volume [3/8.8].

VAT ICB A File Entry ICB that describes a file containing a Virtual Allocation Table.

1.3.3 Terms

May Indicates an action or feature that is optional.

Optional Describes a feature that may or may not be implemented. 1f implemented, the
feature shall be implemented as described.

Shall Indicates an action or feature that is mandatory and must be implemented to
claim compliance to this standard.

Should Indicates an action or feature that is optional, but itsimplementation is strongly
recommended.

Reserved A reserved field is reserved for future use and shall be set to zero. A reserved
valueisreserved for future use and shall not be used.

gDF 2.01 March 15, 2000

UBbF200
tH 0

1.3.4 Acronyms

Acronym Definition
AD Allocation Descriptor
AVDP Anchor Volume Descriptor Pointer
EA Extended Attribute
EFE Extended File Entry
FE File Entry
FID File Identifier Descriptor
FSD File Set Descriptor
ICB I nformation Control Block
IlUVD | mplementation Use V olume Descriptor
LV Logical Volume
LVD Logica Volume Descriptor
LVID Logical Volume Integrity Descriptor
PD Partition Descriptor
PVD Primary Volume Descriptor
usb Unallocated Space Descriptor
VAT Virtual Allocation Table
VDS Volume Descriptor Sequence
VRS V olume Recognition Sequence
?DF 2.01 March 15, 2000

UDE2 00
==

Apri-3,1093

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined
in this specification. These restrictions & requirements as well as additional ones are
described in detail in the following sections of this specification.

ltem

Restrictions & Requirements

Logical Sector Size

The Logical Sector Sze for a specific volume shall be the
same as the physical sector size of the specific volume.

Logical Block Size

The Logical Block Sze for aLogical Volume shall be set to
the logical sector size of the volume or volume set on
which the specific logical volume resides.

Volume Sets

All mediawithin the same Volume Set shall have the same
physical sector size. Rewritable/Overwritable media and
WORM media shall not be mixed in/ be present in the
same volume set.

First 32K of Volume Space

Thefirst 32768 bytes of the Volume space shall not be used
for the recording of ECMA 167 structures. Thisarea shall
not be referenced by the Unallocated Space Descriptor or
any other ECMA 167 descriptor. Thisisintended for use
by the native operating system.

Volume Recognition Sequence

The Volume Recognition Sequence as described in part 2
of ECMA 167 shall be recorded.

Timestamp

All timestamps shall berecorded in local time. Time zones
shall be recorded on operating systems that support the
concept of atime zone.

Entity Identifiers

Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain a value that uniquely
identifies the implementation.

Descriptor CRCs

CRCs shall be supported and calculated for all Descriptors,
except for the Space Bitmap Descriptor.

File Name Length

Maximum of 255 bytes

Maximum-PathsizeExtent Length

Maximum Extent Length shall be 2°° — 1 rounded down to

the nearest integral multiple of 1023-bytesthe L ogical
Block Size. Maximum Extent Length for extentsin virtual

space shall bethe Logical Block Size.

Extent-LengthPrimary Volume Descriptor

Maxirmurm-Extent Length-shal-be 2*°—Logical Block-Size-
. : o
betheLogical-Block-Size. There shall be exactly one

prevailing Primary Volume Descriptor recorded per
volume. The media where the VolumeSequenceNumber of
this descriptor is equal to 1 (one) must be part of the logical
volume defined by the prevailing Logical Volume
Descriptor.

PrirmaryAnchor Volume Descriptor_Pointer

Descripterrecorded-pervelume:Shall be recorded in at
least 2 of the following 3 locations:. 256, N-256, or N,
where N is the last addressable sector of a volume. See also
2.2.3.

Anehor\olumePartition Descriptor-Peinter

: S TRT— P

March 15, 2000

9DF 2.01
A =4

UBF200
==

Aprit-3,1998

SN aa Nara N\

avolumeA Partition Descriptor Access Type of Read-
Only, Rewritable, Overwritable and WORM shall be
supported.

There shall be exactly one prevailing Partition Descriptor
recorded per volume, with one exception. For Volume Sets
that consist of single volume, the volume may contain 2
Partitions with 2 prevailing Partition Descriptors only if
one has an access type of read only and the other has an
access type of Rewritable, Overwritable, or WORM. The
Logical Volume for this volume would consist of the
contents of both partitions.

PartittonLogical Volume Descriptor

Volume Set.

The Logical Volumel dentifier field shall not be null and
should contain an identifier that aids in the identification of
the logical volume. Specifically, software generating
volumes conforming to this specification shall not set this
field to afixed or trivial value. Duplicate disks, which are
intended to be identical, may contain the same valuein this
field. Thisfield is extremely important in logical volume
identification when multiple media are present within a
jukebox. This nameistypically what is displayed to the
user.

The Logical VolumeDescriptor recorded on the volume
where the PrimaryVolumeDescriptor’s
VolumeSequenceNumber field is equal to 1 (one) must have
a Number of PartitionMaps value and PartitionMaps
structure(s) that represent the entire logical volume. For
example, if avolume set is extended by adding partitions,
then the updated Logical VolumeDescriptor written to the
last volumein the set must also be written (or rewritten) to
thefirst volume of the set.

gDF 2.01

March 15, 2000

UDE2 00
== 0d

Apri-3,1093

Logical Volume Integrity Descriptor

Shall be recorded. The extent of LVIDs may be terminated
by the extent length.

Unallocated Space Descriptor

A single prevailing Unallocated Space Descriptor shall be
recorded per volume.

File Set Descriptor

There shall be exactly one File Set Descriptor recorded per
Logical Volume on Rewritable/Overwritable media. For
WORM media multiple File Set Descriptors may be
recorded based upon certain restrictions defined in this
document lheHLeSeHelenﬂ#eHreLeLeHheFﬂeset

232 for-further-detatts: The FSD extent may be
terminated by the extent length.

ICB Tag

Only strategy types 4 or 4096 shall be recorded. |

File Identifier Descriptor

Thetotal length of a File Identifier Descriptor shall not
exceed the size of one Logical Block.

File Entry

Thetotal length of a File Entry shall not exceed the size of
one Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shall be
recorded.

Allocation Extent Descriptors

Thelength of any single AHecation-Extent
Deseriptorextent of allocation descriptors shall not exceed
the Logical Block Sze.

Unallocated Space Entry

Thetotal length of an Unallocated Space Entry shall not |
exceed the size of one Logical Block.

Space Bitmap Descriptor

CRC not required.

Partition Integrity Entry

Shall not be recorded.

Volume Descriptor Sequence Extent

Both the main and reserve volume descriptor sequence |
extents shall each have a minimum length of 16 logical
sectors. The VDS Extent may be terminated by the extent
length.

Record Structure

Record structure files, as defined in part 5 of ECMA 167,
shall not be created.

QRF 2.01

March 15, 2000

UDF200

Aprit-3,1998

2.1 Part1- General

211

QI?LF 2.01

Character Sets
The character set used by UDF for the structures defined in this document is the
CS0 character set. The OSTA CS0 character set is defined as follows:

OSTA CS0 shall consist of the d-characters specified in the The Unicode Standard, |
Version 2.0 (ISBN 0-201-48345-9 from Addison-Wesley Publishing Company
http://www.awl.com/devpress , see also
httpAwwartnicade-orghttp://www.unicode.org), excluding #FEFF and FFFE,
stored in the OSTA Compressed Unicode format which is defined as follows:

OSTA Compressed Unicode for mat

RBP | Length Name Contents
0 1 Compression ID Uint8
1 7?2 | Compressed Bit Stream byteByte |

The CompressionI D shall identify the compression algorithm used to compress the
CompressedBitSream field. The following agorithms are currently supported:

Compression Algorithm

Value Description
0-7 Reserved
8 Value indicates there are 8 hits per character
in the CompressedBitStream.
9-15 Reserved
16 Value indicates there are 16 bits per character
in the CompressedBitStream.

17-253 | Reserved

254 Value indicates therethe CS0 expansion is
aempty and unique-4-byte binary-number
felowing.. Compression Algorithm 8 is used
for compression.
255 Value indicates therethe CS0 expansion is
aempty and unique-8-byte binary-number
felowing.. Compression Algorithm 16 is
used for compression.

For a CompressionI D of 8 or 16, the value of the CompressionID shall specify the
number of BitsPerCharacter for the d-characters defined in the
CharacterBitStream field. Each sequence of CompressionID bitsin the
CharacterBitStream field shall represent an OSTA Compressed Unicode d-
character. The bits of the character being encoded shall be added to the
CharacterBitStream from most- to least-significant-bit. The bits shall be added to

March 15, 2000

UBbF200
tH 0

the CharacterBitStream starting from the most- significant- hit of the -current byte |
being encoded into.
NOTE: Thisencoding causes characters written with a Compressioni D of 16 to

be effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 2.0 standard.
Refer to appendix on OSTA Compressed Unicode for sample C source code to
convert between OSTA Compressed Unicode and standard Unicode 2.0.

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

Compression IDs 254 and 255 shall only be used in FIDs where the deleted bit is

set to ONE.

When uncompressing file identifiers with Compression |Ds 254 and 255, the
resulting name is to be considered empty and unique.

2.1.2 OSTA CS0 Char spec

struct charspec { [* ECMA 167 1/7.2.1*/
Uint8 Character SetType;
byte Character SetInfo[63];
}
The Character SetType field shall have the value of 0 to indicate the CSO coded
character set.

The Character SetInfo field shall contain the following byte values with the
remainder of the field set to avalue of 0.

HAF, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #73, #65,
#64, #20, #55, #OE, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode’

2.1.3 Dstrings
The ECMA 167 standard, as well as this document, has normally defined byte positions
relativeto 0. Insection 7.2.12 of -ECMA 167, dstrings are defined in terms of being

YbF 2.01 March 15, 2000
BF2:00 AprH-3-1998

relativeto 1. Since this offers an opportunity for confusion, the following shows what the
definition would be if described relative to 0.

7.2.12 Fixed-length character fields

A dstring of length nisafield of n bytes where d-characters (1/7.2) are recorded. The number of
bytes used to record the characters shall berecorded as a Uint8 (1/7.1.1) in byte n-1, wherenis
the length of the field. The characters shall be recorded starting with the first byte of the field,
and any remaining byte positions after the characters up until byte n-2 inclusive shall be set to
#00.

If the number of d-characters to be encoded is zero, the length of the dstring shall be zero.
NOTE: The length of a dstring includes the compression code byte (2.1.1) except for the
case of azero length string. A zero length string shall be recorded by setting the entire
dstring field to all zeros.

2.1.4 Timestamp

struct timestamp { I* ECMA 167 1/7.3*/
Uint16 TypeAndTimezone;
Uint16 Y ear;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;,
Uint8 HundredsofMicroseconds;
Uint8 Microseconds;
}

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this
field, and TimeZone refersto the least significant 12 bits of thisfield, which is
interpreted as a signed 12-bit number in two’s complement form.

&~ Thetime within the structure shall be interpreted as Local Time since Type
shall be equal to ONE for OSTA UDF compliant media.

& Type shall be set to ONE to indicate Local Time.
& ShallTimeZone shall be interpreted as specifying the time zone -for the

location when this field was last modified. If this field contains -2047 then
the time zone has not been specified.

& For operating systems that support the concept of atime zone, the offset of
the time zone (in 1 minute increments), from Coordinated Universal Time,

YhaF 2.01 March 15, 2000
ey
UDF2.00 Apri-3-1998

shal be inserted in thisthe TimeZone field. Otherwise the tire zene pertion
of-thisfieldTimeZone shall be set to -—2047.

Note: Time zones West of Coordinated Universal Time have negative offsets.
For example, Eastern Standard Time is -300 minutes; Eastern Daylight
Timeis -240 minutes.

Note: Implementations on systems that support time zones should interpret

unspecified time zones as Coordinated Universal Time. Although not a

requirement, this interpretation has the advantage that files generated on

systems that do not support time zones will always appear to have the same

time stamps on systems that do support time zones, irrespective of the

interpreting system's local time zone.

2.1.5 Entity Identifier

struct EntitylD { [* ECMA 167 1/7.4*/
Uint8 Flags,
char I dentifier[23];
char | dentifier Suffix[8];

}

UDF classifies Entity Identifiersinto 34 separate types as follows:

Domain Entity Identifiers

UDF Entity Identifiers

Implementation Entity Identifiers

Application Entity Identifiers |

The following sections describes the format and use of Entity Identifiers based |
upon the different types mentioned above.

2.1.5.1 Uint8 Flags
& Self--explanatory.

V-1 Shall be set to ZERO.

2.1.5.2 char Identifier
Unless stated otherwise in this document this field shall be set to an identifier that
uniquely identifies the implementation. This methodology will allow for
identification of the implementation responsible for creating structures recorded on
media interchanged between different implementations.

kJﬂ_BrF 2.01

March 15, 2000

UDE2 00
==

Apri-3,1093

If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the Identifier field to a
value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the ECMA
167 standard and this document and shows to what values they shall be set.

Entity |dentifiers

Descriptor Field ID Value Suffix Type
Primary Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
hplementation hplementation “*DeveloperAppli | HmplementationApplica
UsePrimary Volume | HBApplication ID cation ID” tion ldentifier Suffix
Descriptor
Implementation Use | Implementation “*UDF LV Info” UDF Identifier Suffix

VVolume Descriptor

Identifier

Implementation Use

Implementation 1D

“*Developer ID”

Implementation

Volume Descriptor

(in Implementation

Usefield)

Identifier Suffix

Partition Descriptor Implementation ID “*Developer ID” Implementation
I dentifier Suffix
Partition Descriptor Partition Contents “+NSR03” Application Identifier
Suffix
Logical Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
Logical Volume Domain ID "*OSTA UDF DOMAIN Identifier
Descriptor Compliant" Suffix
File Set Descriptor Domain ID "*OSTA UDF DOMAIN Identifier
Compliant" Suffix
File Identifier Implementation “*Developer ID” Implementation
Descriptor 1BUse Identifier Suffix
(optional)
File Entry Implementation ID “*Developer ID” Implementation
I dentifier Suffix
Adtribute
Device Specification | Implementation 1D “*Developer ID” Implementation
Extended Attribute Identifier Suffix
LegiealMolume Implementation 1D “=Developer HaplementatronUDE
FAategrrey 152See 3345 Identifier Suffix
DeseripterUDF

Implementation Use
Extended Attribute

Non-UDF
Implementation Use
Extended Attribute

Implementation 1D

“*Developer ID”

Implementation

Identifier Suffix

UDF Application Use

Application ID

Extended Attribute

Se3.3.4.6

UDF ldentifier Suffix

March 15, 2000

I:Jﬂ_BF 2.01

UBF200
==

Aprit-3,1998

Non-UDF Application ID “*Application ID” | Application |dentifier
Application Use Suffix
Extended Attribute
UDF Unique ID Implementation ID “*Developer ID” Implementation
Mapping Data Identifier Suffix
Power Calibration Implementation ID “*Developer ID” Implementation
Table Stream Identifier Suffix
Logical Volume Implementation ID “*Developer ID” Implementation
Integrity Descriptor (in Implementation Identifier Suffix
Usefield)
Partition Integrity Implementation ID N/A N/A
Entry
Virtual Partition Map | Partition Type “*UDF Virtua UDF ldentifier Suffix
Identifier Partition”
Virtual Allocation Implementation Use | “ *Developer ID” Implementation
Table Identifier Suffix
(optional)
Sparable Partition Partition Type “*UDF Sparable UDF Identifier Suffix
Map Identifier Partition”
Table Aloc b
Sparing Table Sparing ldentifier “*UDF Sparing UDF Identifier Suffix
Table’

NOTE: The value of the Entity Identifier field is interpreted as a sequence
of bytes, and not as a dstring specified in CS0. For ease of use the values
used by UDF for thisfield are specified in terms of ASCII character strings.
The actual sequence of bytes used for the Entity Identifiers defined by UDF

are specified in the-appendixsection 6.2.

NOTE: Inthe ID Value column in the above table “* Beveloper Application
ID” -refersto aan identifier that uniquely identifies the writer’s application.

In the ID Value column in the above table “ * Developer ID” refersto an Entity |dentifier

that uniquely identifies the current implementation. The value specified should be used
when anew descriptor is created. Also, the value specified should be used for an existing
descriptor when anything within the scope of the specified Entityl D field is modified.

9_@: 2.01

NOTE: The value chosen for a“ *Developer ID” should contain enough
information to identify the company and product name for an implementation. For
example, acompany called XYZ with a UDF product called DataOne might choose
“*XYZ DataOne” astheir developer ID. Also in the suffix of their developer ID
they may choose to record the current version number of their DataOne product.
Thisinformation is extremely helpful when trying to determine which
implementation wrote a bad structure on a piece of media when multiple products
from different companies have been recording on the media

March 15, 2000

UBF200
==

Aprit-3,1998

The Suffix Type column in the above table defines the format of the suffix to be used with
the corresponding Entity Identifier. These different suffix types are defined in the

following paragraphs.

NOTE: All Identifiers defined in this document (appendix 6.1) shall be registered

by OSTA as UDF Identifiers.

2.1.5.3 ldentifier Suffix
The format of the Identifier Suffix field is dependent on the type of the Identifier.

Q?F 2.01

In regard to OSTA Domain Entity Identifiers specified in this document (appendix
6.1) the Identifier Suffix field shall be constructed as follows:

Domain | dentifier Suffix field format

RBP | Length Name Contents
0 2 UDF Revision uintl6 (=
#0200)0201)
2 1 Domain Flags uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #92020201 to indicate revision 2.0201 of this |
document. This field will allow an implementation to detect changes made in
newer revisions of this document. The OSTA Domain Identifiers are only used in
the Logica Volume Descriptor and the File Set Descriptor. The DomainFlags
field defines the following bit flags:

Domain Flags

Bit

Description

0 Hard Write-Protect

1 Soft Write-Protect

2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or
file system structures within the scope of the descriptor in which it resides are
write protected. A SoftWriteProtect flag value of ONE shall indicate user write
protected structures. This flag may be set or reset by the user. The
HardWriteProtect flag is an implementation settable flag that indicates that the
scope of the descriptor in which it resides is permanently write protected. A
HardWriteProtect flag value of ONE shall indicate a permanently write protected
structure. Once set this flag shall not bereset. The HardWriteProtect flag
overrides the SoftWriteProtect flag.

The write protect flags appear in the Logical VVolume Descriptor and in the File Set
Descriptor. They shall be interpreted as follows:

March 15, 2000

UBbF200
tH 0

NOTE: It isimportant to understand the intended use and importance of the OS Class and

is_fileset_write_protected = LVD.HardWriteProtect || LV D.SoftWriteProtect ||

FSD.HardWriteProtect || FSD.SoftWriteProtect
is fileset_hard_protected = LV D.HardWriteProtect || FSD.HardWriteProtect

is fileset_soft_protected = (LVD.SoftWriteProtect || FSD.SoftWriteProtect) & &

("is_vol_hard_protected)
is_vol_write_protected = LVD.HardWriteProtect || LV D.SoftWriteProtect
is vol_hard_protected = LV D.HardWriteProtect
is_vol_soft_protected = LVD.SoftWriteProtect && 'LV D.HardWriteProtect

Implementation use Entity Identifiers defined by UDF (appendix 6.0) the
| dentifier Suffix field shall be constructed as follows:

UDF I dentifier Suffix

RBP | Length Name Contents
0 2 UDF Revision uintl6 (=
#0200)0201)
2 1 OSClass uint8
3 1 OS Identifier Uint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS |dentifier fields are described in the
Appendix on Operating System Identifiers.

For implementation use Entity Identifiers not defined by UDF the I dentifier Suffix

field shall be constructed as follows:

| mplementation | dentifier Suffix

RBP | Length Name Contents
0 1 OS Class Uint8
1 1 OS Identifier uint8
2 6 Implementation Use Area bytes

OS ldentifier fields. The main purpose of these fieldsisto aid in debugging when
problems are found on a UDF volume. The fields also provide useful information

whichthat could be provided to the end user. When set correctly these two fields provide

an implementation with information such as the following:

QBF 2.01

* |dentify under which operating system a particular structure was last modified.

» ldentify under which operating system a specific file or directory was last

modified.

» |If adeveloper supports multiple operating systems with their implementation, it

helps to determine under which operating system a problem may have

occurred.

March 15, 2000

UBbF200
tH 0

For an Application Entity Identifier not defined by UDF, the I dentifier Suffix field
shall be constructed as follows, unless specified otherwise.

Application | dentifier Suffix

RBP Length Name Contents

0 8 Implementation Use Area bytes

2.1.6 Descriptor Tag Serial Number at Formatting Time

In order to support disaster recovery, the TagSerialNumber value of all UDF descriptors
that will be recorded at formatting time, shall be set to avalue that differs from ones
previousdy recorded, upon volume re-initialization.

If no disaster recovery will be supported, a value zero (#0000) shall be used for the
TagSerialNumber field of all UDF descriptors that will be recorded at formatting time, see
ECMA 3/7.2.5 and 4/7.2.5.

If disaster recovery is supported, the value to be used depends on the state of the volume
prior to formatting. There are only two states in which a volume can be formatted such
that disaster recovery will be possible in the future. These states are:

1) Thevolume is completely erased. Only after this action, and where disaster recovery is
to be supported then a value of one (#0001) shall be used as the TagSerial Number
value.

2) Thevolumeisaclean UDF volume that supports disaster recovery for
TagSerialNumber values, and the TagSerialNumber values of at least two Anchor
Volume Descriptor Pointers are both equal to X, where X isnot equal to zero. |If
disaster recovery isto be supported then a value X+1 shall be used asthe
TagSerialNumber value. |f X+1 wrapsto zero then keep it as zero to indicate that
disaster recovery is not supported.

NOTE: Thereason for thisisthat if X+1 wrapsto zero then the unigueness of any
TagSeriadNumber value unegual to zero can no longer be guaranteed on the volume.

NOTE: By ‘erased’ in the above paragraphs, we mean that the sectors are made non-valid
for UDF —for example by writing zeroes to the sectors.

2.1.7 Volume Recognition Sequence
The following rules shall apply when writing the volume recognition sequence:

qigF 2.01 March 15, 2000
UDF2.00 Aprit-3.1998

The Volume Recognition Sequence (VRS) as described in part 2 and part 3 of

ECMA 167 shall be recorded. There shall be exactly one NSR descriptor in the
VRS. The NSR and BOOT 2 descriptors shall be in the Extended Area. There shall
be only one Extended Areawith one BEAOL and one TEAQL. All other VSDs are
only allowed before the Extended Area. The block after the VRS shall be
unrecorded or contain all #00.

I mplementers should expect that disks recorded by UDF 2.00 and earlier did not

QQF 2.01

have this constraint, and should handle these cases accordingly.

March 15, 2000

UDE2 00
== 0d

Apri-3,1093

2.2 Part 3-Volume Structure
2.2.1 Descriptor Tag

struct tag { [* ECMA 167 3/7.2*/
Uint16 Tagldentifier;
uUint16 DescriptorVersion;
uint8 TagChecksum;
byte Reserved,
Uint16 TagSerialNumber;
uint16 DescriptorCRC;
Uint16 Descriptor CRCLength;
Uint32 TagL ocation,

}

2.2.1.1 Uint16 TagSerialNumber
&~ lgnored. Intended for disaster recovery.

& ——ReShadll be set to a-uniguethe TagSerialNumber value at—velume
maitialization-of the Anchor Volume Descriptor Pointers on this volume.

The FagSertatNumber
In order to preserve disaster recovery support, the TagSerial Number-shalt must be
set to avalue that differs from ones previously recorded, upon volume re-

initialization. -HThis value is suggested-that:-TagSerialNumber=
{FragSeriatNumber-of-the-Primary-Volume Descriptor)+determined at volume
formatting time and may depend on the state of the volume prior to formatting.
See 2.1}-.6 for further details.

2.2.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor. The value of thisfield
shall be set to (Size of the Descriptor) - (Length of Descriptor Tag). When
reading a descriptor the CRC should be validated.

NOTE: The Descriptor CRCLength field must not be used to determine the actual
length of the descriptor or the number of bytes to read. These lengths do not
match in all cases; there are exceptions in the standard where the Descriptor CRC
Length need not match the length of the descriptor.

9RF 2.01 March 15, 2000
UDF2.00 April-3-1998

2.2.2 Primary Volume Descriptor

struct PrimaryV olumeDescriptor { [* ECMA 167 3/10.1*/
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
Uint32 PrimaryV olumeDescriptorNumber;
dstring Volumel dentifier[32];
Uint16 V olumeSequenceNumber;
Uint16 MaximumV olumeSequenceNumber;
Uint16 I nterchangel evel;
Uint16 M aximumlnterchangelL evel;
Uint32 Character SetList;
Uint32 MaximumCharacter SetList;
dstring VolumeSetl dentifier[128];

struct charspec Descriptor Character Set;
struct charspec ExplanatoryCharacter Set;
struct extent_ ad VolumeAbstract;

struct extent_ad VolumeCopyrightNotice;
struct EntityID Applicationldentifier;
struct timestamp RecordingDateandTime;
struct EntitylD Implementationl dentifier;

byte ImplementationUse[64];

Uint32 PredecessorV olumeDescriptor Sequencel ocation;
Uint16 Flags;

byte Reserved[22];

}

2.2.2.1 Uintl6 Interchangel evel
&~ Interpreted as specifying the current interchange level (as specified in |
ECMA 167 3/11), of the contents of the associated volume and the
restrictions implied by the specified level.

& If this volume is part of a multi-volume Volume Set then the level shall be
set to 3, otherwise the level shall be set to 2.

ECMA 167 requires an implementation to enforce the restrictions associated with
the specified current Interchange Level. The implementation may change the
value of thisfield aslong as it does not exceed the value of the Maximum
Interchange Level field.

2.2.2.2 Uint16 -Maximuml nter changel evel
&~ Interpreted as specifying the maximum interchange level (as specified in
ECMA 167 3/11), of the contents of the associated volume.

& This field shall be set to level 3 (No Restrictions Apply), unless specifically
given adifferent value by the user.

9bF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

NOTE: This field is used to determine the intent of the originator of the volume.
If this field has been set to 2 then the originator does not wish the volume to be
included in a multi-volume set (interchange level 3). The receiver may override
this field and set it to a 3 but the implementation should give the receiver a strict
warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 -Character SetL ist

&

&

Interpreted as specifying the character set(s) in use by any of the structures
defined in Part 3 of ECMA 167 (3/10.1.9).

Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.2.4 Uint32 -MaximumChar acter SetL ist

&

&

Interpreted as specifying the maximum supported character sets (as
specified in ECMA 167) which may be specified in the Character SetList
field.

Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetldentifier

&

&

Interpreted as specifying the identifier for the volume set .

The first 16 characters of this field should be set to a unique value. The
remainder of the field may be set to any allowed value. Specifically,
software generating volumes conforming to this specification shall not set
this field to a fixed or trivial value. Duplicate disks which are intended to
be identical may contain the same value in this field.

NOTE: The intended purpose of this is to guarantee Volume Sets with
unigue identifiers. The first 8 characters of the unique part should come
from a CSO hexadecimal representation of a 32-bit time value. The
remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec Descriptor Character Set

&

&

Interpreted as specifying the character sets alowed in the Volume
Identifier and Volume Set | dentifier fields.

Shall be set to indicate support for CSO as defined in 2.1.2.

2.2.2.7 struct charspec ExplanatoryCharacter Set

&

QQF 2.01

Interpreted as specifying the character sets used to interpret the contents of
the VolumeAbstract and VolumeCopyrightNotice extents.

March 15, 2000

UBbF200
tH 0

& Shall be set to indicate support for CS0O as defined in 2.1.2.

2.2.2.8 struct EntitylD Implementationl dentifier;
For more information on the proper handling of this field see section 2.1.5.

2.2.2.9 struct EntitylD Applicationl dentifier
s Thisfield either specifies a valid Entity Identifier (section 2.1.5) identifying
the application that last wrote this field, or the field is filled with all #00
bytes, meaning that no application is identified.

