
UDF Document Change Notice
DCN-5000

Tag Serial Number and disaster recovery. 1 12/22/98

Document: OSTA Universal Disk Format DCN#5000
Subject: Tag Serial Number and disaster recovery.
Date: July 29, 1999

Description:
It appeared to be unclear how a Tag Serial Number shall be set in order to support
disaster recovery. This DCN shall apply to all media types.

Change:
Section 2.2.1.1, on page 16 must be replaced by:

2.2.1.1 Uint16 TagSerialNumber
for read: Ignored. Intended for disaster recovery.

for write: Shall be set to theTagSerialNumbervalue of the Anchor Volume
Descriptor Pointers on this volume.

In order to preserve disaster recovery support, theTagSerialNumbermust be set to
a value that differs from ones previously recorded, upon volume re-initialization.
This value is determined at volume formatting time and may depend on the state
of the volume prior to formatting. See <formatting_section> for further details.

Section 2.3.1.1, on page 34 must be replaced by:

2.3.1.1 Uint16 TagSerialNumber
for read: Ignored. Intended for disaster recovery.

for write: Shall be set to theTagSerialNumbervalue of the Anchor Volume
Descriptor Pointers on this volume.

The same applies as for volume structureTagSerialNumbervalues, see 2.2.1.1
and < formatting_section>.

Add the following section as2.1.6:
(so replace all<formatting_section> references by 2.1.6)

<formatting_section> Descriptor Tag Serial Number at formatting time.

UDF Document Change Notice
DCN-5000

Tag Serial Number and disaster recovery. 2 12/22/98

In order to support disaster recovery, theTagSerialNumbervalue of all UDF descriptors
that will be recorded at formatting time, shall be set to a value that differs from ones
previously recorded, upon volume re-initialization.
If no disaster recovery will be supported, a value zero (#0000) shall be used for the
TagSerialNumber field of all UDF descriptors that will be recorded at formatting time,
see ECMA 3/7.2.5 and 4/7.2.5.
If disaster recovery is supported, the value to be used depends on the state of the volume
prior to formatting. There are only two states in which a volume can be formatted such
that disaster recovery will be possible in the future. These states are:

1) The volume is completely erased.Only after this action, and whereIf disaster recovery
is to be supported then a valueof one (#0001)unequal to zeroshall be used as the
TagSerialNumber valuefor formatting. It is recommended to usea value one (#0001)
in this case.

2) The volume is a clean UDF volume that supports disaster recovery for
TagSerialNumber values, and the TagSerialNumber values of at least two Anchor
Volume Descriptor Pointers are both equal to X, where X is not equal to zero. If
disaster recovery is to be supported then a value X+1 shall be used as the
TagSerialNumber valuefor formatting. If X+1 wraps to zero thenkeep it as zero to
indicate thatdisaster recoveryis notsupportsupported.

NOTE: is only possibleif thevolume is completely erased first,achieving state 1).
The reason for this is that if X+1 wraps to zero then the uniqueness of any
TagSerialNumber value unequal to zero can no longer be guaranteed on
the volume.

In all other cases, the volume has to be completely erased first, achieving state 1), in order
to be able to support disaster recovery.

NOTE: By ‘erased’ in the above paragraphs, we mean that the sectors are made non-valid
for UDF – for example by writing zeroes to the sectors.

Change to Name mangling Algorithms 1 5/7/99

Document Change Notice
UDF 2.01 DG-5002

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Change to the DOS name transform algorithm
Date: October 20, 1998

Description:

The DOS name transform introduced in UDF 1.50 generates insufficiently “implausible”
names, and has been demonstrated to conflict with common user specified names in non-
trivial situations. This change to use a base41 scheme and re-introduce the # separator
character will dramatically lower the probability of conflict in normal operation.

The new routine also permits an implementation to account for native character sets with
variable-length characters. Previous specifications for the name translation algorithm
assume a character-for-character correspondence between the transformed Unicode
output and the native representation of the string used by the operating system. This is
not the case for the DOS namespace, where native characters (i.e. the OEM character set)
can be one or two bytes in length, but the limit of the total byte length of the native string
is fixed. This caused truncation problems when file names contained non-ASCII
characters.

A name transform routine to synthesize DOS volume labels has also been added. The
rules governing the volume label namespace are sufficiently different from that of the file
namespace to necessitate a separate algorithm. This algorithm is not necessarily a drop-in
for non-DOS systems.

Additionally, explicit leeway must be granted for an implementation to not use the DOS
name transform so that the potential for conflict may be removed at the discretion of the
implementor and/or user, recognizing the potential impact on 16-bit applications.

Change:

In “NOTE” two paragraphs before Definitions in section 4.2.2.1:

• Strike “In addition” from the second sentence.

Change to Name mangling Algorithms 2 5/7/99

• Add sentence: “In addition, the following algorithms reference “CS0 Base41
representation”, which corresponds to augmenting the CS0 Hex representation to use
#0047 - #005A, #0023, #005F, #007E, #002D, and #0040 to represent digits 16-40
respectively.

Change:

In Section 4.2.2.1.1 (MS-DOS), add as the second paragraph:

Exception: Implementations on non-MS-DOS systems that may normally provide dual
namespaces (8.3 and non-8.3) using this transformation may omit or provide a
mechanism for disabling its use.

Change:

In Section 4.2.2.1.1 (MS-DOS), bullet 9:

• Strike the last two sentences (from the NOTE to the end).
• Substitute from the semi-colon in the last sentence onward: “, followed by the

separator ‘#’ (#0023), followed by the CS0 Base41 representation of the 16-bit CRC
of the UNICODE expansion of the original filename.”

Change:

In Section 6.7.1, replace code sample with the following:

/* OSTA UDF compliant file name translation routine for DOS and */
/* Windows short namespaces. */

/* Define constants for namespace translation */
#define DOS_NAME_LEN 8
#define DOS_EXT_LEN 3
#define DOS_LABEL_LEN 11
#define DOS_CRC_LEN 4
#define DOS_CRC_MODULUS 41

/* Define standard types used in example code. */
typedef BOOLEAN int;
typedef short INT16;
typedef unsigned short UINT16;
typedef UINT16 UNICODE_CHAR;

#define FALSE 0
#define TRUE 1

static char crcChar[] =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ#_~-@";

/* FUNCTION PROTOTYPES */
UNICODE_CHAR UnicodeToUpper(UNICODE_CHAR value);

Change to Name mangling Algorithms 3 5/7/99

BOOLEAN IsFileNameCharLegal(UNICODE_CHAR value);
BOOLEAN IsVolumeLabelCharLegal(UNICODE_CHAR value);
INT16 NativeCharLength(UNICODE_CHAR value);
BOOLEAN IsDeviceName(UNICODE_CHAR* name, UINT16 nameLen);

/***/
/* UDFDOSName() */
/* Translate udfName to dosName using OSTA compliant algorithm. */
/* dosName must be a Unicode string buffer at least 12 characters */
/* in length. */
/***/
UINT16 UDFDOSName(UNICODE_CHAR* dosName, UNICODE_CHAR* udfName,

UINT16 udfNameLen)
{

INT16 index;
INT16 targetIndex;
INT16 crcIndex;
INT16 extLen;
INT16 nameLen;
INT16 charLen;
INT16 overlayBytes;
INT16 bytesLeft;
UNICODE_CHAR current;
BOOLEAN needsCRC;
UNICODE_CHAR ext[DOS_EXT_LEN];

needsCRC = FALSE;

/* Start at the end of the UDF file name and scan for a period */
/* ('.'). This will be where the DOS extension starts (if */
/* any). */
index = udfNameLen;
while (index-- > 0) {

if (udfName[index] == '.')
break;

}

if (index < 0) {
/* There name was scanned to the beginning of the buffer */
/* and no extension was found. */
extLen = 0;
nameLen = udfNameLen;

}
else {

/* A DOS extension was found, process it first. */
extLen = udfNameLen - index - 1;
nameLen = index;
targetIndex = 0;
bytesLeft = DOS_EXT_LEN;

while (++index < udfNameLen && bytesLeft > 0) {
/* Get the current character and convert it to upper */
/* case. */
current = UnicodeToUpper(udfName[index]);
if (current == ' ') {

/* If a space is found, a CRC must be appended to */
/* the mangled file name. */
needsCRC = TRUE;

}
else {

/* Determine if this is a valid file name char and */

Change to Name mangling Algorithms 4 5/7/99

/* calculate its corresponding BCS character byte */
/* length (zero if the char is not legal or */
/* undisplayable on this system). */
charLen = (IsFileNameCharLegal(current)) ?