& Either all #00 bytes or a valid Entity Identifier (section 2.1.5) shall be
recorded in this field.

2.2.3 Anchor Volume Descriptor Pointer
struct AnchorV olumeDescriptorPointer { [* ECMA 167 3/10.2 */
struct tag DescriptorTag;
struct extent_ad M ainVolumeDescriptor SequenceExtent;
struct extent_ad ReserveVolumeDescriptor SequenceExtent;
byte Reserved[480];
}

NOTE: An AnchorVolumeDescriptorPointer structure shall be recorded in at least
2 of the following 3 locations on the media: |

* Logica Sector 256.
* Logica Sector (N - 256).
* N

NOTEUnelosedNOTE: As specified in section 6.10, unclosed CD-R media may
have a single AVDP present at either sector 256 or 512. If on an Archer\olume
Deseripter—Peinterunclosed disc a single AVDP is recorded at—only-sector 512
Upen-elese,on sector 256, any AVDP recorded on sector 512 must be ignored.
Closed CD-R media vw#!tshall conform to the above rules-sbove-.

2.2.3.1 struct MainVolumeDescriptor SequenceExtent
The main VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

2.2.3.2 struct ReserveVolumeDescriptor SequenceExtent
The reserve VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

9QF 2.01 March 15, 2000
UDF2.00 April-3-1998

2.2.4 Logical Volume Descriptor

struct LogicaVolumeDescriptor { [* ECMA 167 3/10.6 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
struct charspec Descriptor Character Set;
dstring LogicalVVolumel dentifier[128];
Uint32 L ogicalBlockSize,
struct EntitylD ~ Domainldentifier;
byte L ogicalVVolumeContentsUse{ 16];
Uint32 MapTableL ength;
Uint32 NumberofPartitionM aps,
struct EntitylD Implementationl dentifier;
byte ImplementationUse[128];
extent_ad I ntegritySequenceExtent,
byte PartitionM apq];

}

2.2.4.1 struct charspec Descriptor Character Set
&~ Interpreted as specifying the character set alowed in the
LogicalVolumel dentifier field.

& Shall be set to indicate support for CSO as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize
&~ Interpreted as specifying the Logical Block Size for the logica volume |
identified by this Logical VolumeDescriptor.

& This field shall be set to the largest logical sector size encountered amongst
all the partitions on media that constitute the logical volume identified by |
this LogicalVolumeDescriptor. Since UDF requires that al Volumes
within a VolumeSet have the same logical sector size, the Logical Block
Sze will be the same as the logical sector size of the Volume.

2.2.4.3 struct EntitylD Domainl dentifier
&~ Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If this field is all zero then
it isignored, otherwise the Entity Identifier rules are followed. NOTE: If
the field does not contan “*OSTA UDF Compliant” then an
implementation may deny the user access to the logical volume. |

& This field shall indicate that the contents of this logical volume conformsto |
the domain defined in this document, therefore the Domainldentifier shall
be st to:
"*OSTA UDF Compliant"

oeF 2.01 March 15, 2000
—_J
UDF 200 April-3-1998

As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shal contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see section 2.1.5.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.45.3.

2.2.4.4 byte LogicalVolumeContentUse[16]

This field contains the extent location of the FileSet Descriptor. Thisis described in 4/3.1
of ECMA 167 asfollows:

This filed can be used to find the FileSet descriptor, and from the FileSet descriptor the

“If the volume is recorded according to Part Errerl-Reference sourcenot-found.3, the extent
in which the first File Set Descriptor Sequence of the logical volume is recorded shall be
identified by a long_ad (Er+erl-Reference-souree-notfound/Errer-Reference-souree-not
found-4/14.14.2) recorded in the Logical Volume Contents Use field (see Er+orl-Reference
sodree—hot—found/ErrorReference—soureenet—found-3/10.6.7) of the Logical Volume

Descriptor describing the logical volume in which the File Set Descriptors are recorded.”

root volume can be found.

2.2.4.5 struct EntitylD Implementationl dentifier;

For more information on the proper handling of this field see the section en-Entity

Identifier2.1.5.

2.2.4.6 struct extent_ad |ntegritySequenceExtent

A valuein thisfield isrequired for the Logical Volume Integrity Descriptor. For
Rewriteable or Overwriteable media this shal be set to a minimum of 8K bytes.

WARNING: For WORM media this field should be set to an extent of some

substantial length. Once the WORM volume on which the Logical Volume

Integrity Descriptor residesis full a new volume must be added to the volume set
since the Logical Volume Integrity Descriptor must reside on the same volume as

the prevailing Logical Volume Descriptor.

2.2.4.7 byte PartitionM aps

QQF 2.01

For the purpose of interchange partition maps shall be limited to Partition Map
type 1, except type 2 maps as described in this document (2.2.8 and 2.2.9).

March 15, 2000

UBbF200
tH 0

2.2.5 Unallocated Space Descriptor

struct UnallocatedSpaceDesc { [* ECMA 167 3/10.8 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
Uint32 NumberofAllocationDescriptors,
extent_ad AllocationDescriptord];
}

This descriptor shall be recorded, even if there is no free volume space._ The first
32768 bytes of the Volume space shall not be used for the recording of ECMA
167 structures. This area shall not be referenced by the Unallocated Space
Descriptor or any other ECMA 167 descriptor.

2.2.6 Logical Volume Integrity Descriptor

struct LogicaVolumel ntegrityDesc { I* ECMA 167 3/10.10 */
struct tag DescriptorTag,
Timestamp RecordingDateAndTime,
Uint32 IntegrityType,
struct extend_ad NextIntegrityExtent,
byte L ogicalVVolumeContentsUse[32],
Uint32 NumberOfPartitions,
Uint32 LengthOfl mplementationUse,
Uint32 FreeSpaceTable[],
Uint32 SizeTabl€],
byte ImplementationUse{]
}

The Logical Volume Integrity Descriptor is a structure that shall be written any
time the contents of the associated Logical Volume is modified. Through the
contents of the Logical Volume Integrity Descriptor an implementation can easily
answer the following useful questions:

1) Arethe contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
V olume was modified?

3) What isthe total Logical Volume free space in logical blocks?
4) What isthe total size of the Logical Volume in logical blocks?

5) What is the next available Uniquel D for use within the Logical Volume?

9bF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

6) Has some other implementation modified the contents of the logical
volume since the last time that the original implementation, which crested
the logical volume, accessed it.

2.2.6.1 byte-LogicalVolumeContentsUse
See the section on-Logical-Veolume Header Descriptor3.2.1 for information on the

contents of this field.

2.2.6.2 Uint32 -FreeSpaceT able |
Since most operating systems require that an implementation provide the true free
gpace of aLogical Volume at mount time it isimportant that these values be |
maintained for all non-virtual partitions. The optional value of #FFFFFFFF, which
indicates that the amount of available free space is not known, shall not be used for |
non-virtual partitions. For virtual partitions the FreeSpaceT able shall be set to
#FFFFFFFF.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable
Since most operating systems require that an implementation provide the total size
of aLogica Volume at mount time it isimportant that these values be maintained
for al non-virtual partitions. The optional value of #FFFFFFFF, which indicates
that the partition size is not known, shall not be used for non-virtual partitions.
For virtual partitions the SizeTable shall be set to #FFFFFFFF.

2.2.6.4 byte ImplementationUse
The ImplementationUse area for the Logical Volume Integrity Descriptor shall be
structured as follows:

| mplementationUse format

RBP | Length Name Contents

0 32 Implementationl D EntitylD

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uintl6

42 2 Minimum UDF Write Revision Uint16

44 2 Maximum UDF Write Revision Uintl6

46 7? Implementation Use byte

Implementation ID - The implementation identifier EntitylD of the
implementation which last modified anything within the scope of this
EntitylD. The scope of this EntitylD is the Logical Volume Descriptor, and
the contents of the associated Logical Volume. Thisfield alows an

9aF 2.01 March 15, 2000
[y
UDF2.00 Apri-3-1998

implementation to identify which implementation last modified the contents
of aLogica Volume.

Number of Files - The current number of files in the associated Logical
Volume. This information is needed by the Macintosh OS. All
implementations shall maintain this information. NOTE: This value does
not include Extended Attributes or streams or streams as part of the file |
count.

Number of Directories - The current number of directories in the
associated Logical Volume. This information is needed by the Macintosh
OS. All implementations shall maintain this information.

NOTE: The root directory shal be included in the directory count. The
directory count does not include stream directories. |

Minimum UDF Read Revision - Shall indicate the minimum recommended
revison of the UDF specification that an implementation is required to
support to successfully be able to read al potential structures on the media.
This number shall be stored in binary coded decimal format, for example
#0150 would indicate revision 1.50 of the UDF specification.

Minimum UDF Write Revision - Shall indicate the minimum revision of the
UDF specification that an implementation is required to support to
successfully be able to modify all structures on the media. This number
shall be stored in binary coded decimal format, for example #0150 would
indicate revision 1.50 of the UDF specification.

Maximum UDF Write Revision - Shall indicate the maximum revision of
the UDF specification that an implementation whichthat has modified the |
media has supported. An implementation shall update this field only if it
has modified the media and the level of the UDF specification it supportsis
higher than the current value of this field. This number shall be stored in
binary coded decimal format, for example #0150 would indicate revision
1.50 of the UDF specification.

Implementation Use - Contains implementation specific information unique
to the implementation identified by the Implementation ID.

9QF 2.01 March 15, 2000
—_J
UDF2.00 Apri-3-1998

2.2.7 Implemention Use Volume Descriptor

struct ImpUseV olumeDescriptor { [* ECMA 167 3/10.4 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
struct EntitylD Implementationl dentifier;
byte I mplementationUse[460];
}

This section defines an UDF Implementation Use Volume Descriptor. This
descriptor shall be recorded on every Volume of a Volume Set. The Volume may
also contain additional |mplementation Use Volume Descriptors which that are |
implementation specific. The intended purpose of this descriptor isto aid in the
identification of a VVolume within a Volume Set that belongs to a specific Logical
Volume.

NOTE: Animplementation may still record an additional Implementation Use
Volume Descriptor in its own format on the media. The UDF Implementation Use
Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 Entityl D tmplementation] mplementationl dentifier

The Identifier
Thisfield of this Entityl D shall specify “*UDF LV Info”._Refer to section 2.1.5 on
Entity Identifier.

2.2.7.2 bytes I mplementation-Use
The implementation use area shall contain the following structure:

struct LVInformation {
struct charspec LVICharset,

dstring L ogicalVVolumel dentifier[128],
dstring LVInfol[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

sruct EntitylD tmplementiontBlmplementation| D,
bytes I mplementationUse[128];

}
2.2.7.2.1 charspec LVICharset
& Interpreted as specifying the character sets adlowed in the
Logical Volumeldentifier and LVInfo fields.

& Shall be set to indicate support for CSO only as defined in 2.1.2. ‘

QpF 2.01 March 15, 2000
I
UDF2.00 Apri-3-1998

2.2.7.2.2 dstring LogicalVolumel dentifier
| dentifies the Logical Volume referenced by this descriptor.

2.2.7.2.3 dstring LVInfol,LVInfo2 and LVInfo3 |
ThefieldsLVInfol, LVInfo2 and LV Info3 should contain additional information
to aid in the identification of the media. For example the LVInfo fields could
contain information such as Owner Name, Organization Name, -and Contact |
Information.

2.2.7.2.4 druct Entityl D tmplementiontBlmplementationl D
Refer to the section 2.1.5 on Entity Identifier.

2.2.7.2.5 bytesImplementationUse[128]
This area may be used by the implementation to store any additional
implementation specific information.

QaF 2.01 March 15, 2000
A
UDF2.00 April-3,1998

2.2.8 Virtual Partition Map
Thisis an extension of ECMA 167 to expand its scope to include sequentially written
media (eg. CD-R). Thisextension isfor a partition map entry to describe a virtual space.

The Logical Volume Descriptor contains alist of partitions that make up a given volume.
Asthe virtual partition cannot be described in the same manner as a physical partition, a
Type 2 partition map defined below shall be used.

If aVirtual Partition Map is recorded, then the Logical Volume Descriptor shall contain at
least two partition maps. One partition map shall be recorded as a Type 1 partition map.
One partition map shall be recorded as a Type 2 partition map. The format of this Type 2
partition map shall be as specified in the following table.

Layout of Type 2 partition map for virtual partition

RBP | Length Name Contents
0 1 Partition Map Type uint8 = 2

1 1 Partition Map Length uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntitylD

36 2 Volume Sequence Number uint16

38 2 Partition Number uintl6

40 24 Reserved #00 bytes

e Partition Type Identifier:
e Flags=0
e ldentifier =*UDF Virtual Partition
e ldentifierSuffix isrecorded asin section 2.1.5.3
* Volume Segquence Number = volume upon which the VAT and Partition is recorded

e Partition Number = the partition number in the Type 1 partition map in the same logical
volume descriptor.

2.2.9 Sparable Partition Map

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems, a partition of type 2 isused. The partition
map defines the partition number, packet size (see section 1.3.2), and size and locations of
the sparing tables. Thistype 2 map isintended to replace the type 1 map normally found
on the media. FhismapThere should not be atype 1 map recorded if a Sparable Partition
Map is recorded. The Sparable Partition Map identifies not only the partition number and
the volume sequence number, but also identifies the packet length and the sparing tables.

SQF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

A Sparable Partition Map shall not be recorded on disk/drive systems that perform defect

management.
L ayout of Type 2 partition map for sparable partition
RBP Length Name Contents
0 1 Partition Map Type uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 Volume Seguence Number uintl6
38 2 Partition Number uintl6
40 2 Packet Length Uint16 =232
42 1 Number of Sparing Tables (=N_ST) Uint8
43 1 Reserved #00 byte
44 4 Size of each sparing table Uint32
48 4* N_ST Locations of sparing tables Uint32
48+4* N ST|16-4* N ST | Pad #00 bytes

Partition Type Identifier:
e Flags=0
e ldentifier =*UDF Sparable Partition
e ldentifierSuffix isrecorded asin section 2.1.5.3.

Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition.

Packet Length = the number of user data blocks per fixed packet. Shat-besette-22This
valueis specified in the medium specific section of Appendix 6.

Number of Sparing Tables = the number of redundant tables recorded. This shall be avalue
in therange of 1 to 4.

Size of each sparing table = Length, in bytes, allocated for each sparing table.

Locations of sparing tables = the start locations of each sparing table specified as a media
block address. Implementations should align the start of each sparing table with the
beginning of a packet. |mplementations should record at least two sparing tablesin
physically distant locations.

2.2.10 Virtual Allocation Table

The Virtual Allocation Table (VAT) is used on sequentialy written media (eg. CD-R) to
give the appearance of randomly writable media to the system. The existence of this
partition is identified in the partition maps. The VAT shall only be recorded on
sequentially written media (eg. CD-R).

The VAT isamap that trandates Virtual Addresses to logical addresses. It shall be
recorded as afile identified by a File Entry ICB (VAT ICB) whichthat allows great
flexibility in building the table. The VAT ICB is the last sector recorded in any transaction.
The VAT itself may be recorded at any location.

ORF 2.01

March 15, 2000

O
UBbF200
tH 0

The VAT shall be identified by a File Entry ICB with afile type of 248. ThisICB shall be
the last valid data sector recorded. Error recovery schemes can find the last valid VAT by
finding ICBs with file type 248.

This file, when small, can be embedded in the ICB that describesit. If it islarger, it can be
recorded in a sector or sectors preceding the ICB. The sectors do not have to be
contiguous, which allows writing only new parts of the table if desired. This allows small
incremental updates, even on disks with many directories.

When the VAT is small (a small number of directories on the disk), the VAT is updated by
writing a new file ICB with the VAT embedded. When the VAT becomes too large to fit
in the ICB, writing a single sector with the VAT and a second sector with the ICB is
required. Beyond this point, more than one sector is required for the VAT. However, as
multiple extents are supported, updating the VAT may consist of writing only the sector
or sectors that need updating and writing the ICB with pointers to all of the pieces of the
VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the
proper logical location. The indirection provided by this table provides the appearance of
direct overwrite capability. For example, the ICB describing the root directory could be
referenced as virtual sector 1. A virtual sector is contained in a partition identified by a
virtual partition map entry. Over the course of updating the disk, the root directory may
change. When it changes, a new sector describing the root directory iswritten, and its
Logica Block Addressis recorded as the Logica Block Address corresponding to virtual
sector 1. Nothing that references virtual sector 1 needsto change, asit till pointsto the
most current virtual sector 1 that exists, even though it exists at anew Logical Block
Address.

The use of virtual addressing allows any desired structure to become effectively
rewritable. The structure is rewritable when every pointer that references it does so only
by its Virtual Address. When a replacement structure is written, the virtual reference does
not need to change. The proper entry inthe VAT is changed to reflect the new Logical
Block Address of the corresponding Virtual Address and all virtual references then
indirectly point to the new structure. All structures that require updating, such as directory
|CBs, shall be referenced by a Virtual Address. As each structure is updated, its
corresponding entry in the VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entries in afile. Each entry shall be
the offset, in sectors, into the physical partition in which the VAT islocated. The first
entry shall be for the virtual partition sector O, the second entry for virtual partition sector
1, etc. The Uint32 entries shall follow the VAT header. The entry for the previous VAT
|CB allows for viewing the file system as it appeared in an earlier state. If thisfield is
#FFFFFFFF, then no such ICB is specified.

QYF 2.01 March 15, 2000
A=
UDF 2,00 April-3,1998

Virtual Allocation Table structure

Offset Length Name Contents
0 2 Length of Header (=L_HD) Uint16
2 2 Length of Implementation Use (=L_1U) Uint16
4 128 Logical Volume Identifier dstring
132 4 Previous VAT ICB location Uint32
136 4 Number of FiBsdentifying Files Uint32
140 4 Number of nen-parentFHBsidentifying Uint32

Directories

144 2 MinMinimum UDF Read versienVersion Uint16
146 2 MinMinimum UDF Write versienV ersion Uint16
148 2 MaxMaximum UDF Write verssonVersion | Uintl6
150 2 Reserved #00 bytes
152 L IU Implementation Use bytes
152+L 1U |4 VAT entry O Uint32
156+L I1U |4 VAT entry 1 Uint32
Information | 4 VAT entry n uint32
Length - 4 |

Length of Header - Indicates the amount of data preceding the VAT entries. Thisvaue
shall be 152 + L_|U.

Length of Implementation Use - Shall specify the number of bytes in the Implementation
Usefield. If thisfield is non-zero, the value shall be at least 32 and be an integral multiple
of 4.

Logical Volume Identifier - Shall identify the logical volume. This field shall be used by |
implementations instead of the corresponding field in the Logica Volume Descriptor. The
value of this field should be the same as the field in the LVD until changed by the user.

Previous VAT ICB Location - Shall specify the logical block number of an earlier VAT
ICB in the partition identified by the partition map entry. If thisfield is #FFFFFFFF, no |
such ICB is specified.

Number of FiDstdentifyingFiles —tdentifiesthe— The current number of files er-in the
assomated Logical Volume This mformatlon IS n%ded bv theVGJere%eLHd’ng*}aFd

thisﬂekiMacmtosh OS AII |mplementat|ons shall malntam this mformatlon The
contents of this field shall be used by implementations asteadinstead of the corresponding
fieldinthe LVID.

g9gF 201 March 15, 2000
UDF200 Apri-3-1998

NOTE: This value does not include Extended Attributes or streams as part of the

corresponding field in the LVIDfile count.

Number of ren-parent-FDstdentifying-Directories - HdentifiestheThe current number of
directories enin the velume—plusassociated Logical Volume. This information is needed
by the Macintosh OS. All implementations shall maintain this information. The contents of
this field shall be used by implementations instead of the corresponding field in the LVID.

NOTE The root dlrectory—'Fhe shall be included in the dlrectorv countﬁle&enet

dlrectorv count does not include stream dlrectorles

MiaMinimum UDF Read Version - Defined in 2.2.6. The contents of this field shall be
used by implementations instead of the corresponding field in the Logical Volume

Inegritylntegrity Descriptor (LVID).

MiaMinimum UDF Write Version - Defined in 2.2.6. The contents of this field shall be
used by implementations instead of the corresponding field inthe LVID.

MaxMaximum UDF Write Version - Defined in 2.2.6. The contents of this field shall be
used by implementations instead of the corresponding field inthe LVID.

Implementation Use - If non-zero in length, shall begin with aan Entity-1D identifying the
usage of the remainder of the Implementation Use area.

VAT Entry - VAT entry n shall identify the logical block number of the virtual block n.
An entry of #FFFFFFFF indicates that the virtual sector is currently unused. The LBN
specified is located in the partition identified by the partition map entry. The number of
entries in the table can be determined from the VAT file sizein the I CB:

Number of entries (N) = (Information Length - L_HD) / 4.

2.2.11 Sparing Table

Certain disk/drive systems do not perform defect management (eg. CD-RW). -Fe-A
Sparing Table is used to provide an apparent defect-free space for these systems. Certain
media can only be written in groups of sectors (“packets’), further complicating
relocation: awhole packet must be relocated rather than only the sectors being written.
To address thisissue a sparable partition is identified in the partition map, which further
identifies the location of the sparing tables. The sparing table identifies relocated areas on
the media. Sparing tables are identified by a sparable partition map. Sparing tables shall
not be recorded on disk/drive systems that perform defect management.

QEF 2.01 March 15, 2000
UbF2.00 AprH-3-1998

Sparing Tables point to space alocated for sparing and contains alist of mappings of
defective sectors to their replacements. Separate copies of the sparing tables shall be
recorded in separate packets. All instances of the sparing table shall be kept up to date.

Partitions map logical space to physical space. Normally, thisisalinear mapping where an
offset and alength is-are specified. A sparable partition is based on this mapping, where
the offset and length of a partition within physical space is specified by a Partition
Descriptor (see 2.2.12). A sparable partition descriptershall begin and end on a packet

boundary. The sparing table further specifies an exception list of logical to physical
mappings. All mappings are one packet in length. The packet size is specified in the
sparable partition map.

Available sparing areas may be anywhere on the media, either inside or outside of a
partition. If located inside a partition, sparable space shall be marked as allocated and
shall be included in the Non-Allocatable Space ListStream. The mapped locations should
befilled in a format time; the original locations are assigned dynamically as errors occur.
Each sparing table shall be structured as shown below.

Sparing Table layout

BP | Length Name Contents
0 16 Descriptor Tag tag=0
16 32 Sparing ldentifier EntitylD
48 2 Reallocation Table Length (=RT_L) uintl6
50 2 Reserved #00 bytes
52 4 Sequence Number Uint32
56 8*RT_L Map Entry Map Entries

This structure may be larger than a single sector if necessary.
Descriptor Tag
Contains a Tag teentiter-|dentifier of O, which indicates that the format of the Descriptor

Tag isnot specified by ECMA 167. All other fields of the Descriptor Tag shall bevalid, asif

S?F 2.01

the Tag Identifier were one of the values defined by ECMA 167.

Sparing ldentifier:

Flags=0

Identifier = * UDF Sparing Tabl e
IdentifierSuffix isrecorded asin UDF 2.1.5.3

Reallocation Table Length
Indicates the number of entriesin the Map Entry table.

Sequence Number
Contains a number that shall be incremented each time the sparing table is updated.

Map Entry
A map entry is described in the table below. Maps shall be sorted in ascending order by the

Original Location field.

March 15, 2000

UBbF200
tH 0

Map Entry description

RBP | Length Name Contents
0 4 Original Location Uint32
4 4 Mapped Location Uint32

e Original Location
Logical Block Address of the packet to be spared. The address of a packet is the address of
thefirst user data block of a packet. If thisfield is #FFFFFFFF, then thisentry is available
for sparing. If thisfield is #FFFFFFFO, then the corresponding mapped location is marked |
as defective and should not be used for mapping. Original Locations of #FFFFFFFL through
#FFFFFFFE are reserved.

e Mapped Location
Physical Block Address of active data. Requeststo the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFFO, #FFFFFFFF, or reserved. If the
mapped |ocation overlaps a partition, that partition shall have that space marked as all ocated
and that space shall be part of the Non-Allocatable Space !ist-Stream. |

38': 2.01 March 15, 2000
UDF 200 Aprit-3-1998

2.2.12 Partition Descriptor
struct PartitionDescriptor {

[* ECMA 167 3/10.5 */

struct tag DescriptorTag;

Uint32 V olumeDescriptorSequenceNumber;
Uint16 PartitionFlags;

Uint16 PartitionNumber:;

struct EntitylD PartitionContents;

byte PartitionContentsUse[128];;

Uint32 AccessType;

Uint32 PartitionStartingL ocation;
Uint32 PartitionL ength;

struct EntitylD | mplementationl dentifier;
byte | mplementationUse[128] ;

byte Reserved[156];

3

2.2.12.1 Struct Entityl D PartitionContents

For more information on the proper handling of this field see the section on Entity

|dentifier.

2.2.12.2 Uint32 PartitionStartinglL ocation

For a Sparable Partition, the value of this field shall be an integral multiple of the

Packet Length. The Packet Length is defined in the Sparable Partition Map.

2.2.12.3 Uint32 PartitionL ength

For a Sparable Partition, the value of this field shall be an integral multiple of the

Packet Length. The Packet Length is defined in the Sparable Partition Map.

2.2.12.4 Struct Entityl D | mplementationl dentifier

For more information on the proper handling of this field see the section on Entity

|dentifier.

gg: 2.01

March 15, 2000

UDE2 00
==

Apri-3,1093

2.3 Part 4 - File System

2.3.1 Descriptor Tag

struct tag {
uint16
uint16
Uint8
byte
Uint16
Uint16
Uint16
uint32

}

[* ECMA 167 4/7.2*/
Tagldentifier;
DescriptorVersion;
TagChecksum;
Reserved,;
TagSerialNumber;
DescriptorCRC;
Descriptor CRCLength;
TagL ocation;

2.3.1.1 Uint16 -TagSerialNumber
&~ lgnored. Intended for disaster recovery.

y3 ReShall be set to a-uniguethe TagSerialNumber value at-for the Anchor
Volume Descriptor Pointers on this volume-nitialization.

The IagSeHaLNHmbngame apph&s as for volume structure TagSerial NumbershaH

mmbe%&&m%h&asseerated—F#e%et—D&s%p&ervalues seeZleanleG

2.3.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor, unless otherwise
noted. The value of thisfield shall be set to: (Size of the Descriptor) - (Length of
Descriptor Tag). When reading a descriptor the CRC should be validated.

NOTE: The Descriptor CRCLength field must not be used to determine the actual

length of the descriptor or the number of bytesto read. These lengths do not

match in all cases; there are exceptions in the standard where the Descriptor CRC

Length need not match the length of the descriptor.

2.3.1.3 Uint32 TagL ocation

For structures referenced via a virtual address (i.e. referenced through the VAT),

this value shall be the virtual address, not the physical or logical address.

L_4r€F 2.01

March 15, 2000

UDE2 00
==

Apri-3,1093

2.3.2 File Set Descriptor

struct FileSetDescriptor { /* ECMA 167 4/14.1*/

}

struct tag DescriptorTag;

struct timestamp RecordingDateandTime;
Uint16 I nterchangel evel;

Uint16 M aximumlnterchangelL evel;
Uint32 Character SetList;

Uint32 M aximumCharacter SetList;
Uint32 FileSetNumber;

Uint32 FileSetDescriptorNumber;

struct charspec
dstring
struct charspec

L ogicalVVolumel dentifier Character Set;
LogicaVolumel dentifier[128];
FileSetCharacter Set;

dstring FileSetldentifer[32];
dstring CopyrightFilel dentifier[32];
dstring AbstractFilel dentifier[32];
struct long_ad RootDirectoryl CB,;

struct EntitylD Domainldentifier;

struct long_ad NextExtent;

struct long_ad StreamDirectoryl CB;

byte Reserved[32];

Only one FileSet descriptor shall be recorded. On WORM media, multiple

FileSets may be recorded.

The UDF provision for multiple File Setsis as follows:

* Multiple FileSets are only allowed on WORM media.

* Thedefault FileSet shall be the one with the highest FileSetNumber.

* Only the default FileSet may be flagged as writable. All other FileSets
in the sequence shall be flagged HardWriteProtect (see EntityiB
defintton2.1.5.3).

* No writable FileSet shall reference any metadata structures which are
referenced (directly or indirectly) by any other FileSet. Writable
FileSets may, however, reference the actual file data extents.

Within aFileSet on WORM, if al files and directories have been recorded with
|CB strategy type 4, then the DomainID of the corresponding FileSet Descriptor
shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM isto support the ability to
have multiple archive images on the media. For example one FileSet could
represent a backup of a certain set of information made at a specific point in time.

March 15, 2000

grl_al_F 2.01

UBbF200
tH 0

The next FileSet could represent another backup of the same set of information
made at alater point in time.

2.3.2.1 Uint16 -Interchangel evel
&~ Interpreted as specifying the current interchange level (as specified in
ECMA 167 4/15), of the contents of the associated file set and the
restrictions implied by the specified level.

a1 Shall be set to alevel of 3.

An implementation shall enforce the restrictions associated with the specified
current Interchange Level.

2.3.2.2 Uint16 -Maximuml nter changel evel
& Interpreted as specifying the maximum interchange level of the contents of
the associated file set. This value restricts to what the current Interchange
Level field may be set.

& Shall be set to level 3.

2.3.2.3 Uint32 -Character SetL ist
e~ Interpreted as specifying the character set(s) specified by any field, whose
contents are specified to be a charspec, of any descriptor specified in Part 4
of ECMA 167 and recorded in the file set described by this descriptor.

& Shall be set to indicate support for CSO only as defined in 2.1.2.
2.3.2.4 Uint32 -MaximumChar acter SetL ist
&~ Interpreted as specifying the maximum supported character set in the
associated file set and the restrictions implied by the specified level.
& Shall be set to indicate support for CSO only as defined in 2.1.2.
2.3.2.5 struct charspec L ogical Volumel dentifier Char acter Set
&~ Interpreted as specifying the d-characters alowed in the Logical Volume
Identifier field.

& Shall be set to indicate support for CSO as defined in 2.1.2.
2.3.2.6 struct charspec FileSetChar acter Set
& Interpreted as specifying the d-characters allowed in dstring fields defined
in Part 4 of ECMA 167 that are within the scope of the FileSetDescriptor.

& Shall be set to indicate support for CSO as defined in 2.1.2.

YoF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

2.3.2.7 struct EntitylD Domainl dentifier

2.3.3

& Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield isNULL then it
isignored, otherwise the Entity Identifier rules are followed.

& Thisfield shall indicate that the scope of this File Set Descriptor conforms
to the domain defined in this document, therefore -the
I mplementationl dentifier shall be set to:
"*OSTA UDF Compliant"

As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shal contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see the section en-Entity-tdentifier2.1.5.3.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags.

Partition Header Descriptor
struct PartitionHeaderDescriptor { [* ECMA 167 4/14.3 */
struct short_ad UnallocatedSpaceT able;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionlntegrityTable;
struct short_ad FreedSpaceTable;
struct short_ad FreedSpaceBitmap;
byte Reserved[88];
}

As a point of clarification the logical blocks represented as Unallocated are blocks
that are ready to be written without any preprocessing. In the case of Rewritable
media this would be a write without an erase pass. The logical blocks represented
as Freed are blocks that are not ready to be written, and require some form of
preprocessing. In the case of Rewritable media this would be a write with an erase
pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a
Logical Volume. Space Tables and Space Bitmaps shall not both be used at the
same time within a Logical Volume.

2.3.3.1 struct short_ad PartitionIntegrityTable

grgF 2.01

Shall be set to all zeros since Partitionl ntegrityEntrys are not used.

March 15, 2000

UBbF200
tH 0

2.3.4 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4 %/
struct tag DescriptorTag;
Uint16 FileVersonNumber;
uint8 FileCharacteristics;
uint8 LengthofFilel dentifier;
struct long_ad ICB;
Uint16 LengthOflmplementationUsg;
byte ImplementationUsg{];
char Filel dentifier[];
byte Padding[];
}
The File Identifier Descriptor shall be restricted to the length of at most one |
Logical Block.

NOTE: All UDF directories shall include a File Identifier Descriptor that indicates
the location of the parent directory. The File Identifier Descriptor describing the
parent directory shall be the first File Identifier Descriptor recorded in the
directory. The parent directory of the Root directory shall be Root, as stated in
ECMA 167 4/8.6

2.3.4.1 Uint16 FileVersionNumber
& There shall be only one version of afile as specified below with the value
being set to 1.

s Shall be set to 1.

2.3.4.2 FileCharacteristics
The deleted bit may be used to mark afile or directory as deleted instead of
removing the FID from the directory, which requires rewriting the directory from
that point to the end. If the space for the file or directory is deallocated, the
implementation shall set the ICB field to zero, as all fieldsin a FID must be valid
even if the deleted bit isset. See [4/14.4.3], note 21 and [4/14.4.5].

WRAF 2.01 March 15, 2000
UDF2.00 April-3-1998

ECMA 167 4/8.6 requires that the File Identifiers (and File Version Numbers,
which shall aways be 1) of all FIDs in a directory shall be unique. While the
standard is silent on whether FIDs with the deleted bit set are subject to this
requirement, the intent is that they are not. FIDs with the deleted bit set are not
subject to the uniqueness requirement, as interpreted by UDF

In order to assist a UDF implementation that may have read the standard without
this interpretation, implementations shall follow these rules when a FID’ s deleted
bit is set:

If the compression |ID of the File Identifier is 8, rewrite the compression ID to 254.
If the compression ID of the File |dentifier is 16, rewrite the compression ID to
255. Leave the remaining bytes of the File |dentifier unchanged

In this way a utility wishing to undelete afile or directory can recover the original
name by reversing the rewrite of the compression ID.

NOTE: Implementations should re-use FIDs that have the deleted bit set to one
and |CBs set to zero in order to avoid growing the size of the directory

unnecessarily.

2.3.4.3 struct long_ad ICB

The Implementation Use bytes of the long_ad in all File Identifier Descriptors
shall be used to store the UDF Unique ID for the file and directory namespace.

The Implementation Use bytes of along ad hold an ADImpUse structure as
defined by 2.3.10.1. The four impUse bytes of that structure will be interpreted as
aUint32 holding the UDF Unique ID.

ADImpUse structure holding UDF Unique ID

RBP | Length Name Contents

0 2 ReservedFlags (see 2.3.10.1) bytes(=
#00)Uint16

2 4 UDF Unique ID Uint32

Section 3.2.1 Logica Volume Header Descriptor describes how UDF Unique ID
field in Implementation Use bytes of the long_ad in the File | dentifier Descriptor
and the Uniquel D field in the File Entry and Extended File Entry are set.

2.3.4.4 Uint16 -L engthofl mplementationUse

L_4l5F 2.01

&~ Shall specify the length of the ImplementationUse field.

March 15, 2000

UDE2 00
==

Apri-3,1093

& Shall specify the length of the ImplementationUse field. This field may be
ZEROcontain zero, indicating that the ImplementationUse field has not
been used._ Otherwise, this field shall contain at least 32 as required by
2.3.45.

When writing a File Identifier Descriptor to write-once media, to ensure that the
Descriptor Tag field of the next FID will never span a block boundary, if there are
less than 16 bytes remaining in the current block after the FID, the length of the
FID shall be increased (using the Implementation Use field) enough to prevent this.

The LR tengih sy besefo-lesstHhanRemember that in the sizeotbtre =10 mies
16-(to-net-includelatter case, the Implementation Use area)field shall be at least 32

bytes.

2.3.4.5 byte-ImplementationUse
&~ |If the LengthoflmplementationUse field is non ZERO then the first 32
bytes of this field shall be interpreted as specifying the implementation
identifier EntitylD of the implementation which last modified the File
Identifier Descriptor.

& If the Lengthofl mplementationUse field is non ZERO then the first 32
bytes of this field shall be set to the implementation identifier EntitylD of
the current implementation.

NOTE: For additional information on the proper handling of this field refer to the
section on Entity Identifier.

This field allows an implementation to identify which implementation last created
and/or modified a specific File Identifier Descriptor .

2.35 ICB Tag
struct icbtag { [* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries,
Uint16 Strategy Type,
byte StrategyParameter|2];
Uint16 NumberofEntries,
byte Reserved;
Uint8 FileType;
Lb_addr Parentl CBL ocation;
Uint16 Flags,
}
L_4r€F 2.01 March 15, 2000

UBF200 Ap;' 31098
== 7

2.3.5.1 Uint16 StrategyType
&~ The contents of this field specifies the ICB strategy type used. For the |
purposes of read access an implementation shall support strategy types 4
and 4096.

& Shall beset to 4 or 4096. |

NOTE: Strategy type 4096, which is defined in the appendix, is intended for
primary use on WORM media, but may also be used on rewritable and
overwritable media

2.3.5.2 Uint8 FileType
As a point efto clarification a value of 5 shal be used for a standard byte
addressable file, not 0. The value of 248 shall be used for the VAT (refer to
2.2.10). The value of 249 shall be used to indicate a Real-Time file (see Appendix
6.11). Values of 250 to 255 shall not be used.

2.3.5.2.1 File Type 249
Files with FileType 249 require special commands to access the data space of this

file. To avoid possible damage, if an implementation does not support these
commands it shall not issue any command that would access or modify the data
space of thisfile. Thisincludes but is not limited to reading, writing and deleting
thefile.

2.3.5.3 Parentl CBL ocation
The use of thisfield is optional.

NOTE: In ECMA 167-4/14.6.7 it statesthat, “If thisfield contains 0, then no such
ICB is specified.” Thisisaflaw inthe {SOECMA standard in that an
implementation could store an ICB at logical block address 0. Therefore, if you
decide to use thisfield, do not store an ICB at logical block address 0.

2.3.5.4 Uint16 Flags
Bits 0-2: These hits specify the type of allocation descriptors used. Refer to the
section on Allocation Descriptors for the guidelines on choosing which type of
allocation descriptor to use.

Bit 3 (Sorted):
¢~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
directories may be unsorted.

V-1 Shall be set to ZERO.

Bit 4 (Non-relocatable):

Yer 2.01 March 15, 2000
UbF2.00 AprH-3-1998

MrBF 2.01

&~ For OSTA UDF compliant media this bit mayshall indicate (ONE) thatif
the file is non-relocatable. Anlf ONE, an implementation may-reset-this bit
shall set the bit to ZERO to—indicatethatthe fileisrelocatable-H-the

plementation-can—net—assure-that-the file-if a modification will ret-be
reloeatedcontravene the definition of this bit in ECMA 167-4/14.6.8.

V-1 Should be set to ZERO- unless required.

NOTE: Thisflag is not alock on the file in any way. It is used to indicate that an
implementation has arranged the allocation of the file to satisfy specific application
requirements. In these cases, any remapping of a written block (see UDF sparable
partitions) or defragmentation of the file might not be desired. If a file with this
flag set to ONE is copied, then the new copy of the file should have this bit set to
ZERO.

Bit 9 (Contiguous):

&~ For OSTA UDF compliant media this bit may indicate (ONE) that the file
is contiguous. An implementation may reset this bit to ZERO to indicate
that the file may be non-contiguous if the implementation can not assure
that the file is contiguous.

& Should be set to ZERO.

Bit 11 (Transformed):

&~ For OSTA UDF compliant mediathis bit shall indicate (ZERO) that no
transformation has taken place.

& Shall be set to ZERO.

The methods used for data compression and other forms of data transformation
might be addressed in afuture OSTA document.

Bit 12 (Multi-versions):
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that multi-
versioned files are not present.

V-1 Shall be set to ZERO.

March 15, 2000

UDE2 00
==

Apri-3,1093

2.3.6 FileEntry

struct FileEntry { [* ECMA 167 4/14.9*/
struct tag DescriptorTag;
struct icbtag ICBTag;
uint32 vid;
uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFormat;
Uint8 RecordDisplayAttributes;
Uint32 RecordL ength;
uint64 InformationL ength;
uint64 L ogicalBlocksRecorded;

struct timestamp AccessTime;

struct timestamp ModificationTime;

struct timestamp ~ AttributeTime;

Uint32 Checkpoint;

struct long_ad ExtendedAttributel CB;
struct EntitylD Implementationl dentifier;

Uint64 Uniquel D,

Uint32 LengthofExtendedAttributes;

Uint32 LengthofAllocationDescriptors,

byte ExtendedAttributed[];

byte AllocationDescriptord];
}
NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

2.3.6.1 Uint8-RecordFormat;
&~ For OSTA UDF compliant media this-bita value of zero shall indicate
{ZERO)-that the structure of the information recorded in the file is not
specified by thisfield.

a1 Shall be set to ZERO.

2.3.6.2 Uint8 -RecordDisplayAttributes;
&~ For OSTA UDF compliant media this-bita value of zero shall indicate
{ZERO)-that the structure of the information recorded in the file is not
specified by thisfield.

a1 Shall be set to ZERO.

YoF 2.01 March 15, 2000
=
UDF2.00 Apri-3-1998

2.3.6.3 Uint8-Uint32 RecordL ength;
&~ For OSTA UDF compliant media this-bita value of zero shall indicate
{ZERO)-that the structure of the information recorded in the file is not
specified by thisfield.

V-1 Shall be set to ZERO.

2.3.6.4 Uint64 Infor mationL ength
In most cases, the InformationLength can be reconstructed during a recovery
operation by finding the sum of the lengths of each of the allocation descriptors.
However, space may be alocated after the end of the file (identified as a “file tail-*}.”).
As allecated-and-“unrecorded and allocated” space isalega part of afile body, using
the allocation descriptors to determine the information length witl-fail-is possible
under the following conditions:

- if the-next-te-tast-an allocation descriptor fer-the file-tdentifies 2230—bloeck-size
leyt%—epemsts with an extent Ienqth that IS not a multlple of the block sze

such extent exists and the extent tvpe of the last allocatlon deecnptor isnot

eontiguouswith-with an extent length unequal to O is not equal to *“unrecorded and
allocated”.

Only the rext-to-lastallecation-deseriptor-last extent of the file body may have an
extent length that is not a multiple of the block size, see ECMA 167 4/12.1 and

4/14.14.1.1.

2.3.6.5 Uint64 L ogicalBlocksRecorded
For files and directories with embedded data the value of this field shall be ZERO.

2.3.6.6 struct EntitylD Implementationl dentifier;
Refer to the section on Entity Identifier.

2.3.6.7 Uint64 -Uniquel D
For the root directory of afile set -this value shall be set to ZERO.

Section 3.2.1 Logical Volume Header Descriptor describes how the UDF Unique
ID field in the Implementation Use bytes of the long_ad in the File | dentifier
Descriptor and the Uniquel D file in the File Entry and Extended File Entry are set.

g2 2.01 March 15, 2000
A
UbF2.00 AprH-3-1998

2.3.7

Unallocated Space Entry

struct UnallocatedSpaceEntry { [* ECMA 167 4/14.11 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 LengthofAllocationDescriptors,
byte AllocationDescriptorg];
}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical
Block.

2.3.7.1 byte AllocationDescriptors

5'?..': 2.01

Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 hits of the extent length field in allocation descriptors specify
an extent type (ECMA 167 4/14.14.1.1). For the alocation descriptors specified
for the UnallocatedSpaceEntry the type shall be set to a value of 1 to indicate
extent allocated but not recorded, or shal be set to a value of 3 to indicate the
extent is the next extent of allocation descriptors. This next extent of allocation
descriptors shall be limited to the length of one Logical Block.

AllocationDescriptors shall be ordered sequentially in ascending location order.

No overlapping AllocationDescriptors shall exist in the table. For example,
ad.location = 2, ad.length = 2048 (logical block size = 1024) then nextad.location
= 3isnot allowed. Adjacent AllocationDescriptors shall not be contiguous. For
example ad.location = 2, ad.length = 1024 (logical block size = 1024),
nextad.location = 3 is not allowed and would instead be a single
AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where
adjacent AllocationDescriptors may be contiguous is when the ad.length of one of
the adjacent AllocationDescriptorsis equal to the maximum AllocationDescriptors
length.

March 15, 2000

UBbF200
tH 0

2.3.8 Space Bitmap Descriptor
struct SpaceBitmap { [* ECMA 167 4/14.1112 */

struct Tag Descriptor Tag;
Uint32 NumberOfBits;
Uint32 NumberOfBytes;
byte Bitmap(];

}

2.3.8.1 struct Tag DescriptorTag
The calculation and maintenance of the Descriptor CRC field of the Descriptor Tag
for the SpaceBitmap descriptor is optional. 1f the CRC is not maintained then both
the Descriptor CRC and Descriptor CRCLength fields shall be ZERO.

2.3.9 Partition Integrity Entry

struct Partitionl ntegrityEntry { [* ECMA 167 4/14.13 */
struct tag DescriptorTag;
struct icbtag ICBTag;
struct timestamp RecordingTime;
uint8 Integrity Type;
byte Reserved[175];
struct EntitylD Implementationl dentifier;
byte I mplementationUse[256];
}

With the functionality of the Logical Volume Integrity Descriptor this descriptor is
not needed, therefore this descriptor shall not be recorded.

2.3.10 Allocation Descriptors
When constructing the data area of a file an implementation has several types of
allocation descriptors from which to choose. The following guidelines shall be
followed in choosing the proper -allocation descriptor to be used:

Short Allocation Descriptor - For aLogical Volume that resides on asingle
Volume with no intent to expand the Logical Volume beyond the single volume
Short Allocation Descriptors should be used. For example a Logical Volume
created for a stand-alone drive.

NOTE: Refer to section 2.2.2.2 on the Maximuml nterchangelLevel.

Long Allocation Descriptor - For aLogical Volume that resides on asingle
Logica Volume with intent to later expand the Logical Volume beyond the single
volume, or aLogical Volume that resides on multiple Volumes Long Allocation
Descriptors should be used. For example aLogical Volume created for a jukebox.

BQF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

NOTE: Thereis abenefit of using Long Allocation Descriptors even on asingle
volume, which is the support of tracking erased extents on rewritable media. See
section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of
the ExtentLength field is O, then the 2 most significant bits shall be O.

Allocation Descriptors identifying virtual space shall have an extent length of the
block size or less. Allocation descriptors identifying file data, directories, or

stream data shall identify physical space. ICBsrecorded in virtual space shall use |
long_ad allocation descriptorsto identify physical space. The use of short_ad
allocation descriptors would identify file data in virtual space if the ICB werein
virtual space.

Descriptors recorded in virtual space shall have the virtual logical block number
recorded in the Tag Location field.

2.3.10.1 Long Allocation Descriptor

struct long_ad { [* ECMA 167 4/14.14.2*/
Uint32 ExtentLength;
Lb addr ExtentLocation;
byte I mplementationUse[6];

}

To alow use of the ImplementationUse field by UDF and also by implementations
the following structure shall be recorded within the 6 -byte Implementation Use |
field.

struct ADI nmpUse

Ui ntl6 flags;
byte inpUse[4];

/*

* ADI npUse Fl ags (NOTE: bits 1-15 reserved for future use by
UDF)

*/

#defi ne EXTENTErased (0x01)

In the interests of efficiency on Rewritable media that benefits from preprocessing,
the EXTENTErased flag shall be set to ONE to indicate an erased extent. This
applies only to extents of type not recorded but allocated.

BRF 2.01 March 15, 2000
I
UDF2.00 Apri-3-1998

2.3.11 Allocation Extent Descriptor

struct AllocationExtentDescriptor { [* ECMA 167 4/14.5*/
struct tag DescriptorTag;
Uint32 PreviousAllocationExtentL ocation;
Uint32 LengthOfAllocationDescriptors,

}

The Allocation Extent Descriptor does not contain the Allocation Descriptors

itself. UDF will interpret ECMA 167, 4/14.5 in such a way that the Allocation
Descriptors will start on the first byte following the
LengthOfAllocationDescriptors field of the Allocation Extent Descriptor. The
Allocation Extent Descriptor together with its Allocation Descriptors constitutes
an extent of allocation descriptors. The length of an extent of allocation
descriptors shall not exceed the logical block size. Unused bytes following the
Allocation Descriptorsttill the end of the logical block shall have a value of #00.

2.3.11.1 Struct tag Descriptor Tag
The DescriptorCRCL ength of the DescriptorTag should include the Allocation
Descriptors following the Allocation Extent Descriptor. The
DescriptorCRCL ength shall be either 8 or 8 + LengthOfAllocationDescriptors.

2.3.11.2 Uint32 PreviousAllocationExtentL ocation
&~ The previous alocation extent location shall not be used.

& Shall be set to 0.

BQF 2.01 March 15, 2000
L=
UDF2.00 Apri-3.1998

2.3.12 -Pathname
2.3.12.1 Path Component
struct PathComponent { /* ECMA 167 4/14.16.1 */

Uint8 ComponentType;

Uint8 L engthofComponent| dentifier;
Uint16 ComponentFileVersionNumber;
char Componentldentifier|];

}

2.3.12.1.1 Uint16 -ComponentFileVersionNumber |
&~ There shall be only one version of afile as specified below with the value
being set to ZERO.

a1 Shall be set to ZERO.

2.4 Part 5- Record Structure

Record structure files shall not be created. If they are encountered on the media and they
are not supported by the implementation they shall be treated as an uninterpreted stream |
of bytes.

BBF 2.01 March 15, 2000
UDF 200 April-3-1998

3. System Dependent Requirements

3.1 Part 1- General
3.1.1 Timestamp

struct timestamp { I* ECMA 167 1/7.3*/
uint16 TypeAndTimezone;
Uint16 Y ear;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 Hundredsof M icroseconds;
Uint8 Microseconds,
}

3.1.1.1 Uint8 Centiseconds;
&~ For operating systems that do not support the concept of
centiseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of
centiseconds the implementation shall set thisfield to ZERO.

3.1.1.2 Uint8 Hundr edsofM icr oseconds;
&~ For operating systems that do not support the concept of hundreds
of Microseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set thisfield to
ZERO.

3.1.1.3 Uint8 Microseconds;
&~ For operating systems that do not support the concept of
microseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of
microseconds the implementation shall set thisfield to ZERO.

B2RF 2.01 March 15, 2000
I
UDF2.00 Apri-3-1998

3.2 Part 3-Volume Structure

321

L ogical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { I* ECMA 167 4/14.15*/
Uint64 Uniquel D,
bytes reserved| 24]

}

3.2.1.1 Uint64-UniquelD

B?F 2.01

Thisfield contains the next Uniquel D value whichthat should be used. Thefield is
initialized to 16, and it monotonically increases with each assignment described
below. Whenever the lower 32-bits of this value reach #FFFFFFFF, the upper 32-
bits are incremented by 1, as would be expected for a 64-bit value, but the lower
32-bits “wrap” to 16 (the initialization value). This behavior supports Mac™ OS
which uses an ID number space of 16 through 2232% - 1 inclusive, and will not |
cause problems for other platforms.

Uniquel D is used whenever a new file or directory is created, or another name is
linked to an existing file or directory. The File Identifier Descriptors and File
Entries/Extended File Entries used for a stream directory and named streams |
associated with afile or directory do not use Uniquel D; rather, the unique ID
fields in these structures take their value from the Uniquel D of the File
Entry/Extended File Entry of the file/directory the streams they are associated
with._The same counts for File Entries/Extended File Entries used to define an
Extended Attributes Space.

When afile or directory is created, this Uniquel D is assigned to the Uniquel D field
of the File Entry/Extended File Entry, the lower 32-bits of UniquelD are assigned
to UDFUniquel D in the Implementation Use bytes of the long—a<l CB field in the
File Identifier Descriptor (see 2.3.4.23), and Uniquel D is incremented by the
policy described above.

When aname s linked to an existing file or directory, the lower 32-bits of
NextUniquel D are assigned to UDFUniquel D in the Implementation Use bytes of
the long-—ad| CB field in the File I dentifier Descriptor (see 2.3.4.23), and Uniquel D |
isincremented by the policy described above.

The lower 32-bits shall be the same in the File Entry/Extended File Entry and its |
first File Identifier Descriptor, but they shall differ in subsequent FIDs.

All UDF implementations shall maintain the UDFUniquel D in the FID and

Uniquel D in the FE/EFE as described in this section. The LVHD in aclosed
Logica Volume Integrity Descriptor shall have a valid Uniquel D.

March 15, 2000

UBbF200
tH 0

3.3 Part 4 - File System
3.3.1 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4 %/
struct tag DescriptorTag;
uint16 FileVersonNumber;
uint8 FileCharacteristics;
Uint8 LengthofFilel dentifier;
struct long_ad ICB;
uint16 Lengthofl mplementationUse;
byte ImplementationUse[];
char Filel dentifier[];
byte Padding[];
}

3.3.1.1 Uint8-FileChar acteristics
The following sections describe the usage of the FileCharacteristics under various
operating systems.

3.3.1.1.1 MSDOS, 052, Windows 95, Windows NT, M acintosh
&~ |f Bit Oisset to ONE, the file shall be considered a "hidden" file.
If Bit 1 isset to ONE, the file shall be considered a "directory."
If Bit 2 is set to ONE, the file shall be considered "deleted.”
If Bit 3 is set to ONE, the ICB field within the associated Fileldentifier
structure shall be considered as identifying the "parent” directory of the
directory that this descriptor is recorded in

& If the file is designated as a "hidden” file, Bit O shall be set to ONE.
If the file is designated as a"directory,” Bit 1 shall be set to ONE.
If the file is designated as "deleted,” Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX_and OS/400
Under UNIX and OS/400 these bits shall be processed the same as
specified in 3.3.1.1.1., except for hidden files which will be processed as
normal non-hidden files.

HioF 2.01 March 15, 2000
O
UbF2.00 AprH-3-1998

3.3.2 ICB Tag
struct icbtag {

[* ECMA 167 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries,
Uint16 Strategy Type;

byte StrategyParameter|2];

Uint16 NumberofEntries,

byte Reserved;

Uint8 FileType;

Lb addr Parentl CBLocation;

Uint16 Flags,

3.3.2.1 Uint16 Flags

3.3.2.1.1 MSDOS, 092, Windows 95, Windows NT
Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

= In the

interests of maintaining security under environments which do

support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true::

Bit 8 (Sticky):

A fileis created.
The attributes/permissions associated with a file, are modified .

A file is written to (the contents of the data associated with a file
are modified).

An Extended Attribute associated with the file is modified.

A stream associated with afile is modified.

&~ lgnored.

& Shall be set to ZERO.

Bit 10 (System):
&~ Mapped to the MS-DOS / OS2 system bit.

& Mapped from the MS-DOS / OS/2 system bit.

5@3 2.01

March 15, 2000

UBbF200
tH 0

3.3.2.1.2 Macintosh

Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

& In the interests of maintaining security under environments, which do |
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true::

Bit 8 (Sticky):

A fileis created.
The attributes/permissions associated with afile, are modified-. |

A file is written to (-the contents of the data associated with a file
are modified-).

An Extended Attribute associated with the file is modified.

A stream associated with a file is modified. |

&~ lgnored.

a1 Shall be set to ZERO.

Bit 10 (System):
&~ lgnored.

a1 Shall be set to ZERO.

3.3.2.1.3 UNIX

Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system bits.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO upon file creation only, otherwise maintained.

3.3.2.1.4 OS/400

Bits6 & 7 (Setuid & Setgid):

& |gnored.

BRF 2.01

March 15, 2000

UBbF200
tH 0

BI?_F 2.01

&= In the interests of maintaining security under environments, which do

support these bits; bits 6 and 7 shall be set to ZERO if any one of the

following conditions are true:

A fileis created.

The attributes/permissions associated with afile, are modified.

A file is written to (the contents of the data associated with a file

are modified).

An Extended Attribute associated with the file is modified.

A stream associated with afile is modified.

Bit 8 (Sticky):

& | gnored.

& Shall be set to ZERO.