NativeCharLength(current) : 0;

/* If the char is larger than the available space */
/* in the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)

charLen = 0;

if (charLen == 0) {
/* Undisplayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the mangled */
/* file name. */
needsCRC = TRUE;
charLen = 1;
current = '_';

/* Skip over any following undiplayable or */
/* illegal chars. */
while (inde x + 1 < udfNameLen &&

(!IsFileNameCharLegal(udfName[index + 1]) ||
NativeCharLength(udfName[index + 1]) == 0))
index++;

}

/* Assign the resulting char to the next index in */
/* the extension buffer and determine how many BCS */
/* bytes are left. */
ext[targetIndex++] = current;
bytesLeft -= charLen;

}
}

/* Save the number of Unicode characters in the extension */
extLen = targetIndex;

/* If the extension was too large, or it was zero length */
/* (i.e. the name ended in a period), a CRC code must be */
/* appended to the mangled name. */
if (index < udfNameLen || extLen == 0)

needsCRC = TRUE;
}

/* Now process the actual file name. */
index = 0;
targetIndex = 0;
crcIndex = 0;
overlayBytes = -1;
bytesLeft = DOS_NAME_LEN;
while (index < nameLen && bytesLeft > 0) {

/* Get the current character and convert it to upper case. */
current = UnicodeToUpper(udfName[index]);
if (current = = ' ' || current == '.') {

/* Spaces and periods are just skipped, a CRC code */
/* must be added to the mangled file name. */
needsCRC = TRUE;

}
else {

Change to Name mangling Algorithms 5 5/7/99

/* Determine if this is a valid file name char and */
/* calculate its corresponding BCS character byte */
/* length (zero if the char is not legal or */
/* undisplayable on this system). */
charLen = (IsFileNameCharLegal(current)) ?

NativeCharLength(current) : 0;

/* If the char is larger than the available space in */
/* the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)

charLen = 0;

if (charLen == 0) {
/* Undisplayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the mangled */
/* file name. */
needsCRC = TRUE;
charLen = 1;
current = '_';

/* Skip over any following undiplayable or illegal */
/* chars. */
while (inde x + 1 < nameLen &&

(!IsFileNameCharLegal(udfName[index + 1]) ||
NativeCharLength(udfName[index + 1]) == 0))
index++;

/* Terminate loop if at the end of the file name. */
if (index >= nameLen)

break;
}

/* Assign the resulting char to the next index in the */
/* file name buffer and determine how many BCS bytes */
/* are left. */
dosName[targetIndex++] = current;
bytesLeft -= charLen;

/* This figures out where the CRC code needs to start */
/* in the file name buffer. */
if (bytesLeft >= DOS_CRC_LEN) {

/* If there is enough space left, just tack it */
/* onto the end. */
crcIndex = targetIndex;

}
else {

/* If there is not enough space left, the CRC */
/* must overlay a character already in the file */
/* name buffer. Once this condition has been */
/* met, the value will not change. */
if (overlayBytes < 0) {

/* Determine the index and save the length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC might overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries line up. */
overlayBytes = (bytesLeft + charLen > DOS_CRC_LEN)

? 1 : 0;
crcIndex = targetIndex - 1;

}

Change to Name mangling Algorithms 6 5/7/99

}
}

/* Advance to the next character. */
index++;

}

/* If the scan did not reach the end of the file name, or the */
/* length of the file name is zero, a CRC code is needed. */
if (index < nameLen || index == 0)

needsCRC = TRUE;

/* If the name has illegal characters or and extension, it */
/* is not a DOS device name. */
if (needsCRC == FALSE && extLen == 0) {

/* If this is the name of a DOS device, a CRC code should */
/* be appended to the file name. */
if (IsDeviceName(udfName, udfNameLen))

needsCRC = TRUE;
}

/* Append the CRC code to the file name, if needed. */
if (needsCRC) {

/* Get the CRC value for the original Unicode string */
UINT16 udfCRCValue = CalculateCRC(udfName, udfNameLen);

/* Determine the character index where the CRC should */
/* begin. */
targetIndex = crcIndex;

/* If the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore. */
if (overlayBytes > 0)

dosName[targetIndex++] = '_';

/* Append the encoded CRC value with delimiter. */
dosName[targetIndex++] = '#';
dosName[targetIndex++] =

crcChar[udfCRCValue / (DOS_CRC_MODULUS * DOS_CRC_MODULUS)];
udfCRCValue %= DOS_CRC_MODULUS * DOS_CRC_MODULUS;
dosName[targetIndex++] =

crcChar[udfCRCValue / DOS_CRC_MODULUS];
udfCRCValue %= DOS_CRC_MODULUS;
dosName[targetIndex++] = crcChar[udfCRCValue];

}

/* Append the extension, if any. */
if (extLen > 0) {

/* Tack on a period and each successive byte in the */
/* extension buffer. */
dosName[targetIndex++] = '.';
for (index = 0; index < extLen; index++)

dosName[targetIndex++] = ext[index];
}

/* Return the length of the resulting Unicode string. */
return (UINT16)targetIndex;

}

/***/
/* UDFDOSVolumeLabel() */

Change to Name mangling Algorithms 7 5/7/99

/* Translate udfLabel to dosLabel using OSTA compliant algorithm. */
/* dosLabel must be a Unicode string buffer at least 11 characters */
/* in length. */
/***/
UINT16 UDFDOSVolumeLabel(UNICODE_CHAR* dosLabel, UNICODE_CHAR*

udfLabel, UINT16 udfLabelLen)
{

INT16 index;
INT16 targetIndex;
INT16 crcIndex;
INT16 charLen;
INT16 overlayBytes;
INT16 bytesLeft;
UNICODE_CHAR current;
BOOLEAN needsCRC;

needsCRC = FALSE;

/* Scan end of label to see if there are any trailing spaces. */
index = udfLabelLen;
while (index-- > 0) {

if (udfLabel[index] != ' ')
break;

}

/* If there are trailing spaces, adjust the length of the */
/* string to exclude them and indicate that a CRC code is */
/* needed. */
if (inde x + 1 != udfLabelLen) {

udfLabelLen = index + 1;
needsCRC = TRUE;

}

index = 0;
targetIndex = 0;
crcIndex = 0;
overlayBytes = -1;
bytesLeft = DOS_LABEL_LEN;
while (index < udfLabelLen && bytesLeft > 0) {

/* Get the current character and convert it to upper case. */
current = UnicodeToUpper(udfLabel[index]);
if (current == '.') {

/* Periods are just skipped, a CRC code must be added */
/* to the mangled file name. */
needsCRC = TRUE;

}
else {

/* Determine if this is a valid file name char and */
/* calculate its corresponding BCS character byte */
/* length (zero if the char is not legal or */
/* undisplayable on this system). */
charLen = (IsVolumeLabelCharLegal(current)) ?

NativeCharLength(current) : 0;

/* If the char is larger than the available space in */
/* the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)

charLen = 0;

if (charLen == 0) {
/* Undisplayable or illegal characters are */

Change to Name mangling Algorithms 8 5/7/99

/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the mangled */
/* file name. */
needsCRC = TRUE;
charLen = 1;
current = '_';

/* Skip over any following undiplayable or illegal */
/* chars. */
while (inde x + 1 < udfLabelLen &&

(!IsVolumeLabelCharLegal(udfLabel[index + 1]) ||
NativeCharLength(udfLabel[index + 1]) == 0))
index++;

/* Terminate loop if at the end of the file name. */
if (index >= udfLabelLen)

break;
}

/* Assign the resulting char to the next index in the */
/* file name buffer and determine how many BCS bytes */
/* are left. */
dosLabel[targetIndex++] = current;
bytesLeft -= charLen;

/* This figures out where the CRC code needs to start */
/* in the file name buffer. */
if (bytesLeft >= DOS_CRC_LEN) {

/* If there is enough space left, just tack it */
/* onto the end. */
crcIndex = targetIndex;

}
else {

/* If there is not enough space left, the CRC */
/* must overlay a character already in the file */
/* name buffer. Once this condition has been */
/* met, the value will not change. */
if (overlayBytes < 0) {

/* Determine the index and save the length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC might overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries line up. */
overlayBytes = (bytesLeft + charLen > DOS_CRC_LEN)

? 1 : 0;
crcIndex = targetIndex - 1;

}
}

}

/* Advance to the next character. */
index++;

}

/* If the scan did not reach the end of the file name, or the */
/* length of the file name is zero, a CRC code is needed. */
if (index < udfLabelLen || index == 0)

needsCRC = TRUE;

/* Append the CRC code to the file name, if needed. */
if (needsCRC) {

Change to Name mangling Algorithms 9 5/7/99

/* Get the CRC value for the original Unicode string */
UINT16 udfCRCValue = CalculateCRC(udfName, udfNameLen);

/* Determine the character index where the CRC should */
/* begin. */
targetIndex = crcIndex;

/* If the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore. */
if (overlayBytes > 0)

dosLabel[targetIndex++] = '_';