Bit 10 (System):

& | gnored.

&= Shall be set to ZERO upon file creation only, otherwise maintained.

March 15, 2000

UDE2 00
==

Apri-3,1093

3.3.3 FileEntry
struct FileEntry {

}

struct tag

struct icbtag
Uint32

Uint32

Uint32

Uint16

uint8

Uint8

uint32

uint64

uint64

struct timestamp
struct timestamp
struct timestamp
uint32

struct long_ad
struct EntitylD
Uint64

uint32

uint32

byte

byte

[* ECMA 167 4/14.9 */
DescriptorTag;

ICBTag;

vid;

Gid;

Permissions;
FileLinkCount;
RecordFormat;
RecordDisplayAttributes;
RecordLength;
InformationLength;
LogicalBlocksRecorded;
AccessTime;
ModificationTime;
AttributeTime;
Checkpoint;
ExtendedAttributel CB;

| mplementationl dentifier;
Uniquel D,

LengthofExtendedAttributes;
LengthofAllocationDescriptors,

ExtendedAttributed[];
AllocationDescriptorq[];

NOTE: The total length of a FileEntry shall not exceed the size of one logical

block.

3.3.3.1 Uint32-Uid
For operating systems that do not support the concept of a user identifier
the implementation shall ignore thisfield. For operating systems that do

support thisfield avalue of 2+ - 1 shall indicate an invalid UID, otherwise
the field contains avalid user identifier.

&

For operating systems that do not support the concept of a user identifier
the implementation shall set thisfield to 2% - 1 to indicate an invalid UID,
unless otherwise specified by the user.

3.3.3.2 Uint32 -Gid
For operating systems that do not support the concept of a group identifier
the implementation shall -ignore this field. For operating systems that do
support thisfield avalue of 2+ - 1 shall indicate an invalid GID, otherwise
the field contains avalid group identifier.

EQF 2.01

&

March 15, 2000

UBbF200
tH 0

3.3.3.3 Uint32 -Permissions:

* Definitions: */

gRF 2.01

&

For operating systems that do not support the concept of a group identifier
the implementation shall set thisfield to -2* - 1 to indicate an invalid GID,

unless otherwise specified by the user.

execute file
Wite May change file contents
May examine file contents
ChAttr May change file attributes My

OTHER_Execut e 0x00000001

0x00000002
0x00000004
0x00000008
0x00000010

0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000400
0x00000800
0x00001000
0x00002000
0x00004000

/

/* Bit for a File
/*

/* Execute My

/*

/* Read

/*

/* Delete My delete file
#defi ne

#define OTHER Wite
#defi ne OTHER Read
#define OTHER ChAttr
#define OTHER Del ete
#defi ne GROUP_Execute
#define GROUP_Wite
#defi ne GROUP_Read
#define GROUP_ChAttr
#defi ne GROUP_Del ete
#defi ne OANER_Execut e
#define ONMNER Wite
#defi ne OMNER_Read
#define OANER_ChAttr
#define OANNER Del ete

a Directory

search directory

*/

____________________________ * |

create and delete files */
list files in directory */
change dir attributes */

del ete directory

The concept of permissions whichthat deals with security is not completely
portable between operating systems. This document attempts to maintain

consistency among implementations in processing the permission bits by

addressing the following basic issues:
1. How should an implementation handle Owner, Group and Other
permissions when the operating system has no concept of User and

3.

Group |ds?
How should an implementation process permission bits when

encountered, specifically permission bits that do not directly map to an
operating system supported permission bit?
What default values should be used for permission bits that do not

directly map to an operating system supported permission bit when
creating anew file?

YserOwner, Group and Other
In general, for operating systems that do not support User and Group lds the

following algorithm should be used when processing permission hits:

When reading a specific permission, -the logical OR of all three (owner,
group, other) permissions should be the value checked. For example afile

March 15, 2000

OO
UBbF200
tH 0

an operating system supported permission bit -when creating a new file.

would be considered writable if the logical OR of OWNER_Write,
GROUP_Write and OTHER_Write was equal to one.

When setting a specific permission the implementation should set all three
(owner, group, other) sets of permission bits. For example to mark afile
as writable the OWNER_Write, GROUP_Write and OTHER_Write should
all be set to one.

Default Permission Values
For the operating systems covered by this document the following table describes
what default values should be used for permission bits that do not directly map to

Permission | File/Directory Description DOS 0S/2 | Win Win Mac | UNIX &
95 NT 0OS | 0S/400

Read file Thefile may be read 1 1 1 1 1 9]
Read directory Thedirectory may beread, only if the directory 1 1 1 1 1 U

isalso marked as Execute.
Write file Thefile' s contents may be modified U U U U U U
Write directory Files or subdirectories may be renamed, added,] U U U U U

or deleted, only if the directory isalso marked as

Execute.
Execute file Thefile may be executed. 0 0 0 0 0 U
Execute directory The directory may be searched for a specific file 1 1 1 1 1]

or subdirectory.
Attribute | file Thefile's permissions may be changed. 1 1 1 1 1 Notel |
Attribute | directory Thedirectory’ s permissions may be changed. 1 1 1 1 1 Note 1
Delete file Thefile may be deleted. Note2 | Note2 | Note2| Note2 | Note2 | Note2
Déete directory The directory may be deleted. Note2 [Note2 |Note2| Note2 | Note2 | Note2

U - User Specified, 1 - Set, 0- Clear

NOTE 1: Under UNIX only the owner of afile/directory may change its
attributes. Under OS/400 if afile or directory is marked as writable (Write

permission set) then the Attribute permission bit should be set.

NOTE 2: The Delete permission bit should be set based upon the status of the
Write permission bit. Under DOS, OS/2 and Macintosh, if afile or directory is
marked as writable (Write permission set) then the file is considered deletable and
the Delete permission bit should be set. If afileis read only then the Delete
permission hit should not be set. This applies to file create as well as changing
attributes of afile.

B@rF 2.01

March 15, 2000

UBF200
==

Aprit-3,1998

e drreslop: e e E E E E + E
LAl e e E E E E E E
LAl diresteps Fhesereubdirestopes i shosrenied E E E E E E
cleleiedloprenasd
Sectie e et s hee e atie + + + + + E
oo diresteps TFhedirestlopasbessachedlorasseatbie E E E E
Arbnie e hefhe e bepr s e pe ey beehange sk E E E E E E
Ackrbnie diresteps Fhedreslop e marmissiens e e E E E E E E
chopged
Delete e et bedeleed E E E E E E
Delete drreslop: Fhedbreslop e sbadeleed E E E E E E
I mplementation shall process the permission bits according to the following table
that describes how to process the permission bits under the operating systems
covered by this document. The table addresses the issues associated with
permission hits that do not directly map to an operating system supported
permission bit.
Per mission File/Directory Description DOS | 0s2 Win Win [Mac | UNIX [OSK00
95 NT 0S
Read file Thefile may beread E E E E E E i
Read directory Thedirectory may be read E E E E 1 E i
Write file Thefil€ s contents may be modified E E E E E E i
Write directory Files or subdirectories may be created, E E E E E E i
deleted or renamed
Execute file Thefile may be executed. 1 1 1 1 1 E |
Execute directory Thedirectory may be searched for a E E E E E E i3
specific file or subdirectory.
Attribute file Thefil€ s permissions may be changed. E E E E E 1
Attribute directory Thedirectory’ s permissions may be E E E E E 1
changed.
Delete file Thefile may be deleted. E E E E E 1
Delete cﬂ rectory The cﬂ rectory may bedd eﬂ E E E E E 1

E- Enforce, | -Ignore

BBF 2.01

The Execute bit for adirectory, sometimes referred to as the search bit, has special
meaning. This bit enables a directory to be searched, but not have its contents
listed. For example assume a directory called PRIVATE exists which only has the
Execute permission and does not have the Read permission bit set. The contents
of the directory PRIVATE can not be listed. Assume thereis afile within the
PRIVATE directory called README. The user can get access to the README
file since the PRIVATE directory is searchable.

To be ableto list the contents of a directory both the Read and Execute permission
bits must be set for the directory. To be able to create, delete and rename afile or
subdirectory both the Write and Execute permission bits must be set for the
directory. To get a better understanding of the Execute bit for a directory reference
any UNIX book that coversfile and directory permissions. The rules defined by
the Execute bit for a directory shall be enforced by al implementations. The
exception to this rule applies to Macintosh implementations. A Macintosh
implementation may ignore the status of the Read bit in determining the
accessihility of adirectory

March 15, 2000

UBF200
==

Aprit-3,1998

NOTE: To be able to delete afile or subdirectory the Delete permission bit for
the file or subdirectory must be set, and both the Write and Execute permission bits
must be set for the directory it occupies.

3.3.3.4 Uint64 -Uniquel D
NOTE: For some operating systems (i.e. Macintosh) this value needs to be less
than the max value of alnt32 (2* - 1). Under the Macintosh operating system this
value is used to represent the Macintosh directory/file ID. Therefore an
implementation should attempt to keep this value less than the max value of a
Int32 (2* - 1). The values 1-15 shall be reserved for the use of Macintosh
implementations.

3.3.3.5 bhyte Extended Attributes
Certain extended attributes should be recorded in thisfield of the FileEntry for
performance reasons. Other extended attributes should be recorded in an ICB
pointed to by the field ExtendedAttributel CB. In the section on Extended
Attributes it will be specified which extended attributes should be recorded in this
field.

3.3.4 Extended Attributes
In order to handle some of the longer Extended Attributes (EAS) whichthat may
vary in length, the following rules apply to the EA space.

1. All EAswith an attribute length greater than or equal to alogical block shall be
block aligned by starting and ending on alogical block boundary.

2. Smaller EAs shall be constrained to an attribute length whichthat isa multiple
of 4 bytes.

3. Each Extended Attribute spaceAttributes Space shall appear asa single
contiguous logical space constructed as follows:

ECMA 167 EAs

Non block aligned Implementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

NOTE: There may exist 2 Extended Attribute spacesAttributes Spaces per file,
one embeded in the File Entry or Extended File Entry and the other as a separate
space referenced by the Extended Attribute |CB addressin the File Entry or
Extended File Entry. Each Extended Atiribute spaceAttributes Space, if present,
must have its own Extended Attribute Header Descriptor (see the next section).

BRRF 2.01 March 15, 2000
A=A
UDF2.00 Apri-3-1998

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { [* ECMA 167 4/14.10.1 */

struct tag DescriptorTag;
Uint32 ImplementationAttributesL ocation;
Uint32 ApplicationAttributesL ocation;

&~ A vaueinone of the location fields highlighted above equal to or
greater than the length of the EA space shall be interpreted as an indication
that the corresponding attribute does not exist.

& If an attribute associated with one of the location fields
highlighted above does not exist, then the value of the corresponding
location field shall be set to #FFFFFFFF.-

3.3.4.2 Alternate Permissions
struct AlternatePermissionsExtendedAttribute { /* ECMA 167 4/14.10.4 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];

Uint32 Attributel ength;
Uint16 Ownerldentification;
Uint16 Groupl dentification;
Uint16 Permission;

}

This structure shall not be recorded.

3.3.4.3 FileTimes Extended Attribute

struct FileTimesExtendedAttribute { [* ECMA 167 4/14.10.5*/
Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 Attributel ength;
Uint32 Datal_ength;
Uint32 FileTimeExistence;
byte FileTimes,
}

3.3.4.3.1 byte FileTimes
¢~ If thisfield contains afile creation time it shall be interpreted as the
creation time of the associated file. If the main File Entry isan
Extended File Entry, the file creation time in this structure shall be |

g 2.01 March 15, 2000
T
UDF2.00 Apri-3-1998

ignored and the file creation time from the main File Entry shall be
used.

& If themain File Entry is an Extended File Entry, this structure shall |
not be recorded with afile creation time.

If the main File Entry is not an Extended File Entry and the File Times |
Extended Attribute does not exist or does not contain the file creation time
then an implementation shall use the Modification Time field of the File
Entry to represent the file creation time.

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute{ /* ECMA 167 4/14.10.7 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ImplementationUseLength; /* (=IU_L) */
Uint32 M aj or Devicel dentification;

Uint32 MinorDevicel dentification;

byte ImplementationUse[1U_L];

}

The following paradigm shall be followed by an implementation that creates a
Device Specification Extended Attribute associated with afile:

If and only if afile has a DeviceSpecificationExtendedAttribute associated
with it, the contents of the FileType field in the icbtag structure shall be set |
to 6 (indicating a block specia device file), OR 7 (indicating a character
special devicefile).

If the contents of the FileType field in the icbtag structure do not equal 6
or 7, the DevicepecificationExtendedAttribute associated with a file shall
be ignored.

In the event that the contents of the FileType field in the icbtag structure
equalequals 6 or 7, and the file does not have a |
DeviceSpecificationExtendedAttribute associated with it, access to thefile
shall be denied.

For operating system environments that do not provide for the semantics
associated with a block special device file, requeststo
open/read/write/close afile that has the
DeviceSpecificationExtendedAttribute associated with it shall be denied.

gar 2.01 March 15, 2000
O
UDF2.00 Apri-3-1998

All implementations shall record a developer 1D in the ImplementationUse
field that uniquely identifies the current implementation.

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute{ /* ECMA 167 4/14.10.8 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 I mplementationUsel ength; /* (=IU_L) */
struct EntitylD I mplementationl dentifier;

byte ImplementationUse[1U_L];

}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Implementation Use
Extended Attribute the Attribute Length field should be large enough to leave
padding space between the end of the Implementation Use field and the end of the
I mplementation Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attribute is
used under various operating systems to store operating system specific extended
attributes.

The structures defined in the following sections contain a header checksum field.
Thisfield represents a 16-bit checksum of the Implementation Use Extended
Attribute header. The fields AttributeType through Implementationl dentifier
inclusively represent the data covered by the checksum. The header checksum

field isused to aid in disaster recovery of the extended attributes space. C source |
code for the header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. |mplementations shall create and support the extended
attributes for the operating system they currently support. For example, a
Macintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support al Macintosh extended
attributes specified in this document.

RoOF 2.01 March 15, 2000
I
UDF2.00 Apri-3-1998

3.3.4.5.1 All Operating Systems
3.3.45.1.1 FreeEASpace

This extended attribute shall be used to indicate unused space within the
extended-attribute spaceExtended Attributes Space. This extended
attributes shall be stored as an |mplementation Use Extended Attribute
whose Implementationldentifier shall be set to:

"*UDF FreeEASpace"

The ImplementationUse area for this extended attribute shall be structured
asfollows:

FreeEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-12 | Free EA Space bytes |

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete extended
attribute spaceExtended Attributes Space. The -FreeEASpace extended
attribute may be overwritten and the space re-used by any implementation
whothat sees a need to overwrite it. |

3.3.4.5.1.2 DVD Copyright Management I nformation |

This extended attribute shall be used to store DVD Copyright Management

Information. This extended attribute shall be stored as an Implementation

Use Extended Attribute whose Implementationl dentifier shall be set to:
"*UDF DVD CGMS Info"

The ImplementationUse area for this extended attribute shall be structured
asfollows:

DVD CGMS Info format

RB Length Name Contents

0 2 Header Checksum Uint16

2 1 CGMS Information byte

3 1 Data Structure Type uUint8

4 4 Protection System Information bytes
This extended attribute allows DVD Copyright Management |nformation
to be stored. The interpretation of this format shall be defined in the DVD
specification published by the DVD Consortium (see 6.9.3). Support for
this extended attribute is optional.

??’F 2.01 March 15, 2000

UBbF200
tH 0

3.3.452 MS-DOS, Windows 95, Windows NT
&~ lgnored.

& Not supported. Extended attributes for existing files on the media shall be
preserved.

3.34.53 082
0S/2 supports an unlimited number of extended attributes, which shall be stored as
anamed stream as defined in 3.3.8.2. To enhance performance the following
Implementation Use Extended Attribute will be created.

3.3.453.1 OS2EALength
This attribute specifies the OS/2 Extended Attribute Stream (3.3.8.2)
information length. Since this value needs to be reported back to OS/2
under certain directory operations, for performance reasons it should be
recorded in the ExtendedAttributes field of the FileEntry. This extended
attribute shall be stored as an Implementation Use Extended Attribute
whose Implementationldentifier shall be set to:

"*UDF OS/2 EALength"
The ImplementationUse area for this extended attribute shall be structured
asfollows:
OS2EAL ength format
RBP | Length Name Contents
0 2 Header Checksum uintl6
2 4 0S/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall be equal
to the InformationLength field of the file entry for the OS2EA stream.

3.3.4.5.4 Macintosh OS
The Macintosh OS requires the use of the following extended attributes.

3.3.45.4.1 MacVolumelnfo
This extended attribute contains Macintosh volume information which |
shall be stored as an Implementation Use Extended Attribute whose
I mplementationl dentifier shall be set to:
"*UDF M ac Volumel nfo"

The ImplementationUse area for this extended attribute shall be structured
asfollows:

gRE2.01 March 15, 2000
UDF 200 April-3-1098

MacVolumel nfo format

RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 12 Last Modification Date timestamp
14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

The MacVolumel nfo extended attribute shall be recorded as an extended
attribute of the root directory FileEntry.

3.3.45.4.2 MacFinderinfo
This extended attribute contains Macintosh Finder information for the
associated file or directory. Since thisinformation is accessed frequently,
for performance reasons it should be recorded in the ExtendedAttributes
field of the FileEntry.

The MacFinderinfo extended attribute shall be stored as an
I mplementation Use Extended Attribute whose | mplementationl dentifier
shall be set to:

"*UDF M ac FinderInfo"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
MacFinderInfo format for adirectory
RBP | Length Name Contents
0 2 Header Checksum uintl6
2 2 Reserved for padding Uint16 =0 |
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo
24 16 Directory Extended Information UDFDXInfo
MacFinderInfo format for afile
RBP | Length Name Contents
0 2 Header Checksum uintl6
2 2 Reserved for padding Uint16 =0 |
4 4 Parent Directory ID Uint32
8 16 File Information UDFFInfo
24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data Length Uint32
44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended |
attribute of every file and directory within the Logical Volume.

?QF 2.01 March 15, 2000

The following structures used within the MacFinderInfo structure are
listed below for clarity. For complete information on these structures refer
to the Macintosh books called “*Inside Macintosh™.”. The volume and page
number listed with each structure correspond to a specific ““Inside
Macintosh*” volume and page.

UDFPoint format (Volume I, page 139)

RBP | Length Name Contents
0 2 \Y Int16
2 2 H Int16
UDF Rect format (Volume |, page 141)
RBP | Length Name Contents
0 2 Top Int16
2 2 Left Int16
4 2 Bottom Int16
6 2 Right Int16
UDFDInfo format (Volume IV, page 105)
RBP | Length Name Contents
0 8 FrRect UDFRect
8 2 FrFlags Int16
10 4 FrLocation UDFPoint
14 2 FrView Int16
UDFDXInfo format (Volume IV, page 106)
RBP | Length Name Contents
0 4 FrScroll UDFPoint
4 4 FrOpenChain Int32
8 1 FrScript Uint8
9 1 FrXflags Uint8
10 2 FrComment Int16
12 4 FrPutAway Int32
UDFFInfo format (Volumell, page 84)
RBP | Length Name Contents
0 4 FdType Uint32
4 4 FdCreator Uint32
8 2 FdFlags uintl6
10 4 FdL ocation UDFPoint
14 2 FdFldr Int16

t?gF 2.01

March 15, 2000

UDFF Xl nfo format (Volume IV, page 105)

RBP | Length Name Contents
0 2 FdiconlD Int16
2 6 FdUnused bytes
8 1 FdScript Int8
9 1 FdXFlags Int8
10 2 FdComment Int16
12 4 FdPutAway Int32

NOTE: The above-mentioned structures have therethelr origina

Macintosh names preceded by ““UDF"" to indicate that they are actually
different from the original Macintosh structures. On the media the UDF
structures are stored little endian as opposed to the original Macintosh
structures whichthat are in big endian format. |

3.34.55 UNIX

3.3.4.5.6 05400

3.3.4.5.6.1 OS400Dirlnfo

?BrF 2.01

s Ignored. |

& Not supported. Extended attributes for existing files on the media
shall be preserved.

0S/400 requires the use of the following extended attributes.

This attribute specifies the OS/400 extended directory information. Since
this value needs to be reported back to OS/400 for normal directory
information processing, for performance reasons it should be recorded in
the ExtendedAttributes field of the FileEntry. This extended attribute shall
be stored as an Implementation Use Extended Attribute whose
| mplementationl dentifier shall be set to:

“* UDF OS/400 Dirlnfo".

The ImplementationUse area for this extended attribute shall be structured
asfollows:

0OS400Dirl nfo format

RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 2 Reserved for padding Uintl6 =0
4 44 Directorylnfo bytes

recorded in the O00Dir|nfo format, refer to the following IBM
document:

|
|
|
For complete information on the structure of the Directoryl nfo field

March 15, 2000

UDE2 00
==

Apri-3,1093

IBM OS/400 UDF Implementation

Optical Storage Solutions, Department HTT
IBM

Rochester, Minnesota

3.3.4.6 Application Use Extended Attribute

struct ApplicationUseExtendedAttribute { I* ECMA 167 4/14.10.9 */
Uint32 AttributeType; [* = 65536 */
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeL ength;
Uint32 ApplicationUseL ength; /* (=AU_L) */
struct EntitylID Applicationl dentifier;
byte ApplicationUse[AU_L]J;
}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Application Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the ApplicationUse field and the end of the Application Use

Extended Attribute.

The structures defined in the following section contains a header checksum field.
This field represents a 16-bit checksum of the Application Use Extended Attribute

header. The fields AttributeType through Applicationldentifier inclusively

represent the data covered by the checksum. The header checksum field is used to
aid in disaster recovery of the extended attributes space. C source code for the

header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. |mplementations shall create and support the extended

attributes for the operating system they currently support. For example, a
Macintosh implementation shall preserve any OS/2 extended attributes

encountered on the media. It shall also create and support al Macintosh extended

attributes specified in this document.

3.3.4.6.1 All Operating Systems

This extended attribute shall be used to indicate unused space within the -extended
attribute spaceExtended Attributes Space reserved for Application Use Extended
Attributes. This extended attribute shall be stored as an Application Use Extended

Attribute whose Applicationldentifier shall be set to:
“**UDF FreeAppEASpace*”

geF2.01 March 15, 2000
L~

UBbF200 AB-' 31098
tH 0 7

The ApplicationUse area for this extended attribute shall be structured as follows: |

FreeAppEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-12 | Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total size of
other extended attributes without rewriting the complete extended-attribute
spaceExtended Attributes Space. The -FreeAppEASpace extended attribute may
be overwritten and the space re-used by any implementation who sees a need to
overwriteit.

3.3.5 Named Streams

Named streams provide a mechanism for associating related data of afile. It issimilar in ‘
concept to extended attributes. However, named streams have significant advantages over
extended attributes. They are not as limited in length. Space management is much easier

as each stream has its own space, rather than the common space of extended attributes. |
Finding a particular stream does not involve searching the entire data space, as it does for
extended attributes.

Named streams are mainly intended for user data. For example, a database application ‘
may store the records in the default or main-stream and indices in named streams. The
user would then see only one file for the database rather than many, and the application
can use the various streams almost as if they were independent files. |

Named Streams are identified by an Extended File Entry. Extended File Entries are ‘
required for files with associated named streams. Files without named streams should use
Extended File Entries. Files may have normal File Entries; normal File Entries would be
used where backward compatibility is desired, such as writing DVD Video discs.

Thereisa*“System Stream Directory” which is the stream directory identified by the File
Set Descriptor. These streams are used to describe data related to the entire medium
instead of datathat relatesto afile. UDF defines severa “system streams’ that are to be
identified by the system stream directory.

The parent of the System Stream Directory shall be the system stream directory.

It is recommended that Named Streams be used to store metadata and application data
instead of Extended Attributes in new implementations.

3.3.5.1 Named Streams Restrictions
ECMA 167 3" edition defines a new File Entry that contains a field for identifying a
stream directory. This new File Entry should be used in place of the old File Entry, and |

gaF2.01 March 15, 2000
LA~
UDF2.00 Apri-3-1998

should be used for describing the streams themselves. Old and new file entries may be
freely mixed. In particular, compatibility with old reader implementations can be
maintained for certain files.

Restrictions:

The stream directory | CB field of ICBs describing stream directories or named streams
shall be set to zero. [no hierarchical streams]

Each named stream shall be identified by exactly one FID in exactly one Stream Directory.
[no hard links among named streams or files and named streams|

Each Stream Directory ICB shall be identified by exactly one Stream Directory ICB field.
[no hard links to stream directories]

Hard-Linkstofileswith-named-streams. The sole exception is that the parent of the
system stream directory shall be the system stream directory.

Hard Links to files with named streams are allowed.

Named Streams and Stream Directories shall not have Extended Attributes.

The Unlque ID fleld of Named Streams and Stream Directories shall beset—te—zemanel

gEF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

The UID, GID, and permissions fields of the main File Entry shall apply to all named
streams associated with the main stream. At the time of creation of a named stream the |
values of the UID, GID and permissions fields of the main file entry should be used as the
default values for the corresponding fields of the named stream. Implementations are not
required to maintain or check these fieldsin a named stream.

Implementations should not present streams marked with the metadata bit set in the FID
to the user. Streams marked with the metadata bit are intended solely for the use of the
file system implementation.

The parent entry FID in a stream directory points to the main Extended File Entry, so its
reference must be counted in the Link Count field of the Extended File Entry. The sole
exception is that the parent of the system stream directory shall be the system stream

directory.

Note: Thereisa potential pitfall when deleting files/directories: if the link count goes to
one when a FID is deleted, implementations must check for the presence of a stream
directory. If present, there are no more FIDs pointing to this File Entry, so it and all
associated structures must be deleted.

The modification time field of the main Extended File Entry should be updated whenever
any associated named stream is modified. The Access Time field of the main Extended
File Entry should be updated whenever any associated named stream is accessed. The
SETUID and SETGID hits of the ICB Tag flags field in the main Extended File Entry
should be cleared whenever any associated named stream is modified.

The ICB for a Named Stream directory shall have afile type of 13. All named streams
shall have afile type of 5.

All systems shall make the main data stream available, even on implementations that do
not implement named streams.

3.3.5.2 System Named Streams (M etadata)

A set of named streams is defined by UDF for file system use. Some UDF named streams
are identified by the File Set Descriptor and apply to the entire file set (System Stream
Directory Directory). Others pertain to individual files or directories and are identified by
the stream directory.

All UDF named streams shall have the Metadata bit set in the File Identifier Descriptor in
the Stream Directory, unless otherwise specified in this document. All streams not
generated by the file system implementation shall have this bit set to zero.

All UDF named streams shall have afile type of 5 in the ICB identifying the stream.

vRF 2,01 March 15, 2000
UDF2.00 Aprit-3-1998

The four characters * UDF are the first four characters of all UDF defined named streams

in this document. Implementations shall not use any identifier beginning with * UDF for
named streams that are not defined in this document. All identifiers for named streams |
beginning with * UDF are reserved for future definition by OSTA.

3.3.6 Extended Attributes as named streams
An extended attribute may be recorded as a named stream instead. The extended attribute
is converted according to the following rules:

The stream is marked as a M etadata stream.

The EA header and Header Checksum are not recorded. If the EA included pad bytes
between the Header Checksum and the remaining data, these are also not recorded.

Any extended attribute of afile or directory can be converted to a stream of the samefile |
or directory by the following algorithm:

1. Create astream for the file or directory containing the extended attribute. The
identifier specified for the Entity Identifier becomes the stream name.

2. Copy the data of the extended attribute into the stream.

3. Delete the extended attribute.

gioF 2.01 March 15, 2000
7
UDF2.00 Apri-3-1998

3.3.7 UDF Defined System Streams
This section contains the definition of UDF defined system streams. |

Stream Name Stream L ocation M etadata Flag
“*UDF Unique ID Mapping Data’ | System Stream Directory (File Set Descriptor)) 1
“*UDF Non-Allocatable Space’ System Stream Directory (File Set Descriptor)) 1
“*UDF Power Cal Table” System Stream Directory (File Set Descriptory) 1
“*UDF Backup” System Stream Directory (File Set Descriptory) 1

Since the streams listed above have the Metadata flag set, the implementation shall not
pass the name of the stream across the “plug-in file system interface” of a platform.

3.3.7.1 Uniquel D Mapping Data Stream

The Unique ID Mapping Data allows an implementation to go directly to the ICB

hierarchy for the file/directory associated with a UDFUniquel D, or to the ICB hierarchy |
for the directory which contains the file/directory associated with the UDFUniquel D.

Unique ID Mapping Datais stored as a named stream of the System Stream Directory
(associated with the File Set Descriptor). The name of this stream shall be set to:

“*UDF Unique ID Mapping Data”

The Metadata hit in the File Characteristics field of the File | dentifier Descriptor shall be |
set to 1 to indicate that the existence of this file should not be made known to clients of a
platform’s file system interface.

o shaliShall be created for read-only media

» shalShall be created by implementations which batch write (e.g., pre-mastering tools)
avolume on write-once and rewritable media

» forFor implementations which perform incremental updates of volumes on write-once |
or rewritable media (e.g., on-line file systems), the following rules apply:

» mayMay be created and maintained -if not present

o shallShall be maintained if present and volume is clean

» sheudldShould be repaired and maintained, but may be deleted, if present and volume is
dirty

o forFor these rules, avolumeis clean if either avalid Close Logical Volume Integrity
Descriptor or avalid Virtua AddressAllocation Table is recorded

3.3.7.1.1 UDF Unique D Mapping Data
The contents of the Unique ID Mapping stream are described by the table “UDF
Unique ID Mapping Data” which contains some header fields before an array of
“UDF Unique ID Mapping Entry.” The fields of these structures are described
below their corresponding table.

gpF 201 March 15, 2000
UDF200 Apri-3-1998

UDF Unique ID M apping Data

RBP L ength Name Contents
0 32 Implementation Identifier EntitylD
32 4 Flags Uint32
36 4 Mapping Entry Count (=MEC) Uint32
40 8 Reserved Bytes (= #00)
48 16*MEC | Mapping Entries | DMappingEntry

Implementation Identifier is described in ferossreferenceto-2.1.5)section 2.1.5. |

Flags are defined as follows:

Bit O, If set to ONE, shall mean UDF Unique 1D, once decremented by 16 (the
value NextUniquel D isinitialized to), can be used as an index into the array
Mapping Entries. Blank entries, if present, are all beyond the last array element
with a UDF Unique ID.

Bits 1 -— 31, reserved, shall be set to ZERO.
Mapping Entry Count isthe size, in entries, of the array Mapping Entries.

Mapping Entriesis an array of UDF Unique ID Mapping Entry structures. There
IS one mapping entry for every non-stream, non-parent File I dentifier Descriptor. |
Whenever the volume is consistent, the array is always sorted in ascending order of
UDF Unique ID. Except as limited by the flags, blank entries are allowed

anywhere in the array, and entries are not required to have a UDF Unique ID value
of one more than the preceding entry. A blank entry has a value of ZERO in all

fields.

3.3.7.1.2 UDF Unique ID Mapping Entry

RBP Length Name Contents
0 4 UDFUnique ID Uint32
4 4 Parent Logical Block Number Uint32
8 4 Object Logical Block Number Uint32
12 2 Parent Partition Reference Number uintl6
14 2 Object Partition Reference Number uintl6

UDF Unique ID isthe value found in a FID for the file or directory.

QRF 2.01 March 15, 2000
O
UDF200 April-3-1998

Parent Logical Block Number isthe logical block number of the ICB identifying
the directory that contains the FID identifying the object.

Object Logical Block Number isthe logical block number of the ICB identifying
this object.

Parent Partition Reference Number isthe partition reference number- fromthe |
long_ad of the ICB field in the parent in the same directory containing the FID for
thisfile or directory.

Object Partition Reference Number is the partition reference number- from the
long_ad of the ICB field in the FID with this UDFUniquel D.

3.3.7.2 Non-Allocatable Space Stream

ECMA 167 does not provide for a mechanism to describe defective areas on media or ‘
areas not usable due to alocation outside of the file system. The Non-Allocatable Space
Stream provides a method to describe space not usable by the file system. The Non-
Allocatable Space Stream shall be recorded only on media systems that do not do defect
management (eg. CD-RW). |

The Non-Allocatable Space Stream shall be generated at format time. All space indicated
by the Non-Allocatable Space Stream shall also be marked as alocated in the free space
map. The Non-Allocatable Space Stream shall be recorded as a named stream in the
system stream directory of the File Set Descriptor. The stream name shall be:

“* UDF Non-Allocatable Space” |

The stream shall be marked with the attributes Metadata (bit 4 of file characteristics set to
ONE) and System (bit 10 of 1CB flags field set to ONE). This stream shall have all Non-
Allocatable sectors identified by its allocation extents. The allocation extents shall indicate
that each extent is allocated but not recorded. Thislist shall include both defective sectors
found at format time and space allocated for sparing at format time.

NOTE: For packetized media all blocks of a packet containing a defect should be
dlocated to the Non-Allocatable Space Stream.

3.3.7.3 Power Calibration Stream

One of the potential limitations on the effective use of the packet-write capabilities of CD-
Recordable drivesis the limited number (100) of power calibration areas available on |
current CD-R media. These power calibration areas are used to establish the appropriate
power calibration settings with which data can be successfully and reliably written to the
CD-R disc currently in the drive. The appropriate settings for a specific drive can vary
significantly from disc to disc, between two different drives of the same make and model,

BQF 2.01 March 15, 2000
UDF2.00 Apri-3-1998

and even using the same disc, drive and system configuration, but under different
environmental conditions.

Because of this, most current CD-R drives recalibrate themselves the first time awrite is
attempted after a media change has occurred. Thisimposes no restriction on recording to
discs using the disc-at-once or track-at-once modes, since in each of these modes the disc
will fill (either by consuming the total available data capacity or total number of recordable
tracks) in less than 100 separate writes. When using packet-write though, the disc could
be written to thousands of times over an extended period before the disc is full.

Suppose, for instance, one wanted to incrementally back-up any new and/or modified files

at the end of each work day (though the drive might also be used intermittently to do

other projects during the day). These back-ups may require writing as little as a megabyte
(or even less) each day. |f one of the power calibration areas is used to calibrate the drive |
before writing to the disc every day, within five months the power calibration areas will all
have been used, but only a small fraction of the total disc capacity will have been

consumed. It islikely that such aresult would be both unexpected and unacceptable to

the user of such a product.

The industry is attempting to provide ways to reduce the frequency with which the power
calibration area of a CD-Recordable disc must be used. At least one current CD-R drive |
model tries to remember the power calibration values last used for recording data on each

of asmall number of recently encountered discs. Most CD-Recordable drives provide a
mechanism for the host software to retrieve from the drive the most recent power

calibration settings used by the drive to record data on the current disc, and to restore and
use such information at some future time.

The Power Calibration Table described herein would be used to store on the disc the
power calibration information thus obtained for future use by compatible implementations.
The table consists of a header followed by alist of records containing power calibration
settings which have been used by various drives and/or hosts, under various conditions, to
record data on this disc, as well as other relevant information which may be used to
determine which of the recorded calibration settings may be appropriate for use in afuture
situation. While every effort has been made to anticipate and include all necessary
information to make effective use of the recorded power calibration information possible,
it is up to the individual implementation to determine if, when and how such information
will actually be used.

The Power Calibration Table shalimay be recorded as a system stream of the File Set
Descriptor according to the rules of 3.3.5. The name of the stream shall be as follows:

“* UDF Power Cal Table” |

Implementations that do not support the Power Calibration Table shall not delete this
stream. Further, any implementation which supports and/or uses the Power Calibration |

onF 2.01 March 15, 2000
o
UDF2.00 Apri-3-1998

Table shal not delete or modify any records from such table which the implementation,
through its use thereof, did not clearly and specifically obsolete or update.

g7F 2.01 March 15, 2000
UDF200 Apri-3-1998

The stream shall be formatted as follows:

3.3.7.3.1 Power Calibration Table Stream

RBP Length Name Contents

0 32 Implementation | dentifier EntitylD [UDF
2.1.5]

32 4 Number of Records Uint32 [1/7.1.5]
5636 * Power Calibration Table Records bytes

Implementation Identifier:
See UDF section 2.1.5.
Number of Records:
Shall specify the number of records contained in the power calibration table |
Power Calibration Table Records:
A series of power calibration table records for drives which have written to this disc.
The length of thistable is variable, but shall be a multiple of four bytes. Recording of
datain any unstructured field shall be left- justified and padded on the right with#20 |

bytes.

Power Calibration Table Record L ayout

RBP Length Name Contents
0 2 Record Length Uint16 [1/7.1.3]
2 2 Drive Unique Area Length [DUA_L] uintl6 [1/7.1.3]
4 32 Vendor ID bytes
36 16 Product ID bytes
52 4 Firmware Revision Level bytes
56 16 Serial Number/Device Unique ID bytes
72 8 Host ID bytes
80 12 Originating Time Stamp Timestamp [1/7.3]
92 12 Updated Time Stamp Timestamp [1/7.3]
104 2 Speed uUint16 [1/7.1.3]
106 6 Power Calibration Values bytes
112 [DUA_L] | DriveUniqueArea bytes

Record Length -— The length of this Power Calibration Table Record in bytes, including
the optional variable length Drive Unique Area. Shall be a multiple of four bytes.

85': 2.01

March 15, 2000

UBbF200
tH -

Drive Unique Area Length -— The length of the optional Drive Unique Arearecorded at |
the end of thisrecord in bytes. Shall be a multiple of four bytes.

Vendor ID — The Vendor ID reported by the drive. |
Product ID -— The Product ID reported by the drive. |
Firmware Revision Level -— The Firmware Revision Level reported by the drive. |

Serial Number/Device Unique ID — A serial number or other unique identifier for the
specific drive, of the model specified by the vendor and product +2slds given, which has
successfully used the power calibration values reported herein to record data on this disc.

Host ID — The host serial number, ethernet 1D, or other value (or combination of values) |
used by an implementation to identify the specific host computer to which the drive was
attached when it successfully used the power calibration values reported herein to record
data on thisdisc. Animplementation shall attempt to provide an-a unique value for each
host, but is not required to guarantee the value'svalue’ s uniqueness.

Originating Time Stamp -— The date and time at which the power calibration values
recorded herein were initidly verified to have been suecessullysuccessfully used.

Updated Time Stamp -— The date and time at which the power calibration values recorded
herein were most recently verified to have been suceessuliysuccessfully used.

Soeed -— The recording speed, as reported by the drive, at which power calibration values |
recorded herein were successfully used. This value is the number of kilobytes per second
(bytes per second / 1000) that the data was written to the disc by the drive (truncating any
fractions). For example, a speed of 176 means data was written to the disc at 176
Kbytes/second, which isthe basic CD-DA (Digital Audio) datarate (a.k.a. “1X" for
CD-DA). A speed of 353 means data was written to the disc at 353 Kbytes/second, or
twice the basic CD-DA datarate (ak.a “2X” for CD-DA). CD-ROM recording rates
should be adjusted upward (roughly 15%) to the corresponding CD-DA rates to

determine the correct speed value (e.g. A “1X” CD-ROM data rate should be recorded as |
a“1X” CD-DA, whichisaspeed of 176). Note that these are raw data rates and do not
refelectreflect all overhead resulting from (additional) headers, error correction data, etc. |

Power Calibration Values — The vendor-specific power calibration values reported by the |
drive.

8@:2.01 March 15, 2000
UDF 200 April-3-1998

Drive Unique Area — Optional area for recording unrestricted information unique to the
drive (such as drive operating temperature}), which certain implementations may use to
enhance the use of the recorded power calibration information or the operation of the
associated drive. Recoerding-of-datainthisfieldT he drive manufacturer shall be-defined-by
the-drive-manudfacturerdefine recording of data in thisfield. This area shall be an integral
multiple of four bytesin length.

3.3.7.4 UDF Backup Time
The name of this stream shall be set to:

“* UDF Backup”
This stream shall have the following contents, which should be embedded in the |
|CB:

UDF Backup Time
RBP L ength Name Contents
0 12 Backup Time timestamp

Backup Timeisthe latest time that a backup of this volume was performed.

3.3.8 UDF Defined Non-System Streams
This section defines the following non-system streams: |

Stream Name Stream L ocation M etadata Flag
“*UDF Macintosh Resource Fork” Any fileordirectory 0
“*UDF OS/2 EA” Any file or directory 0
“*UDF NT ACL” Any file or directory 0
“*UDF UNIX ACL” Any file or directory 0

3.3.8.1 Macintosh Resource Fork Stream

Because the Resource Fork is referenced by an explicit interface, UDF implementations

are not provided the authoritative name for this stream. For the purpose of interchange, |
the name shall be st to:

“*UDF Macintosh Resource Fork”
The Metadata hit in the File Characteristics field of the File | dentifier Descriptor shall be |

set to 0 to indicate that the existence of this file should be made known to clients of a
platform’s file system interface.

abF 2.01 March 15, 2000
o7
UDF2.00 Apri-3-1998

3.3.8.2 OS/2 EA Stream
All OS/2 definable extended attributes shall be stored as a named stream whose name shall |
be set to:

" xUDF OS2 EA"” |

The OS2EA Stream contains a table of -OS/2 Full EAs (FEA) as shown below. |

FEA format
RBP | Length Name Contents
0 1 Flags uUint8
1 1 Length of Name (=L_N) uUint8
2 2 Length of Value (=L_V) uintl6
4 L_N Name bytes
4+ N LV Value bytes

For a complete description of Full EAs (FEA) please reference the following IBM
document:

“Installable File System for OS2 Version 2.0""
OS2 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

3.3.8.3 AccessControl Lists

Certain operating systems support the concept of Access Control Lists (ACLS) for
enforcing file access restrictions. In order to facilitate support for ACL’s UDF 2.0-will
define-has defined a set of system level named streams, whose purpose wil-be-is to store
the ACL associated with a given file object.

ACLs under UDF will-be are stored as named streams, following the rules of section
2.2.53.3.5. The contents of the named stream ACL shall be opague and are not defined by
this document. Interpretation of the contents of the named ACL shall be left to the
operating system for which the ACL isintended. The following names willshall be used to |
identify the ACLs and shall be reserved. These names shall not be used for application
named streams.

“*UDF NT ACL”

This name shall identify the named stream ACL for thethe Windows NT operating system. |

“*UDF UNIX ACL” |

This name shall identify the named stream ACL for the UNIX operating system. |

88!32.01 March 15, 2000
UDF2.00 Apri-3-1998

4. User Interface Requirements
4.1 Part 3-—Volume Structure

Part 3 of ECMA 167 contains various | dentifiers which, depending upon the
implementation, may have to be presented to the user.

* Volumeldentifier

* VolumeSetldentifier

* LogicalVolumelD

These identifiers, which are stored in CS0, may have to go through some formof |
trandation to be displayable to the user. Therefore when an implementation must
perform an OS specific trandation on the above listed identifiers the
implementation shall use the algorithms described in section 4.1.2.2.1. |

C source code for the trandation algorithms may be found in the appendices of this
document.

4.2 Part 4 —File System ‘

42.1 ICB Tag

struct icbtag { /[* ECMA 167 4/14.6 */ |
Uint32 PriorRecordedNumberofDirectEntries,
Uint16 Strategy Type;
byte StrategyParameter|2];
Uint16 NumberofEntries,
byte Reserved; /* ==#00 */
Uint8 FileType;
Lb addr Parentl CBLocation;
Uint16 Flags;

}

4.2.1.1 FileType
Any oper/close/read/write requests for file(s) that have any of the following values
in this field shall result in an Access Denied error condition under non-UNIX
operating system environments:: |

FileType values -— 0 (Unknown), 6 (block device), 7 (character device), 9 |
(FIFO), and 10 (C_ISSOCK).

Any open/close/read/write —requests to a file of type 12 (SymbolicLink) shall |

access the file/directory to which the symbolic link is pointing.

gQF 2.01 March 15, 2000
OV
UDF2.00 Apri-3-1998

4.2.2 Fileldentifier Descriptor

struct Filel dentifierDescriptor {

[* ECMA 167 4/14.4 %/

struct tag DescriptorTag;

Uint16 FileVersonNumber;

uint8 FileCharacteristics,

Uint8 LengthofFilel dentifier;

struct long_ad ICB;

uint16 Lengthofl mplementationUse;
byte ImplementationUse]];

char Filel dentifier[];

byte Padding[];

}

4.2.2.1 char Fileldentifier

Since most operating systems have their own specifications as to characteristics of
alegal Fileldentifier, -this becomes a problem with interchange. Therefore since
all implementations must perform some form of Fileldentifier trandation it would
be to the users advantage if all implementations used the same algorithm.

gpy- 2.01
A4

The problems with Fileldentifier translations fall within one or more of the
following categories:

Name Length -—Most operating systems have some fixed limit for
the length of afile identifier.

Invalid Characters-— Most operating systems have certain
characters considered as being illegal within afile identifier name.

Displayable Characters -— Since UDF supports the Unicode
character set standard characters within a file identifier may be
encountered which are not displayable on the receiving system.

Case Insensitive -— Some operating systems are case insensitive in
regards to file identifiers. For example OS/2 preserves the original
case of the file identifier when the file is created, but uses a case
insensitive operations when accessing the file identifier. In OS/2
“Abc” and “ABC” would be the same file name.

Reserved Names -— Some operating systems have certain names
that cannot be used for afile identifier name.

The following sections outline the Fileldentifier trandation algorithm for each
specific operating system covered by this document. This algorithm shall be used

March 15, 2000

UBbF200
tH 0

by al OSTA UDF compliant implementations. The algorithm only applies when
reading an illegal Fileldentifier. The original Fileldentifier name on the media
should not be modified. This algorithm shall be applied by any implementation
whichthat performs some form of Fileldentifier -translation to meet operating
system file identifier restrictions.

All OSTA UDF compliant implementations shall support the UDF trandation
algorithms, but may support additional algorithms. If multiple algorithms are
supported the user of the implementation shall be provided with a method to select
the UDF trandation algorithms. It is recommended that the default displayable
algorithm be the UDF defined agorithm.

The primary goal of these algorithmsis to produce a unique file name that meets
the specific operating system restrictions without having to scan the entire
directory in which the file resides.

C source code for the following algorithms may be found in the appendices of this
document.

NOTE: Inthe definition of the following algorithms anytime a d-character is
specified in quotes, the Unicode hexadecimal value will also be specified.
addition-theT he following algorithms reference “ CSO Hex representation”, which
corresponds to using the Unicode values #0030 - #0039, and #0041 - #0046 to
represent avalue in hex._In addition, the following algorithms reference “ CSO
Base41 representation”, which corresponds to augmenting the CS0 Hex
representation to use #0047 - #005A, #0023, #005F, #007E, #002D and #0040 to
represent digits 16-40.

The following algorithms could still result in name-collisions being reported to the
user of an implementation. However, the rationale includes the need for efficient
access to the contents of a directory and consistent name translations across logical
volume mounts and file system driver implementations, -while allowing the user to |
obtain access to any file within the directory (through possibly renaming afile).

Some name transformations in section 4.2.2.1 result in two namespaces being
visible at once in a given directory — the space of primary names, those which are
physically recorded in adirectory; and the space of generated names, those which
are derived from the primary names. This s distinct from transformations that take
an otherwise illegal name and render it into alegal form, the illegal name not being
considered part of the namespace of the directory on that system. For UDF
implementations using such transforms, the implementation should search a
directory in two passes. pass one should match against the primary namespace and
pass two should match against the generated namespace. A match in the primary
namespace should be preferred to a match against the generated namespace.

QgAF 2.01 March 15, 2000
AL
UDF2.00 Apri-3-1998

Definitions:
A Fileldentifier shall be considered as being composed of two parts, afile name
and file extension.

The character *-." (#002E) shall be considered as the separator for the

Fileldentifier of afile; characters appearing subsequent to the last . (#002E)

shall be considered as constituting the file extension if and only if it is less than or
equal to 5 charactersin length, otherwise the file extension shall not exist.
Characters appearing prior to the file extension, excluding the last -*." (#002E), |
shall be considered as constituting the file name.

NOTE: Even though OS/2, Macintosh, and UNIX do not have an official |
concept of afilename extension it is common file naming conventions to

end afilewith “.” followedFollowed by a1 to 5 character extension. |
Therefore the following algorithms attempt to preserve the file extension

up to amaximum of 5 characters.

4.2.2.1.1 MSDOS

OHF 2.01
L=

Due to the restrictions imposed by the MS DOS operating system environments on |
the Fileldentifier associated with afile the following methodology shall be

employed to handle Fileldentifier(s) under the above-mentioned operating system
environments-:.

Exception: |mplementations on non-MS-DOS systems that may normally provide
dual namespaces (8.3 and non-8.3) using this transformation may omit or provide a
mechanism for disabling its use.

Restrictions: The file name component of the Fileldentifier shall not exceed 8
characters. The file extension component of the Fileldentifier shall not exceed 3
characters.

1. Fileldentifier Lookup: Upon request for a“teokdp™ [ookup” of a |
Fileldentifier, a case-insensitive comparison shall be performed.

2. Vadlidate Fileldentifer: If the Fileldentifier isavalid MS-DOS file |
identifier then do not apply the following steps.

3. Remove Spaces: All embedded spaces within the identifier shall be
removed.

4. |nvalid Characters: A Fileldentifier that contains characters considered
invalid within afile name or file extension (as defined above), or not
displayable in the current environment, shall have them trandated into
“ (#005F). (the file identifier on the mediais NOT modified). |
Multiple sequential invalid or non-displayable characters shall be
trandated into asingle“_" (#005F) character. Reference the appendix
oninvalid characters for acomplete list.

March 15, 2000

UBF200
tH 0

Aprit-3,1998

42212 052

Leading Periods:. In the event that there do not exist any characters

prior to the first “."“.” (#002E) character, leading “."“ .” (#002E) |
characters shall be disregarded up to the first non “.” (#002E)
character, in the application of this heuristic.

Multiple Periods: In the event that the Fileldentifier contains multiple
Lmt " (#002E) characters, all characters appearing subsequent to the
last -*." (#002E) shall be considered as constituting the file extension if
and only if it isless than or equal to 5 charactersin length, otherwise
the file extension shall not exist. Characters appearing prior to the file
extension, excluding the last -**." (#002E), shall be considered as
congtituting the file name. All embedded “-**.” (#002E) characters
within the file name shall be removed.

Long Extension: In the event that the number of characters constituting
the file extension at this step in the process is greater than 3, thefile
extension shall be regarded as having been composed of the first 3
characters amongst the characters constituting the file extension at this
step in the process.

Long Filename: In the event that the number of characters constituting
the file name at this step in the process is greater than 8, the file name
shall be truncated to 4 characters.

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.
The file name shall be composed of the first 4 characters constituting
the file name at this step in the process;, followed by a-4the separator
‘# (#0023), followed by the 3 digit CSO-Hex Base4l representation of
the 16--bit CRC of the UNICODE expansion of the original €S0

Fieldentifter - NOTE-Al-atheralgorithms-except BOS precede the

wsedfilename.
10. The new file identifier shall be trandated to al upper case.

Due to the restrictions imposed by the OS/2 operating system environment, on the |
Fileldentifier associated with afile the following methodology shall be employed

to handle Fileldentifier(s) under the above-mentioned operating system

environment:

1. Fileldentifier Lookup: Upon request for a “leckUp™ lookup” of a |

gRF2.01
I

Fileldentifier, a case-senditive comparison may be performed. If the

March 15, 2000

UBF200
==

Aprit-3,1998

case-senditive comparison is not done or if it falls, a case-insensitive
comparison shall be performed.

2. Vdidate Fileldentifer: If the Fileldentifier isavalid OS/2 file identifier
then do not apply the following steps.

3. Invalid Characters. A Fileldentifier that contains characters considered
invalid within an OS/2 file name, or not displayable in the current
environment shal have them trandated into “**_" (#005F). Multiple |
sequential invalid or non-displayable characters shall be trandated into
a single “_” (#005F) character. Reference the appendix on invalid
characters for a complete list.

4. Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

5. Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be

composed of up to the first (254 — (Iength of (new file extension) + 1
(for the-53—".")) = 5 (for the #CRC)) characters congtituting the file
name at this step in the process, followed by the separator #*#

(#0023); followed by a 4 digit CSO Hex representation of the 16-bit

CRC of the original CSO Fileldentifier, followed by ~*." (#002E) and |
the file extension at this step in the process.

9aF 201 March 15, 2000
UDF2.00 Apri-3-1998

step--the process:

Otherwise if there is no file extension the new Fileldentifier shall be

composed of up to thefirst (254 — 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘# (#0023); followed by a4 digit CS0O Hex representation of
the 16-bit CRC of the original CS0 Fileldentifier.

4.2.2.1.3 Macintosh

Due to the restrictions imposed by the Macintosh operating system environment,
on the Fileldentifier associated with afile the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating system

%F 2.01

1.

environment:

Fileldentifier Lookup: Upon request for a “lookup” of a
Fileldentifier, a case-sensitive comparison may be performed. If the
case-senditive comparison is not done or if it fals, a case-insengitive
comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier is avalid Macintosh file
identifier then do not apply the following steps.

Invalid Characters. A Fileldentifier that contains characters considered
invalid within a Macintosh file name, or not displayable in the current
environment, shall have them trandated into “ " (#005F). Multiple

March 15, 2000

UDE2 00
D=0

Apri-3,1093

sequential invalid or non-displayable characters shall be trandated into
a single “ 7 (#005F) character. Reference the appendix on invalid
characters for a complete list

4. Long Fileldentifier — In the event that the number of characters
constituting the Fileldentifier at this step in the process is greater than
31 (maximum name length for the Macintosh operating system), the
new Fileldentifier will consist of the first 26 characters of the
Fileldentifier at this step in the process.

5. Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having aduplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to thefirst (31 — (length of (new file extension) + 1
(for the ‘.’)) — 5 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator ‘# (#0023);
followed by a4 digit CS0 Hex representation of the 16-bit CRC of the
original CSO Fileldentifier, followed by *.” (#002E) and the file
extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to thefirst (31 — 5(for the #CRC)) characters |
congtituting the file name at this step in the process. Followed by the
separator ## (#0023); followed by a4 digit CSO Hex representation |
of the 16-bit CRC of the original CS0 Fileldentifier.

42214 Windows95 & WindowsNT

QEF 2.01

Due to the restrictions imposed by the Windows 95 and Windows NT operating |
system environments, on the Fileldentifier associated with afile the following
methodology shall be employed to handle Filel dentifier(s) under the above-
mentioned operating system environment:

1. Fileldentifier Lookup: Upon request for a “lookUp"“lookup” of a |
Fileldentifier, a case-sensitive comparison may be performed. If the
case-senditive comparison is not done or if it falls, a case-insensitive
comparison shall be performed.

2. Vdidate Fileldentifer: If the Fileldentifier is a valid file identifier for
Windows 95 or Windows NT then do not apply the following steps. |

3. Invalid Characters. A Fileldentifier that contains characters considered
invalid within a file name of the supported operating system, or not
displayable in the current environment shall have them trandated into
©ote v (#005F). Multiple sequential invalid or non-displayable |

March 15, 2000

UDE2 00
==

Apri-3,1093

characters shall be trandated into a single “_" (#005F) character.
Reference the appendix on invalid characters for a complete list.

4. Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

5. Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to the first (255 -— (Iength of (new file extension) + 1
(for the-53—".")) — 5 (for the #CRC)) characters congtituting the file
name at this step in the process, followed by the separator #*#
(#0023); followed by a 4 digit CSO Hex representation of the 16-bit
CRC of the original CSO Fileldentifier, followed by ~*.” (#002E) and
the file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to thefirst (255 — 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘# (#0023); followed by a4 digit CSO Hex representation of
the 16-bit CRC of the original CS0 Fileldentifier.