/* Append the encoded CRC value with delimiter. */
dosLabel[targetIndex++] = '#';
dosLabel[targetIndex++] =

crcChar[udfCRCValue / (DOS_CRC_MODULUS * DOS_CRC_MODULUS)];
udfCRCValue %= DOS_CRC_MODULUS * DOS_CRC_MODULUS;
dosLabel[targetIndex++] =

crcChar[udfCRCValue / DOS_CRC_MODULUS];
udfCRCValue %= DOS_CRC_MODULUS;
dosLabel[targetIndex++] = crcChar[udfCRCValue];

}

/* Return the length of the resulting Unicode string. */
return (UINT16)targetIndex;

}

/***/
/* UnicodeToUpper() */
/* Convert the given character to upper-case Unicode. */
/***/
UNICODE_CHAR UnicodeToUpper(UNICODE_CHAR value)
{

/* Actual implementation will vary to accommodate the target */
/* operating system API services. */

/* Just handle the ASCII range for the time being. */
return (value >= 'a' && value <= 'z') ?

value - ('a' - 'A') : value;
}

/***/
/* IsFileNameCharLegal() */
/* Determine if this is a legal file name id character. */
/***/
BOOLEAN IsFileNameCharLegal(UNICODE_CHAR value)
{

/* Control characters are illegal. */
if (valu e < ' ')

return FALSE;

/* Test for illegal ASCII characters. */
switch (value) {

case '\\':
case '/':
case ':':
case '*':
case '?':
case '\"':
case '<':
case '>':

Change to Name mangling Algorithms 10 5/7/99

case '|':
case ';':
case '^':
case ',':
case '&':
case '+':
case '=':
case '[':
case ']':

return FALSE;
default:

return TRUE;
}

}

/***/
/* IsVolumeLabelCharLegal() */
/* Determine if this is a legal volume label character. */
/***/
BOOLEAN IsVolumeLabelCharLegal(UNICODE_CHAR value)
{

/* Control characters are illegal. */
if (valu e < ' ')

return FALSE;

/* Test for illegal ASCII characters. */
switch (value) {

case '\\':
case '/':
case ':':
case '*':
case '?':
case '\"':
case '<':
case '>':
case '|':
case '.':
case ';':
case '^':
case ',':
case '&':
case '+':
case '=':
case '[':
case ']':

return FALSE;
default:

return TRUE;
}

}

/***/
/* NativeCharLength() */
/* Determines the corresponding native length (in bytes) of the */
/* given Unicode character. Returns zero if the character is */
/* undisplayable on the current system. */
/***/
INT16 NativeCharLength(UNICODE_CHAR value)
{

/* Actual implementation will vary to accommodate the target */
/* operating system API services. */

Change to Name mangling Algorithms 11 5/7/99

/* This is an example of a conservative test. A better test */
/* will utilize the platform’s language/codeset support to */
/* determine how wide this character is when converted to the */
/* active variable width character set. */
return 1;

}

/***/
/* IsDeviceName() */
/* Determine if the given Unicode string corresponds to a DOS */
/* device name (e.g. "LPT1", "COM4", etc.). Since the set of */
/* valid device names with vary from system to system, and */
/* a means for determining them might not be readily available, */
/* this functionality is only suggested as an optional */
/* implementation enhancement. */
/***/
BOOLEAN IsDeviceName(UNICODE_CHAR* name, UINT16 nameLen)
{

/* Actual implementation will vary to accommodate the target */
/* operating system API services. */

/* Just return FALSE for the time being. */
return FALSE;

}

Directory Search Order 1 10/29/1999

Document Change Notice
UDF 2.01 DG-5004

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Specify directory search order for dual namespaces
Date: October 29, 1999

Description:
We must suggest a directory search order when generated names are visible alongside the
original primary names in a directory to preserve expectations that the “visible”
namespace of a directory is searched first.

For instance, the DOS transform results in a non-8.3 and 8.3 namespace existing side-by-
side. Normal Win32 operations will see only the non-8.3 space, and expect to be matched
against that space before the 8.3 space. It is easy to see that in a one-pass short circuited
search it is possible that the match could occur in the 8.3 space that was also available
(and expected) later in the non-8.3 space.

Change:
In section 4.2.2.1, immediately before “Definitions”, add paragraph:

Some name transformations in section 4.2.2.1 result in two namespaces being visible at
once in a given directory – the space of primary names, those which are physically
recorded in a directory; and the space of generated names, those which are derived from
the primary names. This is distinct from transformations that take an otherwise illegal
name and render it into a legal form, the illegal name not being considered part of the
namespace of the directory on that system. For UDF implementations using such
transforms, the implementation should search a directory in two passes: pass one should
match against the primary namespace and pass two should match against the generated
namespace. A match in the primary namespace should be preferred to a match against the
generated namespace.

Strategy 4096 Termination 1 10/29/1999

Document Change Notice
UDF 2.01 DG-5006

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Clarification of termination condition for Strategy 4096
Date: October 29, 1999

Description:

The specification of strategy 4096 (UDF 2.00 6.6) is not exhaustively specific in regard to
how the ICB hierarchy is to be terminated. While this is permissible since ECMA 167
4/8.10 specifies how ICB hierarchies are built, we have found that with respect to 4096
there exists confusion rooted in incorrect interpretation of ECMA 167 3/8.1.2.2, which
specifies the determination of unrecorded sectors.

This clarification is with respect to the general notion of an unrecorded sector in the
standard, and is of informational nature.

Change:

Rename existing section 5.4 to 5.5, create new section 5.4 “Clarification of
Unrecorded Sectors” containing the following:

ECMA 167 section 3/8.1.2.2 states

Any unrecorded constituent sector of a logical sector shall be interpreted as containing all #00
bytes. Within the sector containing the last byte of a logical sector, the interpretation of any bytes
after that last byte is not specified by this Part.

A logical sector is unrecorded if the standard for recording allows detection that a sector has been
unrecorded and all of the logical sector's constituent sectors are unrecorded. A logical sector
should either be completely recorded or unrecorded.

For the purposes of interchange, UDF must clarify the correct interpretation of this
section.

This part specifies that an unrecorded sector logically contains #00 bytes. However, the
converse argument that a sector containing only #00 bytes is unrecorded is not implied,
and such a sector is not an “unrecorded” sector for the purposes of ECMA. Only the
standard governing the recording of sectors on the store can provide the rule for

Strategy 4096 Termination 2 10/29/1999

determining if a sector is unrecorded. For example, a blank check condition would
provide correct determination for a WORM device.

The following additional ECMA 167 sections reference the rule defined 3/8.1.2.2:
3/8.4.2, 3/8.8.2, 4/3.1, 4/8.3.1 and 4/8.10. By derivation, UDF 6.6 (strategy 4096) is also
affected. Since unrecorded sectors/blocks are terminating conditions for sequences of
descriptors, an implementation must be careful to know that the underlying storage
provides a notion of unrecorded sectors before assuming that not writing to a sector is
detectable. Otherwise, reliance on the incorrect converse argument mentioned above may
result. Explicit termination descriptors must be used when an appropriate unrecorded
sector would be undetectable.

Document Change Notice
DCN-5007

Compression IDs 254 and 255. 1 5/24/99

Description:
Compression IDs 254 and 255 were introduced to ensure uniqueness of deleted
entries in a directory, as required by ECMA-167, 4/8.6. The algorithm proposed
in UDF 2.00 does not handle the special case where the FID contains an
identifier with length of 1 byte. In general, the proposal and its intended use
(which was not described in the standard) does not work and is excessively
complex.

In the spirit of the original ECMA 167 work, we will fall back and clarify that
deleted FIDs are not part of the pairwise unique space of the directory, and use
the new compression IDs to allow implementations that believed that all FIDs
were pairwise unique to function.

Change:
In chapter 2.1.1, add following text after the last paragraph (“A Compression ID
… is set.”):

Compression IDs 254 and 255 shall only be used in FIDs where the deleted bit is
set to ONE.

When uncompressing file identifiers with Compression IDs 254 and 255, the
resulting name is to be considered empty and unique.

Change the table “Compression Algorithm”:

Entry 254: new text “Value indicates the CS0 expansion is empty and unique.
Compression Algorithm 8 is used for compression.”
Entry 255: new text “Value indicates the CS0 expansion is empty and unique.
Compression Algorithm 16 is used for compression.”

Remove the final paragraph “A Compression ID of 254 or 255 shall … when the
Deleted bit is set.”

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Compression IDs 254 and 255.
Date: July 9, 1999 (updated October 29, 1999August 31,
1999)

Document Change Notice
DCN-5007

Compression IDs 254 and 255. 2 5/24/99

Change:
In chapter 2.3.4.2, replace the two last paragraphs (“No two FIDs …” and “When
deleting …”) with the following text:

ECMA 167 4/8.6 requires that the File Identifiers (and File Version Numbers,
which shall always be 1) of all FIDs in a directory shall be unique. While the
standard is silent on whether FIDs with the deleted bit set are subject to this
requirement, the intent is that they are not. FIDs with the deleted bit set are not
subject to the uniqueness requirement, as interpreted by UDF.