4.2.2.1.5 UNIX
Due to the regtrictions imposed by UNIX operating system environments, on the
Fileldentifier associated with afile the following methodology shall be employed
to handle Fileldentifier(s) under the above-mentioned operating system
environment:

1. Fileldentifier Lookup: Upon request for a “teektp™lookup” of a
Fileldentifier, a case-sensitive comparison shall be performed.

geF 2.01 March 15, 2000
T
UDF2.00 Apri-3-1998

2. Vdidate Fileldentifer: If the Fileldentifier isavalid UNIX file
identifier for the current system environment then do not apply the
following steps.

3. Invalid Characters: A Fileldentifier that contains characters considered
invalid within a UNIX file name for the current system environment, or
not displayable in the current environment shall have them trandated

into “*_" (#005E). Multiple sequentia invalid or non-displayable |
characters shall be trandated into asingle“_" (#005E) character.
Reference the appendix on invalid characters for a complete list

4. Long Fileldentifier — In the event that the number of characters
congtituting the Fileldentifier -at this step in the process is greater than
MAXNameLength (maximum name length for the specific UNIX
operating system), the new Fileldentifier will consist of the first
MAXNameLength-5 characters of the Fileldentifier at this step in the
process.

5. Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shal be

composed of up to the first (MAXNameLength — (length of (new file ‘
extension) + 1 (for the-3—".")) — 5 (for the #CRC)) characters
congtituting the file name at this step in the process, followed by the
separator ## (#0023); followed by a4 digit CSO Hex representation ‘
of the 16-bit CRC of the original CSO Fileldentifier, followed by “*."
(#002E) and the file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (MAXNameLength -— 5 (for the #CRC)) |
characters constituting the file name at this step in the process.

Followed by the separator #*# (#0023); followed by a4 digit CSO |
Hex representation of of the 16-bit CRC of the original CS0
Fileldentifier.

4.2.2.1.6 05400

Due to the restrictions imposed by OS/400 operating system environments, on the
Fileldentifier associated with afile the following methodology shall be employed to
handle Fileldentifier(s) under the above mentioned operating system environment.

1. Fileldentifier Lookup: Upon request for a“lookup” of aFileldentifier, a case-
sensitive comparison may be performed. If the case-sensitive comparison is not
done or if it fails, a case-insensitive comparision shall be performed.

g9gr 201 March 15, 2000
UDF200 Aprit-3-1998

2. Validate Fileldentifier: If the Fileldentifier is avalid file identifier for OS/400 then
do not apply the following steps.

3. Invadid Characters. A Fileldentifier that contains characters considered invalid
within an OS/400 file name, or not displayable in the current environment shall
have them trandated into “ " (#005F). Multiple sequentia invalid or non-
displayable characters shall be trandated into asingle“ " (#005F) character.

4. Trailing Spaces: All trailing “ “(#0020) shall be removed.

5. Fileldentifier CRC: Since through the above process character information from
the original Fileldentifier islost the chance of creating a duplicate Fileldentifier in
the same directory increases. To greatly reduce the chance of having a duplicate
Fileldentifier the filename shall be modified to contain a CRC of the original
Fileldentifier.

If there is afile extension then the new Fileldentifier shall be composed of up to
the first (255 — (length of (new file extension) + 1 (for the ‘.")) — 5 (for the #CRC))
characters constituting the file name at this step in the process, followed by the
separator “#’ (#0023); followed by a4 digit CS0 Hex representation of the 16 —bit
CRC of the original CSO Fileldentifier, followed by “.” (#002E) and the file
extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be composed of
up to thefirst (255 — 5 (for the new #CRC)) characters constituting the file name
at this step in the process. Followed by the separator “#” (#0023); followed by a4
digit CS0 hex representation of the 16-bit CRC of the original CS0 Fileldentifier.

Note: Invalid characters for OS400 are only the forward dash “ /” (#002F) character.
Non-displayable characters for OS400 are any characters that do not trandate to code
page 500 (EBCDIC Multilingual).

99r 201 March 15, 2000
UDF2.00 Apr-3-1998

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors
described in ECMA 167.

Descriptor L ength in bytes |
Anchor Volume Descriptor Pointer 512
Volume Descriptor Pointer 512
I mplementation Use Volume Descriptor 512 |
PartitionPrimary V olume Descriptor 512 |
Partition Descriptor 512 |
Logical Volume Descriptor no max
Unallocated Space Descriptor no max
Terminating Descriptor 512
Logical Volume Integrity Descriptor Nno max
File Set Descriptor 512
File Identifier Descriptor Maximum of a
Logical Block Size
Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36
File Entry Maximum of a
Logical Block Size
Unalloeated Space EntryExtended File Entry Maximum of a |
Logical Block Size
Space Bit-MapExtended Attribute Header no-max24 |
Descriptor
Unallocated Space Entry Maximum of a
Logical Block Size
Space Bit Map Descriptor No max |
Partition Integrity Entry N/A

5.2 Using Implementation Use Areas

5.2.1 Entity ldentifiers
Refer to the-section 2.1.5 on Entity |dentifiers defined earlier in this document. |

5.2.2 Orphan Space
Orphan space may exist within alogical volume, but it is not recommended since ‘

may-berealocated-by-some type of logical volume repair facility may reallocate it.

4pn2.01 March 15, 2000

LOUT

UBbF200 AB-' 31098
tH 0 7

Orphan space is defined as space that is not -directly or indirectly referenced by
any of the non-implementation use descriptors defined in ECMA 167.

NOTE: Any allocated extent for which the only reference resides within an
implementation use field is considered orphan space.

5.4 Clarification of Unrecorded Sectors

4P 2.01

ECMA 167 section 3/8.1.2.2 states

Any unrecorded constituent sector of alogical sector shall be interpreted as containing
all #00 bytes. Within the sector containing the last byte of alogical sector, the
interpretation of any bytes after that |ast byte is not specified by this Part.

A logical sector isunrecorded if the standard for recording allows detection that a sector
has been unrecorded and all of the logical sector’s constituent sectors are unrecorded. A
logical sector should either be completely recorded or unrecorded.

For the purposes of interchange, UDF must clarify the correct interpretation of this
section.

This part specifies that an unrecorded sector logically contains #00 bytes.
However, the converse argument that a sector containing only #00 bytesis
unrecorded is not implied, and such a sector is not an “unrecorded” sector for the
purposes of ECMA. Only the standard governing the recording of sectors on the
media can provide the rule for determining if a sector is unrecorded. For example,
ablank check condition would provide correct determination for a WORM device.

The following additional ECMA 167 sections reference the rule defined 3/8.1.2.2:
3/8.4.2, 3/8.8.2, 4/3.1, 4/8.3.1 and 4/8.10. By derivation, UDF 6.6 (strategy 4096)
is also affected. Since unrecorded sectors/blocks are terminating conditions for
sequences of descriptors, an implementation must be careful to know that the
underlying storage media provides a notion of unrecorded sectors before assuming
that not writing to a sector is detectable. Otherwise, reliance on the incorrect
converse argument mentioned above may result. Explicit termination descriptors
must_be used when an appropriate unrecorded sector would be undetectable.

March 15, 2000

LU
UDE2 00
(=amw—

Apri-3,1093

5.45.5 Technical Contacts
Technical questions regarding this document may be emailed to the OSTA
TFechniealFile Interchange Committee at info@osta.org. Also technical questions
may be faxed to the attention of the OSTA TechnicalFile Interchange Committee
at 1-805-962-1542.

OSTA may also be contacted through the following address:

TechnicalFile Interchange Committee Chairman
OSTA

311 East Carrillo Street

Santa Barbara, CA 93101

(805) 963-3853

Also monitor the OSTA web site at www.osta.org for additional information.

4pH2.01 March 15, 2000

LU

UBF200 A p;' 31098
== 7

6. Appendices

UDF Entity I dentifier-Befinitions

6.1 Definitions

Entity |dentifier

Description

£+ OSTA UDF Compliant™”

Indicates the contents of the specified logical volume or file set
is complantcompliant with domain defined by this document.

“*UDF LV Info”

Contains additional Logical Volume identification information.

"5 UDF FreeEASpace””

Contains free unused space within the implementation extended
attributes space.

“*UDF FreeAppEA Space”

Contains free unused space within the application extended
attributes space.

“*UDF DVD CGMS Info”

Contains DVD Copyright Management Information

“*UDF OS2 EALength™”

Contains OS2 extended attribute length.

== *UDF Mac Volumelnfo"”

Contains Macintosh volume information.

“=*UDF Mac Finderlnfo™”

Contains Macintosh finder information.

“*UDF Virtual Partition”

Describes UDF Virtua Partition

“*UDF Sparable Partition”

D@crlbes UDF Sparable Partltlon

> UDE /] A
Fbl=**UDF OS/400 Dirlnfo”

wmﬁewmedl&OSMOO Extended d| rectorv i nforman on

“*UDF Sparing Table’

Contains information for handling defective areas on the media

4pR2.01

March 15, 2000

LU0

UBbF200
tH 0

6.2 UDF Entity Identifier Values

Entity |dentifier Byte Value

"*OSTA UDF Compliant" HOA, #AF, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,
#6D, #70, #6C, #69, #61, #OE, #74

“*UDF LV Info’ #H2A, #55, #44, #46, #20, #AC, #56, #20, #49, #OE, #66, #6F

"* UDF FreeEA Space'" HOA, #55, #A4, #46, #20, #A46, #72, #65, #65, #45, #41, #53,
#70, #61, #63, #65

"* UDF FreeAppEA Space' H2A, #55, #44, #46, #20,
#46, #72, #65, #65, #41, #70, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info” HOA, #55, #A4, #46, #20, #A4, #56, #44, #20,
H#43, #47, #4D, #53, #20, #49, #6E, #66, #6F

"+“*UDF OS/2 EALength"” HOA, #55, #A4, #46, #20, #AF, #53, #2F, #32, #20, #45, #41,
HAC, #65, #OE, #67, #74, #68

“* UDF 0S/400 DirlInfo” #2A, #55, #44, #46, #20, #4F, #53, #2F, #34, #30, #30, #20,
#44, #69, #72, #49, #6E, #66, #6F

"*UDF Mac Volumelnfo" H2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,
#75, #6D, #65, #49, #OE, #66, #6F

"*UDF Mac FinderInfo" #HOA, #55, #44, #46, #20, #AD, #61, #63, #20, #49, #69, #6E,
#64, #65, #72, #49, #6E, #66, #OF

“*UDF Virtual Partition” HOA, #55, #A4, #46, #20, #56, #69, #T2, #T14, #T5, #61, #6C,
#20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparable Partition” H2A, #55, #44, #46, #20, #53, #70, #61, #72, #61, #62, #6C,
#65, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparing Table’ HOA, #55, #44, #46, #20, #53, #70, #61, #72, #69, #OE, #67,
#20, #54, #61, #62, #6C, #65

4P72.01 March 15, 2000

LU

UBbF200 AB-' 31098
tH 0 7

6.3 Operating System Identifiers

The following tables define the current allowable values for the OS Class and OS

|dentifier fields in the Identifier Suffix of Entity |dentifiers.

The OS Class field will identify under which class of operating system the specified

descriptor was recorded. The valid values for thisfield are as follows:

Value Operating System Class

0 Undefined

1 DOS

2 0s/2

3 Macintosh OS

4 UNIX

5 Windows 9x

6 Windows NT
7-255 | Reserved0S/400

8 BeOS

9 Windows CE
10-255 | Reserved

The OS Identifier field will identify under which operating system the specified
descriptor was recorded. The valid values for thisfield are as follows:

oS
Class

OS
| dentifier

Operating System Identified

Any Vaue

Undefined

DOS/Windows 3.x

0S/2

Macintosh OS System-7

UNIX - Generic

UNIX - IBM AIX

UNIX - SUN OS/ Solaris

UNIX - HP/UX

UNIX - Silicon Graphics Irix

UNIX - Linux

UNIX - MKLinux

UNIX - FreeBSD

Windows 959x — generic (includes Windows 98)

Windows NT — generic (includes Windows 2000)

0S/400

BeOS - generic

O[NP (WIN|IFL|O

oloo|o|o|N|o|O |~ (WN|F|O|O|O|O

Windows CE - generic

YPE2.01

March 15, 2000

LU0
UBbF200
tH 0

For the most up to date list of values for OS Class and OS Identifier please contact OSTA
and request a copy of the UDF Entity Identifier Directory. This directory will also
contain Implementation Identifiers of 1SVswho have -provided the necessary information
to OSTA.

NOTE: If you wish to add to thislist please contact the OSTA Technical Committee
Chairman at the OSTA address listed in section 5.3 Technical Contacts.

4pR2.01 March 15, 2000

LU0

UBbF200 AB-' 31098
tH 0 7

6.4 OSTA Compressed Unicode Algorithm

/***

* OSTA conpliant Uni code conpression, unconpression routines.
* Copyright 1995 Mcro Design International, Inc.
* Witten by Jason M Rinn.
* Mcro Design International gives permission for the free use of the
* foll owi ng source code.
*
/
#i ncl ude <stddef. h>

/***
* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to be
* unsigned 16-bit.
*/
typedef unsigned short unicode_t;
typedef unsigned char byte;

/***

* Takes an OSTA CSO conpressed uni code nane, and converts

* it to Unicode.

* The Unicode output will be in the byte order

* that the | ocal conpiler uses for 16-bit val ues.

* NOTE: This routine only performs error checking on the conplD.
* It is up to the user to ensure that the unicode buffer is |arge
* enough, and that the conpressed uni code nane is correct.

*

* RETURN VALUE

*

* The nunber of unicode characters which were unconpressed

* A -1 is returned if the conpression IDis invalid.

*/

nt UnconpressUni code(

nt nunber Of Byt es, /*
byt e *UDFConpressed, /*
uni code_t *uni code) /

(I'nput) nunber of bytes read fromnedia. */
(I'nput) bytes read from nedi a. */
* (Qutput) unconpressed uni code characters. */

unsi gned int conpl D
int returnVal ue, uni codel ndex, byt el ndex;

/* Use UDFConpressed to store current byte being read. */
conpl D = UDFConpressed[0] ;

/* First check for valid conmplD. */
if (conplD!= 8 && conplD != 16)

returnValue = -1;
}
el se
{ .
uni codel ndex = 0;
byt el ndex = 1;
/* Loop through all the bytes. */
whil e (bytel ndex < number Of Byt es)
{
if (conplD == 16)
/*Move the first byte to the high bits of the unicode char. */
uni code[uni codel ndex] = UDFConpressed[byt el ndex++] << 8
el se
uni code[uni codel ndex] = 0;
if (bytelndex < number Of Byt es)
/*Then the next byte to the low bits. */
uni code[uni codel ndex] | = UDFConpressed[byt el ndex++] ;
gpy72.01 March 15, 2000

LT

UBbF200 AB-' 31098
tH 0 v

uni codel ndex++;
returnVal ue = uni codel ndex;

return(returnVal ue);

/***

* DESCRI PTI ON:

Takes a string of unicode wi de characters and returns an OSTA CSO

conpressed uni code string. The uni code MUST be in the byte order of
the conpiler in order to obtain correct results. Returns an error
if the conpression IDis invalid.

NOTE: This routine assunes the inplenentation already knows, by
the | ocal environnent, how nany bits are appropriate and
therefore does no checking to test if the input characters fit
into that number of bits or not.

RETURN VALUE
The total nunber of bytes in the conpressed OSTA CSO string,

including the conpression ID.
A -1 is returned if the conpression IDis invalid.

s TR HEE B I B T I R

— ~

i Conpr essUni code(

i nt nunber O Chars, /* (I'nput) number of unicode characters. */
int conpl D, /* (Input) conpression ID to be used. */
uni code_t *uni code, /* (Input) unicode characters to conpress. */

byt e *UDFConpressed) /* (Qutput) conpressed string, as bytes. */
{

int bytelndex, unicodel ndex;

if (conplD!= 8 && conplD != 16)

bytelndex = -1; /* Unsupported conpression ID! */
}
el se
{
/* Place conpression code in first byte. */
UDFConpr essed[0] = conpl D
byt el ndex = 1;
uni codel ndex = 0;
whil e (uni codel ndex < nunber O Chars)
{
if (conplD == 16)
{
/* First, place the high bits of the char
* into the byte stream
*
/
UDFConpr essed[byt el ndex++] =
(uni code[uni codel ndex] & OxFF00) >> 8;
/*Then place the low bits into the stream */
UDFConpr essed[byt el ndex++] = uni code[uni codel ndex] & O0x00FF;
uni codel ndex++;
}
}

return(bytel ndex) ;

4pQ2.01 March 15, 2000

EaSLS)

UBbF200 AB-' 31098
tH 0 v

6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum
used in the TAG descriptors of ECMA 167.

/*
* CRC 010041
*
/
static unsigned short crc_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, O0x50A5, 0x60C6, O0x70E7
0x8108, 0x9129, O0xAl14A, 0xB16B, 0xCl18C, OxD1AD, OxE1CE, OxF1EF
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, O0x72F7, 0x62D6
0x9339, 0x8318, 0xB37B, OxA35A, 0xD3BD, 0xC39C, OxF3FF, OxE3DE
0x2462, 0x3443, 0x0420, 0x1401, Ox64E6, O0x74C7, 0x44A4, 0x5485
OxA56A, 0xB54B, 0x8528, 0x9509, OxE5EE, OxF5CF, OxC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, O0x76D7, Ox66F6, 0x5695, 0x46B4,
OxB75B, OxA77A, 0x9719, 0x8738, OxF7DF, OxE7FE, 0xD79D, 0xC7BC
0x48C4, O0x58E5, 0x6886, Ox78A7, 0x0840, 0x1861, 0x2802, 0x3823
0xC9CC, OxDOED, OxE98E, OxF9AF, 0x8948, 0x9969, O0xA90A, 0xB92B
Ox5AF5, O0x4AD4, Ox7AB7, Ox6A96, Ox1A71, OxO0A50, Ox3A33, 0x2Al2
OxDBFD, 0OxCBDC, OxFBBF, OxEB9E, 0x9B79, 0x8B58, 0xBB3B, OxABlA,
0x6CA6, 0x7CB87, Ox4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41
OxEDAE, OxFD8F, OxCDEC, O0xDDCD, OxAD2A, 0xBDOB, 0x8D68, 0x9D49
Ox7E97, Ox6EB6, Ox5ED5, Ox4EF4, Ox3E13, O0x2E32, Ox1E51, OxO0E70
OxFF9F, OxEFBE, OxDFDD, OxCFFC, OxBF1B, OxAF3A, 0x9F59, O0x8F78
0x9188, 0x81A9, O0xB1CA, OxAlEB, O0xD10C, 0xCl2D, OxF14E, OxE1l6F
0x1080, O0xO00Al, 0x30C2, Ox20E3, 0x5004, 0x4025, 0x7046, 0x6067
0x83B9, 0x9398, OxA3FB, OxB3DA, 0xC33D, 0xD31C, OxE37F, OxF35E
0x02B1, 0x1290, O0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256
OxB5EA, OxA5CB, 0x95A8, 0x8589, OxF56E, OxE54F, 0xD52C, 0xC50D,
Ox34E2, 0x24C3, O0x14A0, 0x0481, O0x7466, 0x6447, 0x5424, 0x4405
OxA7DB, OxB7FA, 0x8799, 0x97B8, OxE75F, OxF77E, 0xCr71D, 0xD73C
0x26D3, O0x36F2, 0x0691, O0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, OxF90E, OxE92F, 0x99C8, O0x89E9, O0xB98A, O0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, Ox08E1l, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, OxEB3F, OxFB1E, Ox8BF9, 0x9BD8, OxABBB, O0xBB9A,
Ox4A75, Ox5A54, O0x6A37, Ox7Al16, OxOAFl, Ox1ADO, Ox2AB3, 0x3A92
OxFD2E, OxEDOF, OxDD6C, 0xCD4D, OxBDAA, OxAD8B, O0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, O0x3CA2, 0x2C83, Ox1CEO, 0xO0CC1,
OxXEF1F, OxFF3E, OxCF5D, OxDF7C, OxAF9B, OxBFBA, Ox8FD9, O0x9FF8
Ox6E17, Ox7E36, Ox4E55, Ox5E74, Ox2E93, Ox3EB2, OxOED1l, Ox1EFO

1

unsi gned short

cksun(s, n)
regi ster unsigned char *s;
regi ster int n;

{
regi ster unsigned short crc=0;
while (n-- > 0)

crc = crc_table[(crc>>8 ™ *s++) & Oxff] ~ (crc<<8);

return crc;

}

/* UNI CODE Checksum */

unsi gned short

uni code_cksum(s, n)
regi ster unsigned short *s;
regi ster int n;

regi ster unsigned short crc=0;
while (n-- > 0)
/* Take high order byte first--corresponds to a big endian byte stream */
crc crc_table[(crc>>8 N (*s>>8) & Oxff] ~ (crc<<8);
crc crc_table[(crc>>8 N (*s++ & Oxff)) & Oxff] ~ (crc<<8);

4p62.01 March 15, 2000

LOUJI

UBbF200 AB-' 31098
tH 0 T

return crc;

#i f def MAIN
unsi gned char bytes[] = { 0x70, Ox6A, O0x77 };

mai n()
unsi gned short x;
x = cksun{bytes, sizeof bytes);
printf("checksum cal cul ated=%l.4x, correct=%.4x\en", x, 0x3299);
exit(0);

L
#endi f

e

IS

March 15, 2000
Apri-3-3998

n
o

D |©
2

D

The CRC table in the previous listing was generated by the following program:

#i ncl ude <stdi o. h>

/*

*

*/

a.out 010041 for CRC-CCITT

mai n(argc, argv)

{

int argc; char *argv[];

unsi gned | ong crc, poly;
int n, i;

sscanf (argv[1], "% o", &poly);

if(poly & Oxffff0000){
fprintf(stderr, "polynonmial is too |large\en");
exit(1);

printf("/*\en * CRC 0%\ en */\en", poly);
printf("static unsigned short crc_table[256] = {\en");
for(n = 0; n < 256; n++){
if(n %8 == 0)
printf(" ");
crc = n << §;
for(i =0; i <8; i++){
if(crc & 0x8000)
crc = (crc << 1) ~ poly;

el se
crc <<= 1;

crc &= OxFFFF;
}
if(n == 255)

printf("0x%®4X ", crc);
el se

printf("0x%®4X, ", crc);

if(n %8 == 7)
printf("\en");
%rintf("};\en");
exit(0);

All the above CRC code was devised by Don P. Mitchell of AT&T Bell Laboratories and
Ned W. Rhodes of Software Systems Group.

It has been published in "Design and Validation of Computer Protocols,"
Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.
Copyright isheld by AT&T.

AT&T gives permission for the free use of the above source code.

QI?LIiZ.Ol

March 15, 2000

UBbF200
tH 0

Aprit-3,1998

6.6 Algorithm for Strategy Type 4096 ‘
This section describes a strategy for constructing an ICB hierarchy. For strategy type

4096 the root ICB hierarchy shall contain 1 direct entry and 1 indirect entry. To indicate
that thereis 1 direct entry a 1 shall be recorded as a Uint16 in the StrategyParameter field

of the ICB Tag field. A value of 2 shall be recorded in the MaximumNumber OfEntries

field of the ICB Tag field.

The indirect entry shall specify the address of another |CB which shall also contain 1
direct entry and 1 indirect entry, where the indirect entry specifies the address of another
ICB of the sametype. See the figure below:

DE
IE

DE
IE

DE
IE N

NOTE: This strategy builds an ICB hierarchy that is a simple linked list of direct entries.

gRH2.01 March 15, 2000
UDF2.00 Aprit-3-1998

6.7 ldentifier Translation Algorithms
The following sample source code examples implement the file identifier trandation
algorithms described in this document.

The following basic algorithms may also be used to handle OS specific trandations of the
Volumeldentifier, VolumeSetldentifier, Logical Volumel D and FileSetiD.

6.7.1 DOSAlgorithm

[k) k) kkhkkkkkhkhkkkkhkkkkhkhkkkkhkhkkkkhkhkkkk khkkkkhkhkkkkhkhkkkkhkkkk khkkkkk kkkkk kkkk kk,kkxkk kk*x*x*%
1

[Xk k) kkhkkkkhkhkkkkkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkkkhhkkkkhkhkkkkkhhkkkk khkkkk kkhkkkxk kk kkkkxkk kk,kkxk kk k*xk*x**%
1

. . : . i : .

*

—= RETURNMALUE
_x]
R UBrPesNa e
1 * * 1 . *
f _ * ' * ; *
nt _ dflen)’ | % (Ap t) Iength of DFE—Nane- */
[* OSTA UDF conpliant file nane translation routine for DOS and */
[* W ndows short nanespaces. */
[* Define constants for nanespace translation */

#define DOS_NAME_LEN 8
#define DOS_EXT_LEN 3
#define DOS_LABEL_LEN 11

yRE2.01 March 15, 2000
UDF-2.00 Apr-3-1008

#define DOS_CRC LEN 4
#define DOS CRC MODULUS 41

[* Define standard types used in exanple code. */
typedef BOOLEAN int;

typedef short | NT16;

typedef unsigned short Ul NT16;

typedef U NT16 UN CODE_CHAR;

#define FALSE 0

#define TRUE 1

static char crcChar[] =

"0123456789ABCDEFGHI JKL MNOPORSTUVWKYZ# ~- @ ;

[* FUNCTI ON PROTOTYPES */

UNI CODE_CHAR Uni codeToUpper (UNI CODE_CHAR val ue) ;

BOOLEAN | sFi | eNaneChar Legal (UNI CODE CHAR val ue) ;

BOOLEAN | sVol uneLabel Char Legal (UNI CODE_CHAR val ue) ;

INT16 Nati veChar Lengt h(UNI CODE _CHAR val ue) ;

BOOLEAN | sDevi ceName(UNI CODE_CHAR* nane, Ul NT16 nanelen):

/***/

[* UDFDOSNane() */
[* Transl ate udf Nanme to dosNane using OSTA conpliant algorithm */
[* dosNane nmust be a Unicode string buffer at least 12 characters */
[* in length. */

/***/

U NT16 UDFDOSNane(UNI CODE CHAR* dosNane, UNI CODE CHAR* udf Nane,
U NT16 udf NanelLen)

| st Pari ndl nda
—aStetH-oa+hae 5
x| : . . | .