In order to assist a UDF implementation that may have read the standard without
this interpretation, implementations shall follow these rules when a FID’s deleted
bit is set:

If the compression ID of the File Identifier is 8, rewrite the compression ID to 254
If the compression ID of the File Identifier is 16, rewrite the compression ID to
255
Leave the remaining bytes of the File Identifier unchanged

In this way a utility wishing to undelete a file or directory can recover the original
name by reversing the rewrite of the compression ID.

Note: Implementations should re-use FIDs that have the deleted bit set to one
and ICBs set to zero in order to avoid growing the size of the directory
unnecessarily.

Document Change Notice
DCN-5008

Mac Resource Fork clarification. 1 5/24/99

Description:
Mac Resource Forks do only exist in data files, not in directories.

Change:
In the table of section 3.3.8, change the text behind “*UDF Macintosh
Resource Fork” from “Any file or directory” to “Any file”.

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Mac Resource Fork clarification.
Date: May 23, 1999

Document Change Notice
DCN-5009

Requirements for CD Media 1 9/27/98

Document: OSTA Universal Disk Format Specification
Revision 2.01

Subject: Requirements for CD Media
Date: September 27, 1998

Description:
The Multisession CD Specification contains the basic requirements for multisession CD
Media.

Change:
Replace 6.10.1.1, first bullet, by the following text:

• Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or
Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on
one disc is not allowed.
NOTE: According to the Multisession CD Specification, all data sessions on a disc
must be of the same type (Mode 1, or Mode 2 Form 1).

Replace 6.10.2.1, second bullet, by the following text:

• Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,
either Mode 1 or Mode 2 Form 1 shall be used.
NOTE: According to the Multisession CD Specification, all data sessions on a disc
must be of the same type (Mode 1, or Mode 2 Form 1).

Document Change Notice
DCN-5013

AVDP Placement 1 24/05/1999

Document: OSTA Universal Disk Format Specification
Revision 2.01

Subject: AVDP Placement
Date: July 8, 1999

Description:
The UDF 2.00 specification is not clear with respect to the rules for placement of the AVDP on
unclosed CD-R media. The proper specification is spread out over sections 2.2.3, 6.10.1 and
6.10.1.1. Also it is not immediately clear from the standard what to do in case there is a single
AVDP at sector 256and512.

Change:

Change the note under the AVDP placement rules in section 2.2.3 into:

Note: As specified in section 6.10, unclosed CD-R media may have a single AVDP present at
either sector 256 or 512. If on an unclosed disc a single AVDP is recorded on sector 256, any
AVDP recorded on sector 512 must be ignored. Closed CD-R media shall conform to the above
rules.

Document Change Notice
DCN-5014

Editorial corrections to several sections 1 5/24/99

Description:
In respect to future UDF revisions and content creators, the use of
the Non-relocatable Bit in the ICB Tab needs to be specified more
clearly.

Change:
In 2.3.5.4, replace the text at Bit 4 , with the following text:

(read)
For OSTA UDF compliant media this bit shall indicate (ONE) that if
the file is non-relocatable. If ONE, an implementation shall set the bit
to ZERO if a modification will contravene the definition of this bit in
ECMA 167-4/14.6.8

(write)
Should be set to ZERO unless required.

NOTE: This flag is not a lock on the file in any way. It is used to
indicate that an implementation has arranged the allocation of the file
to satisfy specific application requirements. In these cases, any
remapping of a written block (see UDF sparable partitions) or
defragmentation of the file might not be desired. If a file with this flag
set to ONE is copied, then the new copy of the file should have this
bit set to ZERO.

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Non-relocatable Bit clarification.
Date: May 23, 1999 (updated August 31, 1999)

Document Change Notice
XXXXDCN-5015

Editorial corrections to several sections 1 5/24/99

Description:
Editorial corrections to several sections.

Change:
In the table of section 2., in the table entry for the File Set Descriptor,
remove the sentences: “The File Set Identifier field contains a name
that may be used as an alias name for identifying the Logical Volume
to the user. See 2.3.2.7 for further details.”

Change:
In sections 3.3.4.5.1.1 and 3.3.4.6.1, change the Length in the table
from “IU_L-1” to IU_L-2”.

Change:
In section 4.1, change the referenced section from “4.1.2.1” to
“4.2.2.1”.

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Editorial corrections to several sections.
Date: May 24, 1999

Change to Name mangling Algorithms 1 10/29/19997/16/99

Document Change Notice
UDF 2.01 DCN-5018

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Power Calibration Stream Fix
Date: October 20, 1998

Description:

In section 3.3.7.3.1 the offset of the Power Calibration Table Records is given as 56
bytes. This is a typographic error. The offset should be 36 bytes.

Change:

Change the offset of the power calibration table records in the table in 3.3.7.3.1 to byte
36.

Parent of System Stream Directory 1 10/29/19997/16/99

Document Change Notice
UDF 2.01 DCN-5019

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Parent of System Stream Directory
Date: July 9, 1999

Description:

ECMA 167 3rd Edition states in section 4/8.6, directory schema: "there shall be exactly
one File Identifier Descriptor identifying the parent directory".

It is not clear whether the system stream directory in UDF 2.00 is considered a directory
and, if it is, what its parent should be.

Change:

Add to section 3.3.5, Named Streams:

"The parent of the system stream directory shall be the system stream directory".

Add to section 3.3.5.1 Named Streams Restrictions:

Add to the 3rd restriction to make:

“….stream directories]. The sole exception is that the parent of the system stream
directory shall be the system stream directory”

Add to the 9th restriction to make:

“….of the Extended File Entry. The sole exception is that the parent of the system stream
directory shall be the system stream directory”

Document Change Notice
DCN-5020

IBM OS/400 Information 1 9/27/98

This section includes theOS/400 specific information that would be contained in theOS
specific areas of theUDF specification. The areas identified are based on current areas
where otherOSspecific requirements are defined. References are to theUDF 2.0
specification.

Contents
1. OS/400 Identification Info
2. OS/400 Specific Field Requirements
3. *UDF OS/400 DirInfo Implementation UseEA.
4. OS/400 File Identifier Translation Algorithm

OS/400 identification information
This section describesOS/400 specific information that is written inUDF structures
where required. It includes implementation identification, operating system identification,
andOS/400 specific names for implementation use extended attributes.

OS/400 specific information
Name Description

Developer Id (written in

Identifier field of

Implementation ID - UDF

2.1.5.2)

IBM OS/400 UDF (#49, #42, #4d, #20, #4f, #53, #2f, #34,

#30, #30, #20, #55, #44, #46).

EA Identifier (written in

Identifier field of EA

Implementation ID - UDF

2.1.5.2)

*UDF OS/400 DirInfo (#2A, #55, #44, #46, #20, #4F, #53, #2F,

#34, #30, #30, #20, #44, #69, #72, #49, #6E, #66, #6F).

Needs to be added to UDF 6.1 and UDF 6.2

OS Class (written in Identifier

suffix of Implementation ID -

UDF 2.1.5.3)

0x07 - Assigned by OSTA (Arnold Jones 8/17/98). A new OS Class

for OS/400 needs to be created in addition to DOS, OS/2,

Macintosh, UNIX, Windows 9x, Windows NT, etc. Needs to be

added to UDF 6.3.

OS Id (written in Identifier suffix

of Implementation ID - UDF

2.1.5.3)

0x00 - Assigned by OSTA (Arnold Jones 8/17/98). An OS Identifier

under the OS/400 OS Class -- only one OS/400 implementation,

would be labelled “OS/400”. Needs to be added to UDF 6.3.

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: IBM OS/400 UDF Information
DCN#: 5020
Date: December 6, 1998 (Revised February 8, 2000)

Document Change Notice
DCN-5020

IBM OS/400 Information 2 9/27/98

OS/400 specific field requirements
This section outlines anyOS/400 specific requirements forUDF fields. It corresponds
with information that would be documented in Section 3 (System Dependent
Requirements) of theUDF specification.
File Identifier Descriptor (UDF 3.3.1)
• 3.3.1.1 File Characteristics - Handled the same as UNIX (i.e. the 3.3.1.1.2 heading could

be changed to say UNIX, OS/400)

ICB Tag (UDF 3.3.2)
• 3.3.2.1 Flags (may need to add a 3.3.2.1.x for OS/400)

o Bits 6 and 7 (Setuid& Setgid), Bit 8 (Sticky) - handled same as MS-DOS, OS/2,

Windows 95, Windows NT

o Bit 10 (System) - handled same as UNIX

File Entry (UDF 3.3.3)
• 3.3.3.3 Permissions- OS/400 setting and interpretation of permissions bits is defined in

the following tables (could just add a column to existing table for OS/400). Note change

to Note 1 to add OS/400.

OS/400 Setting of Permissions Bits (UDF 3.3.3.3)
The Permissions bits will be set as described in the table below by OS/400. “U”

implies that the bit is user specified (controlled by user interface). This table is

an extension of the one recorded in the UDF specification for all Operating

Systems.

Permission File/Directory Description OS/400

Read File The file may be read U

Read Directory The directory may be read U

Write File The file’s contents may be modified U

Write Directory Files or subdirectories may be created,

deleted, or renamed

U

Execute File The file may be executed U

Execute Directory The directory may be searched for a

specific file or subdirectory

U

Attribute File The file’s permissions may be changed Note 1

Attribute Directory The directory’s permissions may be

changed.

Note 1

Delete File The file may be deleted Note 2

Delete Directory The directory may be deleted Note 2

Note 1: Under UNIX only the owner of a file/directory may change its attributes.

Under OS/400 if a file or directory is marked as writable (Write permission set)

then the Attribute permission bit should be set.

Note 2: The Delete permission bit should be set based upon the status of the

Write permission bit.

I.

Document Change Notice
DCN-5020

IBM OS/400 Information 3 9/27/98

OS/400 Handling of Permissions Bits (UDF 3.3.3.3)
OS/400 handling (enforcement vs. ignore) of Permissions bits will be as

described in the table below. This table is an extension of the one recorded in

the UDF specification for all Operating Systems.

Permission File/Directory Description OS/400

Read File The file may be read Enforce

Read Directory The directory may be read Enforce

Write File The file’s contents may be modified Enforce

Write Directory Files or subdirectories may be created,

deleted, or renamed

Enforce

Execute File The file may be executed Ignore

Execute Directory The directory may be searched for a

specific file or subdirectory

Enforce

Attribute File The file’s permissions may be changed Ignore

Attribute Directory The directory’s permissions may be

changed.

Ignore

Delete File The file may be deleted Ignore

Delete Directory The directory may be deleted Ignore

Implementation Use Extended Attribute (UDF 3.3.4.5)
• 3.3.4.5.6 OS/400 Section for OS/400 Implementation Use Extended Attributes

• 3.3.4.5.6.1 OS400DirInfo This attribute specifies the OS/400 extended directory

information. Since this value needs to be reported back to OS/400 for normal directory

information processing, for performance reasons it should be recorded in the

ExtendedAttributes field of the FileEntry. This extended attribute shall be stored as an

Implementation Use Extended Attribute whose ImplementationIdentifier shall be set to

“*UDF OS/400 DirInfo”.

OS400DirInfo format
RBP Length Name Contents

0 2 Header Checksum Uint16

2 2 Reserved for padding Uint16 = 0

4 44 DirectoryInfo bytes

For complete information on the structure of the DirectoryInfo field recorded in the

OS400DirInfo format, refer to the following IBM document:

IBM OS/400 UDF Implementation

Optical Storage Solutions, Department HTT

IBM

Rochester, Minnesota

File Identifier Translation Algorithm (UDF 4.2.2.1.6)
OS/400

Due to the restrictions imposed by OS/400 operating system environments, on the FileIdentifier

•

Document Change Notice
DCN-5020

IBM OS/400 Information 4 9/27/98

associated with a file the following methodology shall be employed to handle FileIdentifier(s)

under the above mentioned operating system environment.

1. FileIdentifier Lookup: Upon request for a “lookUp” of a FileIdentifier, a case-sensitive

comparison may be performed. If the case-sensitive comparison is not done or if it fails,

a case-insensitive comparision shall be performed.

2. Validate FileIdentifier: If the FileIdentifier is a valid file identifier for OS/400 then do not

apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered invalid within an

OS/400 file name, or not displayable in the current environment shall have them

translated into “_“ (#005F). Multiple sequential invalid or non-displayable characters shall

be translated into a single “_“ (#005F) character.

4. Trailing Spaces: All trailing “ “(#0020) shall be removed.

5. FileIdentifier CRC: Since through the above process character information from the

original FileIdentifier is lost the chance of creating a duplicate FileIdentifier in the same

directory increases. To greatly reduce the chance of having a duplicate FileIdentifier the

filename shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be composed of up to the first

(255 - (length of (new file extension) + 1 (for the ‘.‘)) - 5 (for the #CRC)) characters

constituting the file name at this step in the process, followed by the separator “#“

(#0023); followed by a 4 digit CS0 Hex representation of the 16 -bit CRC of the original

CS0 FileIdentifier, followed by “.“ (#002E) and the file extension at this step in the

process.

Otherwise if there is no file extension the new FileIdentifier shall be composed of up to

the first (255 - 5 (for the new #CRC)) characters constituting the file name at this step in

the process. Followed by the separator “#“ (#0023); followed by a 4 digit CS0 hex

representation of the 16-bit CRC of the original CS0 FileIdentifier.

Note: Invalid characters for OS/400 are only the forward slash “/“ (#002F) character. Non-

displayable characters for OS/400 are any characters that do not translate to code page 500

(EBCDIC Multilingual).

Document Change Notice
DCN-50XX

Missing EntityID Suffixes 1 24/01/2000

Document: OSTA Universal Disk Format Specification
Revision 2.01

Subject: MissingEntityID Suffixes
Date: January 21, 2000

Description:
Not for all EntityIDs that are used and/or mentioned in the UDF standard proper suffixes have
been defined.

Change:

Change in section 2.1.5:

UDF classifiesEntity Identifiersinto 4 separate types as follows:

• Domain Entity Identifiers
• UDF Entity Identifiers
• Implementation Entity Identifiers
• Application Entity Identifiers

Remove the following entries from table 2.1.5.2:

Entity Identifiers
Descriptor Field ID Value Suffix Type

UDF Extended
Attribute

Implementation ID See Appendix UDF Identifier Suffix

Non-UDF Extended
Attribute

Implementation ID "*Developer ID" Implementation
Identifier Suffix

Add the following entries to table 2.1.5.2:

Entity Identifiers

Document Change Notice
DCN-50XX

Missing EntityID Suffixes 2 24/01/2000

Descriptor Field ID Value Suffix Type
Primary Volume
Descriptor

Application
Identifier

"*Application ID" Application
Identifier Suffix

Partition Descriptor Partition Contents "+NSR03" Application
Identifier Suffix

UDF Implementation
Use Extended
Attribute

Implementation
Identifier

See 3.3.4.5 UDF Identifier
Suffix

Non-UDF
Implementation Use
Extended Attribute

Implementation
Identifier

"*Developer ID" Implementation
Identifier Suffix

UDF Application
Use Extended
Attribute

Application
Identifier

See 3.3.4.6 UDF Identifier
Suffix

Non-UDF
Application Use
Extended Attribute

Application
Identifier

"*Application ID" Application
Identifier Suffix

UDF Unique ID
Mapping Data

Implementation
Identifier

"*Developer ID" Implementation
Identifier Suffix

Power Calibration
Table Stream

Implementation
Identifier

"*Developer ID" Implementation
Identifier Suffix

Add following note below the table:

In theID Valuecolumn in the above table"*Application ID" refers to an identifier that uniquely
identifies the writers application.

Add in section 2.1.5.3 follows:

For anApplication Entity Identifiernot defined by UDF, theIdentifierSuffixfield shall be
constructed as follows, unless specified otherwise.

Application IdentifierSuffix
RBP Length Name Contents

0 8 Implementation Use Area bytes

Document Change Notice
DCN-5024

Editorial corrections to several sections 1 5/24/99

Description:
Editorial corrections to several sections.

�� ������ 	
 �
 �

 � � � � �

now:

2.2.7.1 EntityID Implementation Identifier

This field shall specify "*UDF LV Info".

should be:

2.2.7.1 EntityID ImplementationIdentifier (no space)

The Identifier field of this EntityID shall specify "*UDF LV Info". Refer to the section on
Entity Identifier.

�� ����� � 	

now:

2.2.7.2 bytes Implementation Use

...

struct EntityID ImplementionID,

should be:

2.2.7.2 bytes ImplementationUse (no space)

...

struct EntityID ImplementationID, (+ta)

�� ����� � 	

now:

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Editorial corrections to several sections.
Date: July 8th 1999 (updated August 31, 1999)

Document Change Notice
DCN-5024

Editorial corrections to several sections 2 5/24/99

2.2.7.2.4 struct EntityID ImplementionID

should be:

2.2.7.2.4 struct EntityID ImplementationID (+ta)

�� ����� � 	

now:

��������	��
���
�������������	�������������������

�
�����	����������	������
�����	��������������	�����

should be:

�
�����	����������	������
�����	����������	��������������	�����

�� ����

problem:

2.3.10.1 struct ADImpUse definition printed a tiny font

solution:

2.3.10.1 font of struct ADImpUse definition should be as the font of struct long_ad

�� ����� � � � � �
 � � � � 	 � � �

problem:

In 2.3.4.3 struct long_ad ICB, the definition of the Implementation Use bytes
conflicts with the general definition of a long_ad in 2.3.10.1. The 2 bytes
"Reserved = #00" conflict with the flags field of ADImpUse in 2.3.10.1.

solution:

Change in section 2.3.4.3 the name Reserved to the name Flags as in section
2.3.10.1

�� ���� � � 	

now:

�����������	
�����
���������
������
�
���

���������������������

should be:

�����������	
�����
���������
������
�
���

���������������������

Document Change Notice
DCN-5024

Editorial corrections to several sections 3 5/24/99

��
����
 � �
 � � � � �
 � �
 � � �
 � � � �
 � �

In ECMA167-R3, 4/14.1.19, the File Set Descriptor's Reserved field
is reported at BP464. It should correctly be at BP480.