4a72.01 March 15, 2000
00 Apri-3,1093

TRIUE:

hacEvwt

L B~ =

oo =Xt

1 EN)
==

DOS—_EXT

axt !l nda
Xt HGEx

=4S =

= TRILIE:

needs CRC
ReeaS oo

L B~ =

al ca
eS¢

= TRILIE:

needs CRC
ReeaS oo

L B~ =

*

neriods
[EAAERERSAS S m

not

ot

hut

*

oot

* /

rnday -
HRGEX

*
March 15, 2000

*

cUrrant -
CorT+CHt

| act Pari ndl ndax))

ot o T O9uTriatxy

i nda

HRGEX
RLIE:
RO,

avtl axt | ndayt++4]

(it nalbwt)
WHHHRGEX
EXt Xt HEEX

1
J
*
L f
H
[
8
1
J
al ca
eS¢

*

wre it onalbwt
*

v gt

4RiE2.01

dosl nde
GOS+HhRaex

121
By
a1 -

(val neCRC & 0Ox000f)1 -

(val nHaCRC & 0Oxf 000)
e oS X uu9)
(val nHaCRC & 0Ox0f 00)
{Yar e o —&—oXuiu9)
(val nHaCRC & 0Ox00f0)
Y e o —&—oXout9)
Y He RS oXooot)15

haexChar
HeXxchad
haexChar
HeXxchad
hexChar
Hexchad
hexChar
HeXxchad

dosNampl dosl ndex++

dosNampl dosl ndex++
oS e Go0S+HhRaex

dosNampl dosl ndex++
oS e Go0S+HhRaex

dosNampl dosl ndex++
oS e GoS+HhRaex

oot e o 0o T 1HatX

;

:

[Xk k) kkhkkkkhkhkkkkhkkkkhkhkkkkhhkkkkhkhkkkkhkhkkkkhhkkkk khkkkkkhhkkkk khkkkk kk,kkkxkk kkkxk kk,kkxk kk k*x*x*x*%

*

*

*
f

ch)

Ry

(*ctrina

St g

\

RL=
= FALSE;

found—=
NT16 crcl ndex;
NT16 extlen;
NT16 nanelen;
NT16 charlen;
NT16 overl ayBytes:
NT16 byteslLeft;
UNI CODE_CHAR current:

UNI CODE_CHAR ext [DOS_EXT_LEN] ;

needsCRC

/*

strinatg-
St+HRG

*/

Start at the end of the UDF file nane and scan for a period

be where the DOS extension starts (if

This will

o

o

o

N

ol o
A -

m M
]

=

| D
ol 9
o
[e
i D

[* any). */
index = udf NanelLen;
while (index-- > 0) {
if (udfNane[index] =="'.")
break;

}

[Xk k) kkhkkkkhkhkkkkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkkkhhkkkkhkhkkkkkhhkkkk kkhkkkk kkhkkkxkk kkkxk kk,kkxk k* k*xk*x**%
1

kf

%
—= RETURNMALUE
%
. g . .
-/
s HHegal-
1 * *
t o
— = Cepuipe—tH-egal—eharts—tor—PSs— 1
1 f (e~ Ov?20 1| nNniecadal NSt rina("\ \ /- %D\ " | " ch))
LI W A I B LA A A LB LA LIS A G R A ARV
—+t
ettt
—
——clse
—+t
ratiirnf(N) -
LA W A
if (index < 0) {
[* There name was scanned to the beginning of the buffer */
[* and no extension was found. */
extlen = 0;
) nanelLen = udf Nanelen;
el se {
[* A DOS extension was found, process it first. */
extlen = udf NanelLen - index - 1;
nanelen = index;
targetlndex = 0;
bytesleft = DOS EXT_LEN;
while (++index < udfNanelLen && bytesleft > 0) {
[* Get the current character and convert it to upper */
[* case. */
current = Uni codeToUpper (udf Nanme[i ndex])
if (current ==" ") {
[* |f a space is found, a CRC nust be appended to */
[* the mangled file nane. */
y needsCRC = TRUE;
else {
[* Determine if thisis a valid file nane char and */
[* calculate its corresponding BCS character byte */
[* length (zero if the char is not |egal or */
[* undi splayable on this system. */
charlLen = (IsFileNaneCharlegal (current)) ?
Nat i veChar Lengt h(current) : O;
[* 1f the char is larger than the avail able space */
[* in the buffer, pretend it is undisplayable. */
if (charlLen > bytesleft)
charlen = 0;
if (charlen == 0)
[* Undi splayable or illegal characters are */
[* substituted with an underscore (" "), and */
[* required a CRC code appended to the nmangled */
[* file nane. */
needsCRC = TRUE;
charlen = 1;
current ="' '
[* Skip over any follow ng undiplayable or */
[* illegal chars. */
while (index +1 <udfNanelLen &&
(! 1 sFil eNanmeChar Legal (udf Nane[index + 1]) ||
Nat i veChar Lengt h(udf Nane[i ndex + 1]) == 0))
i ndex++;
L
I:Jﬂ_lg_l‘72.01 March 15, 2000
UbF2.00 Apri-3-1998

[* Assign the resulting char to the next index in */

[* the extension buffer and determ ne how nmany BCS */

[* bytes are left. */
ext[targetlndex++] = current;
bytesleft -= charlen

b
b

[* Save the nunber of Unicode characters in the extension

*/

extlen = targetlndex

If the extension was too large, or it was zero length */

(i.e. the nane ended in a period), a CRC code nust be */

/*

/*

[* appended to the nmangled nane. */

if (index < udfNanelLen || extlen == Q)
needsCRC = TRUE

b

[* Now process the actual file nane. */
index = 0

targetlndex = 0

crclndex = 0;

overlayBytes = -1;

byteslLeft = DOS NAME_LEN;

while (index < nanelen && bytesleft > 0) {

[* Get the current character and convert it to upper case

*/

current = Uni codeToUpper (udf Nane[i ndex])
if (current ==" "' ||current ==".") {
[* Spaces and periods are just skipped, a CRC code */

[* nmust be added to the mangled file nane. */
needsCRC = TRUE

%Ise{

[* Determine if this is a valid file nanme char and */
[* calculate its corresponding BCS character byte */
[* length (zero if the char is not legal or */

[* undi splayable on this system. */

charlen = (IsFileNaneCharlegal (current)) ?

Nat i veChar Lengt h(current) : O;

[* 1f the char is larger than the available space in */
[* the buffer, pretend it is undisplayable. */
if (charlLen > bytesleft)

charlen = 0

if (charlLen == 0)
[* Undi splayable or illegal characters are */
[* substituted with an underscore (" "), and */
[* required a CRC code appended to the nmangled */
[* file nane. */
needsCRC = TRUE
charlen = 1
current ="' ';

[* Skip over any follow ng undiplayable or illegal */

[* _chars. */
while (index +1 <nanelen &&
(! 1 sFil eNanmeChar Legal (udf Nane[index + 1]) ||

Nat i veChar Lengt h(udf Nane[i ndex + 1]) ==

0))

index++;

[* Terminate loop if at the end of the file nane. */
if (index >= nanelen)
break;

b

[* Assign the resulting char to the next index in the */
[* file nane buffer and deternine how many BCS bytes */
[* are left. */

dosNane[t arget | ndex++] = current:

bytesleft -= charlen

[* This figures out where the CRC code needs to start */
[* in the file nane buffer. */
if (bytesleft >= DOS CRC LEN) {
[* If there is enough space left, just tack it */
[* onto the end. */
crclndex = targetlndex

%Ise{

March 15, 2000

Apri-3,1093

b

If there is not enough space left, the CRC */
nmust overlay a character already in the file */
nane buffer. Once this condition has been */
nmet, the value will not change. */

~~]~|~
k[k| k| *

if (overlayBytes < 0) {

[* Determne the index and save the length of */
[* the BCS character that is overlayed. It */
[* is possible that the CRC mi ght overlay */

[* half of a two-byte BCS character depending */
[* upon how the character boundaries line up. */

overl ayBytes = (byteslLeft + charlen > DOS CRC LEN)?1 :

crclndex = targetlndex - 1;

L
L
L
[* Advance to the next character. */
index++;

b

[* 1If the scan did not reach the end of the file nane, or the */
[* length of the file name is zero, a CRC code is needed. */
if (index < nanelLen || index == 0)

needsCRC = TRUE;

If the nane has illegal characters or and extension, it */
is not a DOS device nane. */
if (needsCRC == FALSE && extlen == 0) {
[* 1f this is the nane of a DOS device, a CRC code should */
[* be appended to the file nane. */
if (1sDeviceNane(udfNane, udfNanelLen))
needsCRC = TRUE;

I~~~
*|[ok

[* Append the CRC code to the file nanme, if needed. */

if (needsCRC) {
[* Get the CRC value for the original Unicode string */
U NT16 udf CRCVal ue = Cal cul at eCRC(udf Nane, udf NanelLen) ;

[* Deternmine the character index where the CRC should */
[* begin. */
targetlndex = crclndex;

[* 1If the character being overlayed is a two-byte BCS */
[* character, replace the first byte with an underscore. */
if (overlayBytes > 0)

dosNane[targetlndex++] ="' '

[* Append the encoded CRC value with deliniter. */
dosNane[targetlndex++] = "#':
dosNane[t arget | ndex++] =
crcChar [udf CRCValue / (DOS CRC MODULUS * DOS CRC MODULUS)]:
udf CRCVal ue % DOS CRC MODULUS * DOS CRC MODULUS;
dosNane[t arget | ndex++] =
crcChar [udf CRCVal ue / DOS_CRC MODULUS] ;
udf CRCVal ue % DOS CRC MODULUS;
dosNane[t arget | ndex++] = crcChar[udf CRCVal ue] ;

b

[* Append the extension, if any. */

if (extlen > 0) {
[* Tack on a period and each successive byte in the */
[* extension buffer. */
dosNane[targetlndex++] = "'.":

for (index = 0; index < extlen; index++)
dosNane[target|ndex++] = ext[index]:

b

/* Return the length of the resulting Unicode string. */
return (U NT16)target | ndex;

/***/

/*

UDFDOSVol unelabel () */

[* Translate udflabel to doslLabel using OSTA conpliant algorithm */

[* dosLabel must be a Unicode string buffer at least 11 characters */

/*

in length. */

/***/

-
iy

March 15, 2000

O
m
Y

«

O |o
2

(=]

Apri-3,1093

U NT16 UDFDOSVol unelabel (UNI CODE _CHAR* doslabel , UNI CODE_CHAR*

udf Label , Ul NT16 udf Label Len)

{
INT16 index;
INT16 targetlndex;
INT16 crclndex;
INT16 charlen;
INT16 overl ayBytes:;
INT16 byteslLeft;
UNI CODE_CHAR current;
BOOLEAN needsCRC;
needsCRC = FALSE;
[* Scan end of label to see if there are any trailing spaces. */
index = udfLlabel Len;
while (index-- > 0) {
if (udflLabel[index] !'=" ")
break;
L
[* |If there are trailing spaces, adjust the length of the */
[* string to exclude them and indicate that a CRC code is */
[* needed. */
if (index +1 !=udflabellen) {
udf Label Len = index + 1;
needsCRC = TRUE;
L
index = 0;
targetlndex = 0;
crclndex = 0;
overlayBytes = -1;
byteslLeft = DOS LABEL_LEN:
while (index < udflabellen && bytesleft > 0) {
[* Get the current character and convert it to upper case. */
current = Uni codeToUpper (udf Label [i ndex]):
if (current =="."
[* Periods are just skipped, a CRC code nust be added */
[* to the mangled file nane. */
y needsCRC = TRUE;
el se {
[* Determine if this is a valid file nanme char and */
[* calculate its corresponding BCS character byte */
[* length (zero if the char is not |legal or */
[* undisplayable on this system. */
charlLen = (IsVol uneLabel CharlLegal (current)) ?
Nat i veChar Lengt h(current) : O;
[* 1f the char is larger than the available space in */
[* the buffer, pretend it is undisplayable. */
if (charlLen > bytesleft)
charlen = 0;
if (charlen == 0) {
[* Undi splayable or illegal characters are */
[* substituted with an underscore (" "), and */
[* required a CRC code appended to the nmangled */
[* file nane. */
needsCRC = TRUE;
charlen = 1;
current ="' ';
[* Skip over any follow ng undiplayable or illegal */
[* chars. */
while (index +1 <udflabellen &&
(! I'sVol uneLabel Char Legal (udf Label [i ndex + 1]) ||
Nat i veChar Lengt h(udf Label [i ndex + 1]) == 0))
index++;
[* Terminate loop if at the end of the file nane. */
if (index >= udflabel Len)
break;
L
[* Assign the resulting char to the next index in the */
[* file nane buffer and deternine how many BCS bytes */
[* are left. */
doslLabel [target|ndex++] = current:
bytesleft -= charlen;
[* This figures out where the CRC code needs to start */
l:Jﬂ_Q@Z.Ol March 15, 2000
UbF2.00 Apri-3-1998

[* in the file nane buffer. */

if (bytesleft >= DOS CRC LEN) {
[* If there is enough space left, just tack it */
[* onto the end. */
crclndex = targetlndex;

L
else {
[* If there is not enough space left, the CRC */
[* nmust overlay a character already in the file */
[* nanme buffer. Once this condition has been */
[* nmet, the value will not change. */
if (overlayBytes < 0) {
[* Determ ne the index and save the length of */
[* the BCS character that is overlayed. It */
[* is possible that the CRC mi ght overlay */
[* half of a two-byte BCS character depending */
[* upon how the character boundaries line up. */
overl ayBytes = (byteslLeft + charlen > DOS CRC LEN)
?21 :0;
crclndex = targetlndex - 1;
L
L
L
[* Advance to the next character. */
index++;

b

[* 1f the scan did not reach the end of the file nane, or the */
[* length of the file name is zero, a CRC code is needed. */
if (index < udflabellen || index == 0)

needsCRC = TRUE;

[* Append the CRC code to the file nanme, if needed. */

if (needsCRC) {
[* Get the CRC value for the original Unicode string */
U NT16 udf CRCVal ue = Cal cul at eCRC(udf Nane, udf NanelLen) ;

[* Deternmine the character index where the CRC should */
[* begin. */
targetlndex = crclndex;

[* |If the character being overlayed is a two-byte BCS */

[* character, replace the first byte with an underscore. */
if (overlayBytes > 0)

doslLabel [target|ndex++] ="' '

[* Append the encoded CRC value with deliniter. */
doslLabel [target|ndex++] = '"# ;

dosLabel [target | ndex++] =

crcChar [udf CRCval ue / (DOS_CRC MODULUS * DOS CRC MODULUS)]:
udf CRCVal ue % DOS CRC MODULUS * DOS CRC MODULUS;

doslabel [target|ndex++] =

crcChar [udf CRCVal ue / DOS_CRC MODULUS] ;

udf CRCVal ue % DOS CRC MODULUS;

dosLabel [target| ndex++] = crcChar[udf CRCVal ue];

b

/* Return the length of the resulting Unicode string. */
return (U NT16)targetl| ndex;

b

/***/

[*_Uni codeToUpper () */ _
[* Convert the given character to upper-case Unicode. */

/***/

UNI CODE_CHAR Uni codeToUpper (UNI CODE_CHAR val ue)
{

[* Actual inplenentation will vary to accomnmpdate the target */
[* operating system APl services. */
[* Just handle the ASCI| range for the tinme being. */
return (value >= 'a' && value <= 'z') ?
value - ("a" - "A') : value;

b

/***/

[* 1sFileNaneCharlegal () */
[* Determine if this is alegal file nanme id character. */

/***/

457 2.01 March 15, 2000
UDF2.00 Apr-3-1998

BOOLEAN | sFi | eNaneChar Legal (UNI CODE_CHAR val ue)
L

[* Control characters are illegal. */
if (value <' ")
return FALSE;

[* Test for illegal ASCII characters. */

switch (value) {
case "\\':
case '/':
case ':':
case '*':
case '?':
case '"\"':
case '<':
case '>':
case '|':
case ':':
case 'N':
case ', ':
case '& :
case '+':
case '=':
case '[':
case ']':

return FALSE:

defaul t:
return TRUE;

b

/***/

[* 1sVol unelLabel CharLegal () */
|* Deternmine if this is a legal volune |abel character. */

/***/

BOOLEAN | sVol unelLabel Char Legal (UNI CODE_CHAR val ue)
L

[* Control characters are illegal. */
if (value <' ")
return FALSE;

[* Test for illegal ASCII characters. */
switch (value) {
case "\\':
case '/':
case ':':
case '*':
case '?':
case '"\"':
case '<':
case '>':
case '|':
case '.':
case ':':
case 'N':
case ', ':
case '& :
case '+':
case '=':
case '[':
case ']':
return FALSE;
defaul t:
return TRUE;
L
L
/***/
[* NativeCharlLength() */
[* Deternmines the corresponding native length (in bytes) of the */
[* given Unicode character. Returns zero if the character is */
[* undi splayable on the current system */
/***/
INT16 NativeChar Lengt h(UNI CODE_CHAR val ue)
{

[* Actual inplenentation will vary to accommpdate the target */

[* operating system APl services. */

March 15, 2000

\
N

Hs
N
O |O

2

O
m
N
(]

Apri-3,1093

b

This is an exanple of a conservative test. A better test */
will utilize the platform s | anguage/ codeset support to */
determ ne how wide this character is when converted to the */

/
/
/
/
r

*
*
*
* active variable width character set. */
eturn 1;

**/

| sDevi ceNane() */

Det

e

rmne if the given Unicode string corresponds to a DOS */

dev

ce nane (e.qg. "LPT1", "COW", etc.). Since the set of */

d devi ce nanes th vary fromsystemto system and */

a neans for deternining themm ght not be readily available, */

this functionality is only suggested as an optional */

*
*
*
*
* val
*
*
*
*

i npl enent ati on enhancenent. */

**/

OOLEAN | sDevi ceNanme(UNI CODE_CHAR* nanme, Ul NT16 nanelLen)

/
/
/
/
/
/
/
/
/
B
{

[* Actual inplenentation will vary to acconmpdate the target */
[* operating system APl services. */

[* Just return FALSE for the tine being. */

return FALSE;

L
§932.01 March 15, 2000
UDF2.00 Apri-3,1093

6.7.2 OS2, Macintosh,Windows 95, Windows NT and UNI X Algorithm

/***

* OSTA UDF conpliant file name translation routine for OS/ 2,
* W ndows 95, Wndows NT, Macintosh and UNI X.

* Copyright 1995 Mcro Design International, Inc.
* Witten by Jason M Rinn.
* Mcro Design International gives permission for the free use of the
* foll owi ng source code.
*/
/ EIE R R R R R S I I R R I S I
To use these routines with different operating systens.
oS/ 2
Define OS2

Define MAXLEN = 254

W ndows 95
Defi ne WN_95
Defi ne MAXLEN = 255

W ndows NT
Define W N_NT
Define MAXLEN = 255

Maci nt osh:
Defi ne MAC.
Defi ne MAXLEN = 31.

UNI X
Define UN X
Define MAXLEN as specified by unix version.

* 0% ok ok 3k ok Ok Xk ok 3k 3k F F F Xk 2k X X X

/
#define | LLEGAL_CHAR MARK 0x005F

#defi ne CRC_MARK 0x0023
#define EXT_SI ZE 5
#defi ne TRUE 1
#defi ne FALSE 0
#defi ne PERI OD 0x002E
#defi ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*
/
typedef unsigned int unicode_t;
t ypedef unsigned char byte;

[*** PROTOTYPES ***/
int Islllegal (unicode_t ch);
unsi gned short uni code_cksun(regi ster unsigned short *s, register int n);

/* Define a function or macro which deternmines if a Unicode character is
* printable under your inplenmentation.
*/

i nt Uni codel sPrint(unicode_t);

/***

* Translates a long file nane to one using a MAXLEN and an ill egal

* char set in accord with the OSTA requirenments. Assunmes the nanme has
* already been translated to Unicode.

*

* RETURN VALUE

*

* Nunber of unicode characters in translated nane.

*/

nt UDFTr ansName(

4H72.01 March 15, 2000

LT

UBbF200 AB-' 31098
tH 0 v

uni code_t *newNane, / *
uni code_t *udf Nanme, /
int udfLen, /

(Qut put) Transl ated nane. Must be of |ength MAXLEN*/
* (I'nput) Nanme from UDF vol une. */
* (Input) Length of UDF Nane. */

int index, newl ndex = 0, needsCRC = FALSE;

int extlndex, newkxtlndex = 0, haskExt = FALSE;
#ifdef (OS2 | WN_95 | WN_NT)

int traillndex = 0;
#endi f

unsi gned short val ueCRC,

uni code_t current;

const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udflLen; index++)

current = udf Name[i ndex];

if (Islllegal(current) || !UnicodelsPrint(current))
needsCRC = TRUE;
/* Replace Illegal and non-displayable chars with underscore. */
current = | LLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable characters. */

whi |l e(i ndex+1 < udfLen && (Isll1egal (udf Name[index+1])
|| !Unicodel sPrint(udfName[i ndex+1])))

i ndex++;

/* Record position of extension, if one is found. */
if (current == PERI OD && (udflLen - index -1) <= EXT_SIZE)

{
if (udflLen == index + 1)
/* Atrailing period is NOT an extension. */
hasExt = FALSE;
}
el se
hasExt = TRUE;
ext | ndex = index;
newext | ndex = newl ndex;
}
}

#ifdef (OS2 | WN_95 | WN_NT)
/* Record position of last char which is NOT period or space. */
else if (current != PERIOD && current != SPACE)

traillndex = new ndex;
#endi f}
if (newl ndex < MAXLEN)
newNane[newl ndex++] = current;
el se

needsCRC = TRUE;
}
}

#ifdef (OS2 | WN_95 | WN_NT)
/* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */
if (traillndex !'= newindex - 1)
{
newl ndex traillndex + 1;
needsCRC = TRUE;
hasExt = FALSE; /* Trailing period does not make an extension. */

YoHIE2.01 March 15, 2000

L0

UBbF200 AB-' 31098
tH 0 v

18
#endi f
if (needsCRQC)
{
uni code_t ext[EXT_SI ZE] ;

int |ocal Extl ndex = O;
if (hasExt)
{

int maxFil enanelLen;
/* Transl ate extension, and store it in ext. */
for(index = 0; index<EXT_SIZE && extlndex + index +1 < udfLen;

i ndex++)
{
current = udf Nane[extlndex + index + 1];
if (Islllegal(current) || !UnicodelsPrint(current))
needsCRC = 1;
/* Replace Illegal and non-displayable chars
* with underscore.
*/
current = | LLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable
* characters.
*/
whil e(index + 1 < EXT_SIZE
&& (I'sll | egal (udf Nane[ext| ndex + index + 2])
|| Visprint(udfName[extlndex + index + 2])))
i ndex++;
}
ext [l ocal Ext | ndex++] = current;
}
/* Truncate filenane to | eave roomfor extension and CRC. */
maxFi | enameLen = ((MAXLEN - 5) - |ocal Extlndex - 1);

if (newl ndex > maxFil enanelLen)
newl ndex = nmaxFi | enanelLen;
el se

newl ndex = newkxt | ndex;
}

}
else if (newl ndex > MAXLEN - 5)

/*If no extension, nake sure to | eave roomfor CRC */
newl ndex = MAXLEN - 5;

}
newNane[newl ndex++] = CRC_MARK; /* Add mark for CRC. */

/*Cal culate CRC fromoriginal filenane fromFileldentifier. */
val ueCRC = uni code_cksum(udf Nane, udfLen);

/* Convert 16-bits of CRC to hex characters. */

newNane[newl ndex++] = hexChar[(val ueCRC & 0xf000) >> 12];
newName[newl ndex++] hexChar [(val ueCRC & 0x0f 00) >> 8];
newName[newl ndex++] hexChar [(val ueCRC & 0x00f0) >> 4];
newNane[newl ndex++] hexChar [(val ueCRC & 0x000f)];

/* Place a translated extension at end, if found. */
if (hasExt)
{

newName[newl ndex++] = PERI OD;
for (index = 0;index < |ocal Extlndex ;index++)

newName[newl ndex++] = ext[index];

YHig2.01 March 15, 2000

1O

UBbF200 AB-' 31098
tH 0 v

return(new ndex);

#ifdef (OS2 | WN 95 | WN_NT)

/***

* Decides if a Unicode character natches one of a list

* of ASCII| characters.

* Used by OS2 version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCI| subset of Unicode.
* Works very similarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCI| string.
*/

int Unicodel nString(

unsi gned char *string, /* (Input) String to search through. */

uni code_t ch) /* (lnput) Unicode char to search for. */
int found = FALSE;
while (*string != '"\0" && found == FALSE)
{ /* These types shoul d conpare, since both are unsigned nunbers. */
if (*string ==
found = TRUE;
string++;
return(found);
;};ﬁendif [* 082 */

/***

* Deci des whether the given character is illegal for a given OS.
*

* RETURN VALUE

*

* Non-zero if char is illegal.

*

nt Islllegal (unicode_t ch)

~——

#i f def MAC
/* Only illegal character on the MAC is the colon. */
if (ch == 0x003A)
return(l);
el se
return(0);

#elif defined UNI X

/* Illegal UNI X characters are NULL and slash. */
if (ch == 0x0000 || ch == 0x002F)
{ return(l);
el se
return(0);

#elif defined (OS2 | WN_95 | W N_NT)
/* Illegal char's for OS/2 according to WARP tool kit. */
if (ch < 0x0020 || UnicodelnString("\\/:*?2\"<>|", ch))

return(l);

YoH72.01 March 15, 2000

= =y |

UBbF200 AB-' 31098
tH 0 7

el se
return(0);

#endi f
}

4Dig2.01 March 15, 2000

120

UDF-2.00 Aprit-3.1998
DF2. :

6.8 Extended Attribute Checksum Algorithm

/
Cal cul ates a 16-bit checksum of the Inplenentation Use
Ext ended Attribute header_or Application Use Extended Attribute
header. The fields AttributeType
*—t hrough I npl enentationldentifier
* (or Applicationldentifier) inclusively represent the
* data covered by the checksum (48 bytes).

*

* % ok F

*/

U nt16 ConputeEAChecksun byte *data)

{
Ui nt 16 checksum = 0;
Ui nt count ;
for(count = 0; count < 48; count++)

checksum += *dat a++;

}
return(checksum);

}

4PeR.01 March 15, 2000

=

UBF200 A p;' 31098
== 7

6.9 Requirementsfor DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DV D-ROM
discs.

* DVD-ROM discs shall be mastered with the UDF file system

* DVD-ROM discs shall consist of a single volume and a single partition.

NOTE:. Thedisc may also include the SO 9660 file system. If the disc contains both
UDF and | SO 9660 file systems it shall be known as a UDF Bridge disc. This UDF Bridge
disc will alow playing DVD-ROM media in computers, which may only support SO
9660. As UDF computer implementations are provided, the need for 1SO 9660 will
disappear, and future discs should contain only UDF.

If you intend to do any DV D development with UDF, please make sure that you fill out
the OSTA UDF Developer Registration Form located in appendix 6.11. For planned
operating system, check the Other box and writein DVD.

6.9.1 Constraintsimposed by on UDF fer by DVD-Video |
This section describes the restrictions and requirements for UDF formatted DV D-Video
discs for dedicated DV D content players. DVD-Video is one specific application of DV D-
ROM using the UDF -format for the home consumer market. Due to limited computing |
resources within aDVD player, restrictions and requirements were created so that aDVD
player would not have to support every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified by ECMA
167 (2™ edition) and UDF 1.02. Thiswill ease playing of DV D-Video in computer
systems. Examples of such data include the time, date, permission bits, and a free space
map (indicating no free space). While DVD player implementations may ignore these
fields, a UDF computer system implementation will not. Both entertainment-based and
computer-based content can reside on the same disc.

NOTE: DVD-Video discs mastered according to UDF 2.600x may not be compatible |
with DVD-Video players. DVD-Video players expect mediain UDF 1.02 format.

In an attempt to reduce code size and improve performance, all division described is
integer arithmetic; all denominators shall be 22", such that all divisions may be carried out |
vialogical shift operations.

* A DVD player shall only support UDF and not 1SO 9660.

« Originating systems shall constrain individual files to be less than than-or equal to 2% -
Logical Block Sze bytesin length.

YRR?2.01 March 15, 2000

LOU

UDF2.00 Aprit-3,1998
PF2. ,

* The data of each file shall be recorded as a single extent. Each File Entry shall be
recorded using the ICB Strategy Type 4.

* File and directory names shall be compressed as 8 hits per character using OSTA
Compressed Unicode format-.

* A DVD player shall not be required to follow symbolic links to any files.

* The DVD-Video files shall be stored in a subdirectory named "VIDEO_TS" directly
under the root directory. Directory names are standardized in the DVD Specifications
for Read-Only Disc document.

NOTE: The DVD Specifications for Read-Only Disc is a document, developed by

the DV D Consortium, that describes the names of all DV D-Video files and a DVD-
Video directory, which will be stored on the media, and additionally, describes the |
contents of the DVD-Video files.

* Thefilenamed "VIDEO_TS.IFO" inthe VIDEO_TS subdirectory shall be read first.

All the above constraints apply only to the directory and files whichthat the DVD player |
needs to access. There may be other files and directories on the media which are not
intended for the DVD player and do not meet the above listed constraints. These other

files and directories are ignored by the DVD player. Thisiswhat enables the ability to

have both entertainment-based and computer-based content on the same disc.

6.9.2 How toread a UDF DVD-Video disc |
This section describes the basic procedures that a DV D player would go through to read a
UDF formatted DV D-Video disc.