��
��� � � � 	

There is a textual error in UDF 2.00:

2.3.6.3 Uint8 RecordLength;
must be:
2.3.6.3 Uint32 RecordLength;

Change to Name mangling Algorithms 1 3/8/2000

Document Change Notice
UDF 2.01 DG-5025-1

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: New OS Classes and Identifiers
Date: July 8, 1999, Revised December 1999

Description:

OSTA should update OS class and identifier specifications for new operating systems.
Parallel to the way we classify UNIX systems, use generic identifiers for the codebases
involved in Windows systems.

Change:

In section 6.3, add:

Operating System Class: “Windows CE” as type 9, “BeOS” as type 8.

Operating System Identifier: “Windows CE – generic” as id 9/0, “BeOS – generic” as id
8/0

Change text for id 5/0 from “Windows 95” to “Windows 9x – generic (includes Windows
98)

Change text for id 6/0 from “Windows NT” to “Windows NT – generic (includes
Windows 2000)

Change text for id 3/0 from “Macintosh OS System 7” to “Macintosh OS”

Document Change Notice
DCN-5026

PVD: Application Identifier 1 24/05/1999

Document: OSTA Universal Disk Format Specification
Revision 2.01

Subject: Explanation of Application Identifier field for the PVD
Date: July 8, 1999, Revised February 3, 2000

Description:
The ECMA-167 definition of the Application Identifier field (BP 344) for the Primary Volume
Descriptor seems to be a bit ambiguous or unclear to some people.

Change:

Insert as section 2.2.2.9 into the UDF specification the following text:

2.2.2.9 struct EntityID ApplicationIdentifier

� This field either specifies a valid Entity Identifier (section 2.1.5) identifying the
implementation that last wrote this field, or the field is filled with all #00 bytes, meaning
that no application is identified.

� Either all #00 bytes or a valid Entity Identifier (section 2.1.5) shall be recorded in this
field.

Document Change Notice
DCN-5027

Descriptor CRC Length 1 24/05/1999

Document: OSTA Universal Disk Format Specification
Revision 2.01

Subject: Descriptor CRC Length
Date: May 24, 1999

Description:
It is easy to misinterpret the UDF standard with respect to the Descriptor CRC Length (2.2.1.2)
being equal to the length of the descriptor. Not in all cases the length of the descriptor matches
the Descriptor CRC Length.

Change:

Add the following line to section 2.2.1.2:

Note: The Descriptor CRC Length field must not be used to determine the actual length of the
descriptor or the number of bytes to read. These lengths do not match in all cases; there are
exceptions in the standard where the Descriptor CRC Length need not match the length of the
descriptor.

Document Change Notice
DCN-5029

Correction for processing permissions 1 7/9/99

Description:
The Attribute and Delete permissions should be changed from
Enforce to Ignore for UNIX.

Change:
In section 3.3.3.3, replace

Attribute directory The file's permissions may be changed. E E E E E E
Attribute directory The directory's permissions may be

changed.
E E E E E E

Delete file The file may be deleted. E E E E E E
Delete directory The directory may be deleted. E E E E E E

With

Attribute directory The file's permissions may be changed. E E E E E I
Attribute directory The directory's permissions may be

changed.
E E E E E I

Delete file The file may be deleted. E E E E E I
Delete directory The directory may be deleted. E E E E E I

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Correction for processing permissions.

Date: July 9, 1999

Document Change Notice
2-047DCN-5030

Correction and clarification of 3.2.1.1. 1 12/18/98

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Correction and clarification of 3.2.1.1.
Date: December 18, 1998

Description:
Correction and clarification of 3.2.1.1.

Change:

Part of section 3.2.1.1, on page 49 .
The references to 2.3.4.2 are wrong and "long_ad" should be more specific, so
(each 2 times) replace :

"2.3.4.2" by "2.3.4.3"
and "long_ad" by "ICB field"
resulting in:

When a file or directory is created, this UniqueID is assigned to the UniqueID
field of the File Entry/Extended File Entry, the lower 32-bits of UniqueID are
assigned to UDFUniqueID in the Implementation Use bytes of the ICB field in the
File Identifier Descriptor (see 2.3.4.3), and UniqueID is incremented by the policy
described above.

When a name is linked to an existing file or directory, the lower 32-bits of
NextUniqueID are assigned to UDFUniqueID in the Implementation Use bytes of
the ICB field in the File Identifier Descriptor (see 2.3.4.3), and UniqueID is
incremented by the policy described above.

Document Change Notice
dg-5031

Volume Recognition Sequence 1 1/07/1999

Document: OSTA Universal Disk Format Specification
Revision 2.01

Subject: Volume Recognition Sequence
Date: July 1, 1999 (Update: September 2, 1999)

Description:
1) UDF (ECMA) does not specify number of Extended Area's in the VRS;
2) UDF (ECMA) does not specify that the place where to record the NSR0* and the BOOT*
descriptors;
3) UDF (ECMA) does not put a limit on the number of NSR descriptors present;
4) UDF (ECMA) does not specify where the other descriptors can be located in the VRS;
5) UDF does not specify what should be the first block after VRS.

Change:

Add the following section to Chapter 2, just after the new section 2.1.6 on formatting:

2.1.7 Volume Recognition Sequence

The following rules shall apply when writing the volume recognition sequence:

(when writing)
The Volume Recognition Sequence as described in part 2 and part 3 of ECMA 167 shall be
recorded. There shall be exactly one NSR descriptor in the VRS. The NSR and BOOT2
descriptors shall be in the Extended Area. There shall be only one Extended Area with one
BEA01 and one TEA01. All other VSDs are only allowed before the Extended Area. The block
after the VRS shall be unrecorded or contain all #00.

(when reading)
Implementers should expect that disks recorded by UDF 2.00 and earlier did not have this
constraint, and should handle these cases accordingly.

Document Change Notice
DCN-5032

Path Length 1 1/07/1999

Document: OSTA Universal Disk Format Specification
Revision 2.01

Subject: Path Length
Date: July 1, 1999

Description:
UDF 2.00 (also ECMA) does not properly define Path Size, however this is used in definitions in
the standard (e.g. 2. Basic Restrictions & Requirements)

We are removing this because the pathsize is not practically measurable by an implementation,
and because the 1023 value does not reflect any real application or OS limit.

Change:

Remove the following line in section 2. Basic Restrictions & Requirements:

Item Restrictions & Requirements
Maximum Pathsize Maximum of 1023 bytes

UDF Document Change Notice
DCN-5034

Fid LengthofImplementationUse and CRC length. 1 August 3, 1999

Document: OSTA Universal Disk Format DCN-5034
Subject: FID LengthofImplementationUse and CRC length.
Date: August 3, 1999

Description:
Clarify obscured effects of 2.3.4.4 and 2.3.4.5 on each other and
drop exception for FID CRC length.

Change:

Replace section 2.3.4.4 by:

2.3.4.4 Uint16 LengthofImplementationUse
for read : Shall specify the length of the ImplementationUse field.
for write: Shall specify the length of the ImplementationUse field.

This field may contain zero, indicating that the ImplementationUse
field has not been used. Otherwise, this field shall contain at
least 32 as required by 2.3.4.5.

When writing a File Identifier Descriptor to write-once media, to ensure
that the Descriptor Tag field of the next FID will never span a block
boundary, if there are less than 16 bytes remaining in the current block
after the FID, the length of the FID shall be increased (using the
Implementation Use field) enough to prevent this. Remember that in the
latter case, the Implementation Use field shall be at least 32 bytes.

UDF Document Change Notice
DCN-5035

Non-Allocatable Space Stream 1 9/20/99

Document: OSTA Universal Disk Format DCN#5035
Subject: Non-Allocatable Space Stream.
Date: September 20, 1999

Description:
As a left-over from UDF 1.5, the UDF 2.0 specification contains in a few places "Non-
Allocatable Space List" where "Non-Allocatable Space Stream" should have been used.
This DCN applies to CD-RW media only.