6.9.2.1 Step 1. Volume Recognition Sequence
Find an ECMA 167 Descriptor in a volume recognition area, which shall start at
logical sector 16.

6.9.2.2 Step 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer, which islocated at an anchor point, must be |
found. Duplicate anchor points shall be recorded at logical sector 256 and logical
sector n, where nis the highest numbered logical sector on the disc.

A DVD player only needs to look at logical sector 256; the copy at logical sector nis
redundant and only needed for defect tolerance. The Anchor Volume Descriptor
Pointer contains three things of interest:
1. Static structures that may be used to identify and verify integrity of the disc.
2. Location of the Main Volume Descriptor Sequence (absolute logical sector |
number)
3. Length of the Main Volume Descriptor Sequence (bytes) |

YRH2.01 March 15, 2000

LOL

UDF2.00 Aprit-3,1998
PF2. ,

The data located in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer may be
used for format verification if desired. Verifying the checksumin byte 4 and CRC in
bytes 8-11 are good additional verifications to perform. MVDS_L ocation and
MVDS Length are read from this structure.

6.9.2.3 Step 3. Volume Descriptor Sequence |
Read logical sectors:

MVDS _Location through MVDS _Location + (MVDS _Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence can-not
be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with atag identifier of 5. The partition
number and partition location shall be recorded in logical sector number. |

Partition_L ocation and Partition_L ength are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with atag identifier of 6. The
location and length of the File Set Descriptor shall be recorded in the Logical Volume |
Descriptor.

FSD_Location, and FSD_Length are returned from this structure.

6.9.2.4 Step 4. File Set Descriptor
The File Set Descriptor islocated at logical sector numbers:

Partition_Location + FSD_L ocation through
Partition_Location + FSD_L ocation + (FSD_Length - 1) / BlockSize

RootDir_L ocation and RootDir_L ength shall be read from the File Set Descriptor in
logical block number.

6.9.2.5 Step 5. Root Directory File Entry
RootDir_L ocation and RootDir_L ength define the location of a File Entry. The File
Entry describes the data space and permissions of the root directory.

The location and length of -the Root Directory is returned. |

6.9.2.6 Step 6. Root Directory
Parse the datain the root directory extent to find the VIDEO_TS subdirectory.

Find the VIDEO_TS File Identifier Descriptor. The name shall be in 8 bit
compressed UDF format. Verify that VIDEO_TS is adirectory.

YR5H2.01 March 15, 2000

LOZ

UBbF200 al
tH 0 A‘B"H%%

Read the File Identifier Descriptor and find the location and length of a File Entry
describing the VIDEO_TS directory.

6.9.2.7 Step 7. FileEntry of VIDEO_TS
The File Entry found in the step above describes the data space and permissions of the
VIDEO_TSdirectory.

The location and length of the VIDEO_TS directory is returned.

6.9.2.8 Step 8. VIDEO_TSdirectory
The extent found in the step above contains sets of File Identifier Descriptors. In this
pass, verify that the entry points to afile and is named VIDEO_TS.IFO.

6.9.2.9 Step 9. FileEntry of VIDEO_TS.IFO
The File Entry found in the step above describes the data space and permissions of the
VIDEO_TS.IFOfile.

The location and length of the VIDEO_TS.IFO file is returned.

Further files can be found in the same manner asthe VIDEO_TS.IFO file when
needed.

6.9.3 Obtaining DVD Documents
To obtain a copy of the DVD Specifications for Read-Only Disc document as well as
other DVD related material, contact:

——FAX:-+81-3-5444-9430
DVD Forum
Office of Secretary
1-1, Shibaura 1-Chome, Minato-ku
Tokyo 105-8001

Japan

TEL: +81-3-5444-9580
FAX: +81-3-5444-9436

YnR2.01 March 15, 2000

LOO

UBF200 A p;' 31098
== 7

6.10 Recommendationsfor CD Media

CD Media (CD-R and CD-RW) requires special consideration due to its nature. CD was
originally designed for read-only applications, which affects the way in which it is written. |
The following guidelines are established to ensure interchange.

Each file and directory shall be described by a single direct ICB. The ICB should be
written after the file data to allow for data underruns during writing, which will cause
logical gapsinthefiledata. The ICB can be written afterward which will correctly
identify all extents of the file data. The ICB shall be written in the data track, the file
system track (if it exists), or both.

6.10.1 Use of UDF on CD-R media

ECMA 167 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and

either N or (N - 256), where AN is the last recorded Physical Address on the media. UDF |
requires that the AVDP be recorded at both sector 256 and sector (N - 256) when each
session is closed (2.2.3). Thefile system may be in an intermediate state before closing |
and still be interchangeable, but not strictly in compliance with ECMA 167. Inthe
intermediate state, only one AVDP exists. It should exist at sector 256, but if thisis not
possible due to atrack reservation, it shall exist at sector 512.

Implementations should place file system control structures into virtual space and file data
into real space. Reader implementations may cache the entire VAT, the size of the VAT
should be considered by any UDF originating software. Computer based ++plemenations
Implementations are expected to handle VAT sizes of at least 64K bytes; dedicated player
implementations may handle only smaller sizes.

The VAT may be located by usng READ TRACK INFORMATION (for unfinished
media) or READ TOC or READ CD RECORDED CAPACITY for finished media. See
X3T10-1048D (SCSI-3 Multi Media Commands).

6.10.1.1 Requirements

» Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or
Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on one
disc is not allowed.
NOTE: According to the Multisession CD Specification, all data sessions on adisc
must be of the same type (Mode 1, or Mode 2 Form 1).

* If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

File number =0
Channel number =0
Submode = 08h
Coding information = 0

4RA2.01 March 15, 2000
T
UDF2.00 Apri-3-1998

An intermediate state is allowed on CD-R media in which only one AVDP is recorded;
this single AVDP shall be at sector 256 or sector 512 and according to the multi-
session rules below.

Sequential file system writing shall be performed with variable packet writing. This
allows maximum space efficiency for large and small updates. Variable packet writing
is more compatible with CD-ROM drives, as current models do not support method 2
addressing required by fixed packets.

The Logical Volume Integrity descriptor shall be recorded and the volume marked as
open. Logical volume integrity can be verified by finding the VAT ICB at the last
recorded Physical Address. If the VAT ICB is present, the volume is clean; otherwise
it isdirty.

The Partition Header descriptor, if recorded, shall specify no Unallocated Space Table,
no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space Table, and
no Freed Space Bitmap. The drive is capable of reporting free space directly,
eliminating the need for a separate descriptor.

Each surface shall contain O or 1 read only partitions, O or 1 write once partitions, and
0 or 1 virtual partitions. CD media should contain 1 write once partition and 1 virtual

partition.

6.10.1.2 UDF “Bridge’ formats

1 SO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an 1SO 9660 file
system is desired, it may contain references to the same files as those referenced by ECMA

167 structures, or reference a different set of files, or a combination of the two.

It is assumed that early implementations will record some 1SO 9660 structures but that as

implementations of -UDF become available, the need for SO 9660 structures will
decrease.

If an 1SO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA
extensions offor SO 9660 must be used.

6.10.1.3 End of session data

A session is closed to enable reading by CD-ROM drives. The last complete session on
the disc shall conform completely to ECMA 167 and have two AVDPs recorded. This
shall be accomplished by writing data according to End of session data table below.

Although not shown in the following example, the data may be written in multiple packets.

%2.01 March 15, 2000

UBbF200 AB-' 31098
tH 0 T

End of session data

Count Description
1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user
data, file system structures, and/or link
areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will

be enhanced. Implementations shall ensure that enough space is available to record the

end of session data. Recording the end of session data brings a volume into compliance |
with ECMA 167.

6.10.2 Use of UDF on CD-RW media

CD-RW mediais randomly readable and block writable. This means that while any
individual sector may be read, writing must occur in blocks containing multiple sectors.
CD-RW systems do not provide for sparing of bad areas. Writing rules and sparing
mechanisms have been defined.

6.10.2.1 Requirements
» Writing which conforms to this section of the standard shall be performed using fixed
length packets.

» Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,
either Mode 1 or Mode 2 Form 1 shall be used.
NOTE: According to the Multisession CD Specification, all data sessions on adisc
must be of the same type (Mode 1, or Mode 2 Form 1).

* If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

File number =0
Channel number =0
Submode = 08h
Coding information = 0

4Rg20L March 15, 2000
UBF2.00 Aprit-3,1998

* Thehost shall perform read/modify/write to enable the apparent writing of single 2K
sectors.

» The packet length shall be set when the disc is formatted. The packet length shall be
32 sectors (64 KB).

* Thehost shal maintain alist of defects on the disc using a Non-Allocatable Space
ListStream (see 3.3.7.2).

» Sparing shall be managed by the host via the sparable partition and a sparing table.

* Discs shdl be formatted prior to use.

6.10.2.2 Formatting

Formatting shall consist of writing a lead-in, user data area, and lead-out. These areas
may be written in any order. ThisA verification pass may follow this physical format-iay
befellowed by-averificationpass. Defects found during the verification pass shall be
enumerated in the Non--Allocatable Space listStream (see 2.3-7.1.23.3.7.2). Findly, file
system root structures shall be recorded. These mandatory file system and root structures
include the Volume Recognition Sequence, Anchor Volume Descriptor Pointers, a
Volume Descriptor Sequence, a File Set Descriptor and a Root Directory.

The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256,
where N isthe Physical Address of the last addressable sector.

Allocation for sparing shall occur during the format process. The sparing allocation may |
be zero in length.

The free space descriptors shall be recorded and shall reflect space allocated to defective
areas and sector sparing areas.

The format may include all available space on the medium. However, if requested by the
user, a subset may be formatted to save formatting time. That smaller format may be later
“grown” to the full available space.

YRF72.01 March 15, 2000
T
UDF2.00 Apri-3-1998

6.10.2.3 Growing the Format

If the medium is partially formatted, it may be later grown to alarger size. This operation
consists of:

* Optionally erase the lead-in of the last session.

* Optionally erase the lead-out of the last session.

» Write packets beginning immediately after the last previously-recorded packet.
* Update the sparing table to reflect any new spare areas

* Adjust the partition map as appropriate

» Update the free space map to show new available area

* Movethelast AVDPto the new N - 256
* Write the lead-in (which reflects the new track size)
* Write the lead-out

6.10.2.4 Host Based Defect M anagement

The host shall perform defect management operations. The CD format was defined |
without any defect management; to be compatible with existing technology and

components, the host must manage defects. There are two levels of defect management:
Marking bad sectors at format time and on-line sparing. The host shall keep the tables on |
the media current.

6.10.2.5 Read M odify Write Operation

CD-RW media requires large writable units, as each unit incurs a 14KB overhead. The
file system requires a 2KB writable unit. The difference in write sizesis handled by a
read-modify-write operation by the host. An entire packet is read, the appropriate
portions are modified, and the entire packet written to the CD.

Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levelsof Compliance
6.10.2.6.1 Level 1
The disc shall be formatted with exactly one lead-in, program area, and lead-out. The

program area shall contain exactly one track. Ihe&aﬁ@ﬁhepam%eﬂsha#be%a

6.10.2.6.2 Level 2
The last session shall contain the UDF file system. Al prior sessions shall be contained in |
one read-only partition.

4Rg201 March 15, 2000
UBF2.00 Aprit-3,1998

6.10.2.6.3 Level 3
No restrictions shall apply.

6.10.3 Multisession and Mixed M ode

The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by ECMA 167 to be at alocation relative to the beginning of the disc. The
beginning of a disc shall be determined from a base address Sfor the purposes of finding

the VRS and AVDP.

‘S isthe Physical Address of the first data sector in the first recorded data track in the last
existent session of the volume. ‘S is the same value currently used in multisession |SO |
9660 recording. Thefirst track in the session shall be a data track.

‘N’ isthe physical sector number of the last recorded data sector on adisc.

If random write mode is used, the media may be formatted with zero or one audio sessions
followed by exactly one writable data session containing one track. Other session |
configurations are possible but not described here. There shall be no more than one
writable partition or session at one time, and this session shall be the last session on the

disc.

6.10.3.1 Volume Recognition Sequence |
The following descriptions are added to UDF (see also ECMA 167 Part 2) in order to
handle a multisession disc.

» The volume recognition area of the UDF Bridge format shall be the part of the volume |
Space starting at sector S+ 16.

» The volume recognition space shall end in the track in which it begins. Asaresult of
this definition, the volume recognition area always exists in the last session of a disc.

* When recorded in Random Access mode, a duplicate Volume Recognition Sequence
should be recorded beginning at sector N - 16.

6.10.3.2 Anchor Volume Descriptor Pointer

Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following logical
sector numbers. S+ 256 and N - 256. The AVDP at sector N - 256 shall be recorded

before closing a session; it may not be recorded while a session is open. |

6.10.3.3 UDF Bridge for mat

The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF multisession Bridge disc shall contain a UDF file system in its last session.
The last session shall follow the rules described in “Multisession and Mixed Mode” section
above. The disc may contain sessions that are based on 1SO 9660, audio, vendor unique,
or acombination of file systems. The UDF Bridge format allows CD enhanced discsto be
created.

A new Main and Reserve Volume Descriptor Sequence may exist in each added session, |
and may be different than earlier VDSs.

gl_%BZOl March 15, 2000
4
UDF2.00 Apri-3-1998

If the last session on a CD does not contain avalid UDF file system, the disc is not aUDF |
disc. Only the UDF structuresin the last session, and any UDF structures and data
referenced through them, are valid.

The UDF session may contain pointers to data or metadata in other sessions, pointersto
data or metadata only within the UDF session, or a combination of both. Some examples
of UDF Bridge discs are shown below.

Multisession UDF disc
Accessto LSN=16+x Access to LSN=256

e
—_— \ —_—
16 sectors R 16 sectors R
256 sectors ’ N - 256 / 256 sectors ’
LSN=0 LSN=S
) |Fir51 Session | " 1% Recorded Track in the last session

|:| : Volume recognition area

I : Anchor point

CD enhanced disc

:|_St session 2nd session
UDF Session amp
Playable by conventional CD-Player Used by UDF

March 15, 2000
ESm A
UbF2.00 Apri-3-1998

9201

| SO 9660 converted to UDF

1% session 2" session 3 session
9660 Session 9660 Session .UDF Session . »

Written by conventional 9660 formatter software

v

&
<

v

S

Managed by UDF

Foreign format converted to UDF

1% session 2" session 3 session
Data Session Data Session .UDF Session . amp

Written by another file system

S
v

v

S

Managed by UDF

6.11 Real-Time Files

A Red-Timefileisafile that requires a minimum data-transfer rate when writing or
reading, for example, audio and video data. For these files specia read and write
commands are needed. For example for CD and DV D devices these special commands
can be found in the Mount Fuji 4 specification.

A Readl-Timefile shall be identified by file type 249 in the File Type field of the file's ICB
Tag.

4[2.01 March 15, 2000
UDF2.00 April-3-1998

5.116.12 UDF Media Format Revision History

The following table shows when changes to the UDF Specification have taken place that
affect the UDF format that can be recorded on a piece of media. The Document Change
Notices (DCNs}), which document a specific change, are referenced in the table. The
column Update in UDF Revision describes which revision of the UDF specification that
the -change was included. The fields Minimum UDF Read Revision and Minimum UDF

Write Revision relate to the Revision Access Control fields described in 2.2.6.4.

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
Allocation Extent Descriptor 2-002 1.02 1.02 1.02
Path Component File Version Number 2-003 1.02 1.02 1.02
Parent Directory Entries 2-004 1.02 1.02 1.02
Device Specification Extended Attribute 2-005 1.02 101 1.02
Maximum Logical Extent Length 2-006 1.02 1.02 1.02
Unallocated Space Entry 2-008 1.02 1.01 1.02
DVD Copyright Management Information 2-009 1.02 1.02 1.02
Logical Volume Identifier 2-010 1.02 101 1.02
Extent Length Field of an Allocation Descriptor 2-012 1.02 1.01 1.02
Non-relocatable & Contiguous Flags 2-013 1.02 1.01 1.02
Revision of Requirements for DVD-ROM 2-014 1.02 1.02 1.02
Revision Access Control 2-015 1.02 1.01 1.02
Volume Set Identifier 2-017 1.02 1.01 1.02
UniquelDs for Extended Attributes 2-018 1.02 1.02 1.02
Clarification of Dstrings 2-019 1.02 1.01 1.02
Application FreeEA Space Extended Attribute 2-020 1.02 1.02 1.02
Update of Identifier Suffix to 1.02 2-021 1.02 1.02 1.02
Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50
Virtual Partition Map Entry 2-026 1.50 1.50 1.50
Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50
Addition of Virtual Allocation Table 2-028 1.50 1.50 1.50
Addition of Sparing Table 2-029 1.50 1.50 1.50
Addition of Non-Allocatable Space List 2-030 1.50 1.02 1.50
Reccommmendations for CD Media 2-031 1.50 1.50 1.50
Change 1.50 to 2.00 2-033 2.00 1.02 2.00
Clarified Domain flags 2-034 2.00 1.02 2.00
Unicode 2.0 Support 2-035 2.00 1.02 2.00
Named Streams 2-036 2.00 2.00 2.00
Unique ID Table as a Named Stream 2-037 2.00 1.02 2.00
Mac Resource Fork as a Named Stream 2-038 2.00 2.00 2.00
Location Field of the Extended Attribute Header 2-043 2.00 1.02 2.00
Access Control Lists 2-044 2.00 2.00 2.00
Descriptor Tags spanning block boundaries 2-047 2.00 1.02 2.00
Power Calibration Stream 2-048 2.00 1.02 2.00
Support for CD-R Multisession Required 2-050 2.00 1.50 2.00
Value of fieldsin LVID for virtual partition on CD-R 2-051 2.00 1.50 2.00
System stream to indicate volume backup time 2-055 2.00 2.00 2.00
New VAT 2-056 2.00 2.00 2.00
Restricting Virtual Addresses 2-057 2.00 1.50 2.00
File Times Extended Attribute 2-058 2.00 1.02 2.00
0OS/2 EA Stream 2-061 2.00 2.00 2.00
Non-Allocatable Space Stream 2-062 2.00 1.02 2.00

g@rQZ.Ol

March 15, 2000

UBbF200
tH -

6.126.13 Developer Registration Form
Any -developer that plans on implementing ECMA 167 according to this document should

complete the developer registration form on the following page. By becoming aregistered

OSTA developer you receive the following benefits:

Y ou will receive alist of the current OSTA registered developers and their
associated Implementation Identifiers. The developerson thislist are

encouraged to interchange media to verify data interchange among
implementations.

Notification of OSTA Technical Committee meetings. You may attend a
limited number of thisthese meetings without becoming an official OSTA

member.

Y ou can be added to the OSTA TFechnica-CommittecUDF emall reflector.
This reflector provides you the opportunity to post technical questions on the

OSTA Universal Disk Format Specification.

Y ou will recelve an invitation to participate in the development of the next

revision of this document.

For the latest information on OSTA and UDF visit the OSTA web site at the following
address:

g@r@ZOl

http://www.osta.org

March 15, 2000

UBbF200
tH 0

MACTA OSTA Universal Disk Format Specification

R SEVAW . .
Optical Storage Developer Registration Form

Technology Association

Name:

Company:
Address:

City:
State/Province:

Zip/Postal Code:
Country:
Phone: FAX:

Email:

Please indicate on which operating systemsyou plan to support UDF:

O DOS O 052 O Macintosh O Linux

O UNIX/POSIX O-WindowsNTO 0S/4000 Windows 9x O Windows 95NT/2000

O Other

Please indicate which media typesyou plan to support:

O Magneto Optical O WORM O Phase Change |
O CD-ROM O CD-R O CD-RW

O DVD-ROM O DVD-R O DVD-RAM O DVD-Video

O DVD+RW O DVD-RW O DVD-Audio |
O Other

Please indicate what value you plan to usein the Implementation Identifier field of
the Entity Identifier descriptor to identify your implementation:

NOTE: The identifier should be something that uniquely identifies your company aswell as your product.
O Please add my email addressto the OSTA FechnicalFile Interchange Committee email reflector. |

O Please send an OSTA Membership kit.

FAX Completed form to OSTA at 1-805-962-1541, or mail to:
OSTA, -311 E. Carrillo Street, -Santa Barbara, CA 93101 |

Y72.01 March 15, 2000
| IDF ’)_nr\ AB-' 3, 3998

4
4096, 9, 44, 96, 107

A
Access Control Lists, 7784

ACL, 7784

AD. See Allocation Descriptor-8,-46,-45,-46
Allocation Descriptor, 9, 45, 50, 51
Allocation Extent Descriptor, 4752

Anchor VVolume Descriptor Pointer, 7198, 23
Application Entity Identifier, 18

AVDP. See Anchor Volume Descriptor Pointer

B

BeOS, 100

C

CD-R, 2-3, 4, 5, 24-113-114,-115-11731, 126, 127
128, 130

CD-RW, 2113115126, 128

charspec, 1012

Checksum, 68, 69, 70, 72, 74, 121
CRC, 20, 38, 50, 104, 106
CS0, 11, 12, 16, 22, 23, 24, 29, 40, 85, 87

D

defectDefect management, 27,-31, 11735, 79, 130

Descriptor Tag, 16,-34,-4520, 38, 50

Domain, 1, 12,1314, 15, 16, 17

DOS, 56, 57, 58, 62, 63, 69, 88, 100, 136

Dstrings, 1012

DVD, 68, 98, 99, 122, 123, 124, 125, 134

DVD Copyright Management Information, 60,-6%,-89;
12168, 98, 134

DVD-Video, 109110122, 123

E

EA. See Extended Attribute

ECMA 167, 1

EFE. See Extended File Entry

Entity Identifier, 712-17-19,208, 14, 21, 23, 24,
35,3725, 27, 28, 39, 42,-43,-45,-53,-59,-65,-89;
9041, 44, 47, 48, 50, 60, 67, 73, 98, 99

Extended Attributes, 3, 24,-56,-57-59,-60,61,-62-63;
65,-66,-8928, 64, 67, 68, 69, 70, 72, 73, 74, 98

Extended File Entry, 7, 43, 48, 55, 64, 65, 66, 74, 75,
95
Extent Length, 71218, 134

F

FE. See File Entry-8,-13-4253

FID. See File Identifier Descriptor;13,-38,-39,-56,79

Hleset—24

File Entry, 9, 15, 47, 60

File Identifier Descriptor, 15, 42, 44, 56, 86

File Set Descriptor, 8-13,2%-34,-35-377, 9, 15
17,25,38,39,41, 74,76, 77, 79, 80, 95, 124, 129

File Set Descriptor Sequence, 2125

IreeSpecetable 22

Free Space, 26, 27, 31, 35, 79, 122, 127, 129, 130

Freed Space Bitmap, 127

Freed Space Table, 127

FSD. SeeFile Set Descriptor

H
HardWriteProtect, 4421353717, 25, 39, 41

1CB;8,-38,40-50, 515678 79ICB, 9, 42, 44, 56
57, 64, 85, 86

ICB Tag, 846,514,789, 44, 57, 85

Implementation Use Volume Descriptor, 42,-24;
25,8715, 29, 95

Implementationldentifier, 17,-19,20,-21, 23, 24, 37;
42,4345, 53,5925, 28, 41, 47, 48, 50, 60, 61;
626567, 68, 69, 70, 73

Information Control Block. See ICB

Information Length, 34, 35

interchange level, 21, 22, 40

IUVD. See Implementation Use Volume Descriptor

L

Logical Block Size, 7-8, 209, 24
Logical Sector Size, 78
teglealvelume21
Logical Volume, 6, 8, 9, 24, 25, 27, 31, 34, 87, 95, 98
Logical Volume Descriptor, 9, 15, 24, 25, 27
Logical Volume Header Descriptor, 23,4955
Logical Volume Identifier, 9, 34, 40, 134
Logical Volume Integrity Descriptor, 43,2422,
4515, 25, 26, 50
. ifier.
LV. SeeLogica Volume
LVD. See Logical Volume Descriptor
LVID. See Logical Volume Integrity Descriptor

March 15, 2000

Apri-3,1093

M

Macintosh, 3, 22-24,506,52,5528, 35, 56, 6058, 62,
63-64, 65-80,-83,-8967, 69, 70, 71, 72, 73, 88,
90, 91, 10312398, 100, 116, 136

rcadalo 2B 565750

Metadata, 68,7939, 74, 75, 76, 77, 83, 132

Multisession, 3, 126, 128, 131, 132, 134

N

Named Stream, 76, 134
Non-Allocatable Space, 32,-33,72,-11636, 37, 79,
129

Orphan Space, 8795

0S/2, 3,56, 57, 58, 62, 63, 67, 69, 73, 83, 84, 86, 88,
89, 98, 99, 100, 116, 120, 136

0S/400, 56, 58, 62, 63, 72, 73, 93, 94, 98, 99, 100,
136

Overwritable, 8, 9

P

packet, 4, 6, 31, 32, 35, 36, 37, 127, 128, 129, 130
Partition Descriptor, 7,-12,871118, 15, 95, 124
Partition Header Descriptor, 3741

Partition Integrity Entry, 813,459, 15, 50
partition map, 4, 6, 31, 32, 33, 34, 35, 36, 130
partition number, 6, 31, 124

partition reference number, 4, 79

Pathname, 4752

PD. See Partition Descriptor

power calibration, 727374757679, 80, 81, 82
Primary Volume Descriptor, 422178, 15, 21
PVD. See Primary Volume Descriptor

R

Read-Only, 7

Records-8,-47

Real-Timefile, 45, 133

Records, 9, 53

Rewritable, 737464, 8,9, 41, 51

S

session, 4, 5, 126, 127, 128, 130, 131, 132
SizeTable, 2226
SoftWriteProtect, 14,-21.-3717, 25, 41

Space Bit Map, 95

Sparable Partition Map, 2731

sparing, 31, 32, 35, 36, 37, 79, 128, 129, 130

Sparing Table, 16, 32, 35, 36, 98, 99

strategy, 825,409, 39, 44

Stream, 4, 28, 34, 35, 51, 55, 57, 58, 59, 69, 74, 75,
76, 77,79, 80, 83, 84

Stream Directory, 55, 74, 75

Symbolic Link, 85

System stream, 4474966, 67-687071—+74—76;
+-94;-96134

icLink 78
System Stream Directory, 74, 75, 76, 79

T

TagSerial Number, 16,3420, 38
Timestamp, #-11,-22-488, 13, 26, 54

U

UDF Bridge, 122, 131, 132

UDF Entity Identifier, 98, 99, 101
UDFUniquelD, 49,-70,-7255, 77, 79
Unallocated Space Descripior,-8.-22Bitmap, 127
Unallocated Space Descriptor, 9, 26
Unallocated Space Entry, 9, 49, 95, 134
Unallocated Space Table, 127

Unicode, 11, 12, 86, 87, 102

UniquelD, 26, 47, 48, 55, 60, 64, 134
UNIX, 56, 58, 72, 92

unrecorded sector, 96

USD. See Unallocated Space Descriptor
User Interface, 2, 85

\%

VAT-6,-27-56-113- 114, 115VAT, 6, 31, 63, 126,
127,128

VDS. See Volume Descriptor Sequence

Virtual Allocation Table, 6

virtual partition, 2711431, 127

Virtual Partition Map, 2731

Volume SetDescriptor Sequence, 7, 9, 123, 124, 129,
131

Volume Recognition Sequence, 7, 8, 171824121

W
Windews 95,50,-51-84,9119, 123, 129, 131

Volume Set, 8, 9, 21, 22, 29, 134

March 15, 2000

Apri-3,1093

VRS. See Volume Recognition Sequence Windows 95, 56, 57, 58, 91, 100, 136
Windows CE, 100
W Windows NT, 56, 57, 58, 69, 91, 100, 116, 136
— WORM, 721358, 9, 25, 39, 44, 96, 136
Windows, 56, 57, 58, 69, 88

4F72.01 March 15, 2000
UBr200 Apri-3-1998