Change:

Section 2.2.11, first paragraph on page 32:
Replace "shall be included in the Non-Allocatable Space List" into "shall be
included in the Non-Allocatable Space Stream"

Section 2.2.11, first paragraph on page 33:
Replace "shall be part of the Non-Allocatable Space list" into "shall be part of the Non-
Allocatable Space Stream"

Section 6.10.2.1, 3rd bullet on page 116:
Replace "using a Non-Allocatable Space List (see 3.3.7.1.2)" by "using a Non-Allocatable
Space Stream (see 3.3.7.2)".

Section 6.10.2.2:
Replace "shall be enumerated in the Non-Allocatable Space List (see 3.3.7.1.2)" by "shall
be enumerated in the Non-Allocatable Space Stream (see 3.3.7.2)".

UDF Document Change Notice
DCN-5036

Allocation Extent Descriptor. 1 01/21/00

Document: OSTA Universal Disk Format DCN-5036
Subject: Allocation Extent Descriptor, UDF 2.3.11.
Date: January 21, 2000 (replacingNovember 25, 1999)

Description:

It is a bit strange that according to ECMA 167, 4/14.5 the Allocation Descriptors
field is no part of the Allocation Extent Descriptor as e.g. for the File Entry and
for the Unallocated Space Entry. The most important effect is that the CRC is not
calculated over the Allocation Descriptors as for the other descriptor mentioned
above. It would be quite logical to do that, and some UDF implementations do
that in fact. Strictly the CRC Length extents outside the descriptor which is
illegal normally.
This DCN explains how UDF interprets ECMA 167, 4/14.5 regarding to
the exact position of the Allocation Descriptors and improves the integrity
of the Allocation Descriptors by giving the option of extending the
DescriptorCRCLength of the Allocation Extent Descriptor to include the
Allocation Descriptors. The fact that this is an option is because of
backwards compatibility with former UDF revisions.

Change:

Replace section 2.3.11 and 2.3.11.1 by:

2.3.11 Allocation Extent Descriptor

struct AllocationExtentDescriptor { /* ECMA 167 4/14.5 */
struct tag DescriptorTag;
Uint32 PreviousAllocationExtentLocation;
Uint32 LengthOfAllocationDescriptors;

}

The Allocation Extent Descriptor does not contain the Allocation Descriptors itself.
UDF will interpret ECMA 167, 4/14.5 in such a way that the Allocation Descriptors
will start on the first byte following the LengthOfAllocationDescriptors field of the
Allocation Extent Descriptor. The Allocation Extent Descriptor together with its
Allocation Descriptors constitute an extent of allocation descriptors. The length of
an extent of allocation descriptors shall not exceed the logical block size.

UDF Document Change Notice
DCN-5036

Allocation Extent Descriptor. 2 01/21/00

Unused bytes following the Allocation Descriptors till the end of the logical
block shall have a value #00.

2.3.11.1 struct tag DescriptorTag

The DescriptorCRCLength of the DescriptorTag should include the
Allocation Descriptors following the Allocation Extent Descriptor.
The DescriptorCRCLength value shall be either 8 or
8 + LengthOfAllocationDescriptors.

In 2. Basic Restrictions & Requirements
on page 8 replace:
Allocation Extent Descriptors | The length of any single Allocation

| Extent Descriptor shall not exceed the
| Logical Block Size.

by:
Allocation Extent Descriptors | The length of any single extent of

| allocation descriptors shall not exceed
| the Logical Block Size.

Document Change Notice
DCN-5037

File Types of 248 to 255 1 9/24/99

Description:
File Types of 248 to 255 are clarified and specified in section 2.3.5.2.

Change:
Replace section 2.3.5.2 by:

2.3.5.2 Uint8 FileType
As a point to clarification a value of 5 shall be used for a standard byte
addressable file, not 0. The value of 248 shall be used for the VAT (refer to
2.2.10). The value of 249 shall be used to indicate a Real-Time file (refer to 6.x).
Values of 250 to 255 shall not be used.

2.3.5.2.1 File Type 249
Files with FileType 249 require special commands to access the data space of
this file. To avoid possible damage, if an implementation does not support these
commands it shall not issue any command that would access or modify the data
space of this file. This includes but is not limited to reading, writing and deleting
the file.

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: File Types of 248 to 255
Date: September 24, 1999, Revised December 6 1999

Document Change Notice
DCN-5038

Requirements for Real-Time Files 1 11/25/99

Description:
To specify general descriptions of Real-Time files, Appendix 6.X is added.

Change:
Add Appendix 6.X as:

6.X Real-Time files
A Real-Time file is a file that requires a minimum data-transfer rate when writing or
reading, for example, audio and video data. For these files special read and write
commands are needed. For example for CD and DVD devices these special commands
can be found in the Mount Fuji 4 specification.

A Real-Time file shall be identified by file type 249 in the File Type field of the file's
ICB Tag.

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Requirements for Real-Time files
Date: November 25, 1999, Revised December 6, 1999

Document Change Notice
DCN-5039

packet Length specification 1 9/28/99

Document: OSTA Universal Disk Format Specification
Revision 2.01

Subject: Packet Length specification
Date: September 29, 1999, Revised December 6, 1999

Description:
The UDF specification contains a specification for the value of Packet Length in two
places. The first pace is the general definition of the Sparable partition map in 2.2.9, the
second is in the CD-RW specific paragraph in 6.10.2.1.
To allow a packet size different from 32 sectors on non CD-RW media, the proposal is to
remove the "shall be set to 32" from 2.2.9.
As a result, the packet length is not a fixed value any more for all media, and must be
specified in the medium specific part of the UDF specification for rewritable media that
do not support drive based defect management.

Change:
Replace in 2.2.9, table "Layout of Type 2 partition map for sparable partition":

Packet Length Uint16 = 32
by: Packet Length Uint16

Replace in 2.2.9:
• Packet Length = the number of user data blocks per fixed packet. Shall be set

to 32.
by: • Packet Length = the number of user data blocks per fixed packet. This value
is specified in the medium specific section of Appendix 6.

UDF Document Change Notice
DCN-5040

Allocation Extent Descriptor. 1 09/15/99

Document: OSTA Universal Disk Format DCN-5040
Subject: Overlapping structures with conflicting field.
Date: September 20, 1999

Description:
In 2.3.4.3 and 2.3.10.1, two overlapping structures are defined
of which one field causes a conflict.
2.3.4.3 defines a special struct for a FID field, while
2.3.10.1 is defined for all long_ad structures.
Field ‘Reserved’ of 2.3.4.3 conflicts with the ‘flags’ field in 2.3.10.1

Changes:
In:
2.3.4.3 struct long_ad ICB
add after: TheImplementation Use… and directory namespace.

TheImplementation Usebytes of a long_ad hold an ADImpUse structure as
defined by 2.3.10.1. The four impUse bytes of that structure will be interpreted
as a Uint32 holding the UDF Unique ID.

replace on top of the table:UDF Unique ID
by: ADImpUse structure holding UDF Unique ID

in the table replace: Reserved | bytes(=#00)
by: flags | Uint16 flags, see 2.3.10.1

further replace: Section 3.2.1Logical …
by: Section 3.2.1 Logical …

(editorial)

UDF Document Change Notice
DCN-5041

Wrong Information Length reconstruction, 2.3.6.4. 1 11/02/99

Document: OSTA Universal Disk Format DCN-5041
Subject: Information Length reconstruction, 2.3.6.4.
Date: November 10, 1999

Description:
2.3.6.4 describes how the Information Length of a File Entry can be reconstructed
from the allocation descriptors. The way it is described is wrong.

Changes:

Change section 2.3.6.4 into:

2.3.6.4 Uint64 InformationLength

In most cases, the InformationLength can be reconstructed during a recovery
operation by finding the sum of the lengths of each of the allocation descriptors.
However, space may be allocated after the end of the file (identified as a “file tail.”).
As “unrecorded and allocated” space is a legal part of a file body, using the
allocation descriptors to determine the information length is possible under the
following conditions:
- if an allocation descriptor exists with an extent length that is no multiple of the block

size
- if no such extent exists and the extent type of the last allocation descriptor with

an extent length unequal to 0 is not equal to “unrecorded and allocated”.
Only the last extent of the file body may have an extent length that is not a multiple
of the block size, see ECMA 167 4/12.1 and 4/14.14.1.1.

Change table of section 2: basic restrictions and requirements

Extent Length:
Maximum extent length shall be 230 –1 rounded down to the nearest integral
multiple of the Logical Block Size.
…

UDF Document Change Notice
DCN-5042

Time zone interpretation in Timestamp, Section 2.1.4. 1 11/10/99

Document: OSTA Universal Disk Format DCN-5042
Subject: Time zone interpretation, Section 2.1.4.
Date: November 10, 1999

Description:

Section 2.1.4.1 describes the handling of time zone specifications within timestamps.
When the time zone portion of theTypeAndTimezonefield is set to - 2047, the time zone
is considered unspecified, and the interpretation of the various time fields is left to the
implementation. Although it is not intended that this should change, some clarification
may provide guidance as to how best to handle unspecified time zones.

Changes:

Add the following note to Section 2.1.4.1:

2.1.4.1 Uint16 TypeAndTimezone

…

Note: Implementations on systems that support time zones should interpret unspecified
time zones as Coordinated Universal Time. Although not a requirement, this
interpretation has the advantage that files generated on systems that do not support time
zones will always appear to have the same time stamps on systems that do support time
zones, irrespective of the interpreting system's local time zone.

Document Change Notice
DCN-5044

Missing Partition Descriptor and Sparable Partition. 1 December 2, 1999

Document: OSTA Universal Disk Format Specification
Revision 2.01

Subject: Missing Partition Descriptor and Sparable Partition.
Date: December 2 , 1999

This DCN is in fact DCN 5033 with some additions.
If accepted, this DCN will overrule DCN 5033.

Description:
In the UDF specification there is no section for the Partition Descriptor, like there is for any
other descriptors. Further, rules for Sparable Partition boundaries have to be defined.

Change:

Add a note to the end of 2.2.3 indicating that the partition descriptor, described in 2.2.12, really
should be described next, but was omitted from earlier versions of the standard and so is at
2.2.12 in order to preserve section numbering

Change:

Add new section 2.2.12:

2.2.12 Partition Descriptor
struct PartitionDescriptor { /* ECMA 167 3/10.5 */

struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
Uint16 PartitionFlags;
Uint16 PartitionNumber;
struct EntityID PartitionContents;
byte PartitionContentsUse[128];
Uint32 AccessType;
Uint32 PartitionStartingLocation;
Uint32 PartitionLength;
struct EntityID ImplementationIdentifier;
byte ImplementationUse[128];
byte Reserved[156];

}

Document Change Notice
DCN-5044

Missing Partition Descriptor and Sparable Partition. 2 December 2, 1999

2.2.12.1 struct EntityID PartitionContents
For more information on the proper handling of this field see the section onEntity
Identifier.

2.2.12.2Uint32 PartitionStartingLocation;
For a Sparable Partition, the value of this field shall be an integral multiple
of the Packet Length. The Packet Length is defined in the Sparable Partition Map.

2.2.12.3Uint32 PartitionLength;
For a Sparable Partition, the value of this field shall be an integral multiple
of the Packet Length. The Packet Length is defined in the Sparable Partition Map.

2.2.12.4 struct EntityID ImplementationIdentifier
For more information on the proper handling of this field see the section onEntity
Identifier.

Change:

Add to section2.2.11 Sparing Table

In the paragraph at the bottom of page 31, change:

… is specified by a partition descriptor.
The sparing table further specifies an exception list of logical to physical mappings.

change into:

… is specified by a partition descriptor.
A sparable partition shall begin and end on a packet boundary.
The sparing table further specifies an exception list of logical to physical mappings.

Change:

Remove from section6.10.2.6.1 Level 1

The start of the partition shall be on a packet boundary. The partition length
shall be an integral multiple of the packet size.

UDF Document Change Notice
DCN-5045

Remove “type 1” from 2. Basic Requirements, Partition Descriptor. 1 11/29/99

Document: OSTA Universal Disk Format DCN-5045
Subject: Remove “type 1” from 2. Basic Requirements, Partition

Descriptor.
Date: November 29, 1999

Description:
In 2. Basic Requirements, Partition Descriptor, the “type 1” must be removed,
Because it is wrong. E.g. a Sparable Partition does not have a type 1 Partition Map.
Mind that this is correct for a Virtual Partition as well, because in that case there
are 2 Partition Maps, referring to only one common Partition Descriptor.

Change:

Change in section 2.Basic Restrictions & Requirements”

Partition Descriptor | … There shall be exactly one type 1 prevailing Partition
| Descriptor recorded …

change into:

Partition Descriptor | … There shall be exactly one prevailing Partition
| Descriptor recorded …

UDF Document Change Notice
DCN-5046

Primary Volume and Logical Volume Descriptors 1 November 1, 1999

Document: OSTA Universal Disk Format DCN#5046
Subject: Primary Volume and Logical Volume Descriptors
Date: Nov. 1, 1999

Description:
This DCN clarifies requirements for thePrimaryVolumeDescriptorand
LogicalVolumeDescriptorthat facilitates identification of logical volume completeness.
This is done by adding a requirement that the media containing a 1 (one) in the
VolumeSequenceNumberfield of thePrimaryVolumeDescriptormust be a part of any
logical volume defined in the set. Additionally, it adds a requirement that the governing
instance of theLogicalVolumeDescriptorrecorded on that volume must always represent
the entire logical volume.

Change:
Section 2, Basic Restrictions and Requirements Table.

In the entry for Primary Volume Descriptor, add the following:

The media where theVolumeSequenceNumberof this descriptor is equal to 1 (one)
must be part of the logical volume defined by the prevailing Logical Volume
Descriptor.

In the entry for Logical Volume Descriptor, add the following:

TheLogicalVolumeDescriptorrecorded on the volume where the
PrimaryVolumeDescriptor’s VolumeSequenceNumberfield is equal to 1 (one) must
have aNumberofPartitionMapsvalue andPartitionMapsstructure(s) that represent
the entire logical volume. For example, if a volume set is extended by adding
partitions, then the updatedLogicalVolumeDescriptorwritten to the last volume in
the set must also be written (or rewritten) to the first volume of the set.

Document Change Notice
DCN-5047

Correct ommisions in Informative Table 1 11/30/1999

Document: OSTA Universal Disk Format Specification
Revision 2.00

Subject: Correct Omissions in Informative Table
Date: November 30, 1999

Description:
The table of informative structure sizes in section 5.1 is missing some fixed size
structures. To satisfy desires for completeness, add the rest. We also note the units of the
numbers in this table.

Change:
In section 5.1, update the table with the following new lines:

Descriptor Length
Primary Volume Descriptor 512

Extended Attribute Header Descriptor 24
Extended File Entry Max of a logical block size

Additionally, change the heading of the Length column to read “Length in Bytes”.

UDF Document Change Notice
DCN-xxx2

UniqueID for Extended Attribute space and Named Streams.1 January 24, 2000

Document: OSTA Universal Disk Format DCN-xxx2
Subject: UniqueID for Extended Attribute space and Named Streams.

Date: July 29January 24, 2000

Description:
In UDF 1.02 and 1.50 there was a rule in 2.3.6.5 on UniqueID for Extended Attribute
space File Entries. This rule was accidentally dropped in UDF 2.00 when the rules for
UniqueID were concentrated in section 3.2.1.
Further there is an inconsistency in UDF 2.00 regarding the rules for the UniqueID of
Named Streams.
3.2.1.1: …the unique ID fields in these structures take their value from the UniqueID

of the File Entry/Extended File Entry of the file/directory the streams are
associated with.

3.3.5.1: … The Unique ID field of Named Streams and Stream Directories shall be
set to zero and shall be ignored when read. The Unique ID of a Named Stream
or Stream Directory shall be considered to be the same as the Unique ID of
the main data stream.

Because of analogy with the Extended Attribute case and the fact that a UniqueID
value zero is normally used for the Root Directory only, the interpretation of 3.2.1.1
is chosen to be the correct one.

Change:
at the end of the 2nd paragraph of:
3.2.1.1 Uint64 UniqueID

change:
… take their value from the UniqueID of the

File Entry/Extended File Entry of the file/directory the streams are associated with.

into:
… take their value from the UniqueID of the

File Entry/Extended File Entry of the file/directory they are associated with.
The same counts for File Entries/Extended File Entries used to define an Extended
Attribute space.

in: 3.3.5.1 Named Streams Restrictions

change:
The Unique ID field of Named Streams and Stream Directories shall be set to zero

UDF Document Change Notice
DCN-xxx2

UniqueID for Extended Attribute space and Named Streams.2 January 24, 2000

and shall be ignored when read. The Unique ID of a Named Stream or Stream Directory
shall be considered to be the same as the Unique ID of the main data stream.

into:
The Unique ID field of Named Streams and Stream Directories shall be the same as the
Unique ID of the main data stream.

	DCN-5000
	DCN-5002
	DCN-5004
	DCN-5006
	DCN-5007
	DCN-5008
	DCN-5009
	DCN-5013
	DCN-5014
	DCN-5015
	DCN-5018
	DCN-5019
	DCN-5020
	DCN-5021
	DCN-5024
	DCN-5025
	DCN-5026
	DCN-5027
	DCN-5029
	DCN-5030
	DCN-5031
	DCN-5032
	DCN-5034
	DCN-5035
	DCN-5036
	DCN-5037
	DCN-5038
	DCN-5039
	DCN-5040
	DCN-5041
	DCN-5042
	DCN-5044
	DCN-5045
	DCN-5046
	DCN-5047
	DCN-5048

