
               

OSTA Univeral Disk Format Specification
Revision 1.02

==============================Readme==============================

The pages included in this distribution are as follows: Page#
     
    UDF_102.PDF Adobe Acrobat format of UDF Specification 2-104
    HISTORY Revision history of UDF Specification 105
    UNICODE.C Unicode sample source code 106-108
    DOSNAME.C UDF DOS filename translation 109-114
    UDFTRANS.C UDF OS/2, Macintosh and UNIX 115-121

filename translation
    FILE_ID.DIZ BBS Description file 122

      ********** I M P O R T A N T   N O T E **********
Please fill out the OSTA UDF Developer Registration form located in 
the UDF specification and return it to OSTA.  This will make sure that
you are kept up to date with announcements in regards to UDF.

For additional information on OSTA and UDF visit the OSTA web site
at http://www.osta.org.

NOTE: Free Adobe Acrobat readers for several platforms are available 
at http://www.adobe.com

Navigation
Click on the desired document in the list below to jump to that page.



Universal Disk
Format™

Specification

Revision 1.02

August 30, 1996
 Copyright 1994, 1995, 1996

 Optical Storage Technology Association
ALL RIGHTS RESERVED



Revision History:
1.00 October 24, 1995 Original Release
1.01 November 3, 1995 DVD appendix added
1.02 August 30, 1996 Incorporates Document Change Notices

DCN 2-001 through DCN 2-024

Optical Storage Technology Association
311 East Carrillo Street

Santa Barbara, CA  93101
(805) 963-3853 Voice
(805) 962-1541 Fax

info@osta.org
http://www.osta.org

This document along with the sample source code is available in electronic format from OSTA.

Important Notices

  _____________________________________________________________ 
This document is a specification adopted by Optical Storage Technology Association (OSTA).  This document may be revised by OSTA.  It
is intended solely as a guide for companies interested in developing products which can be compatible with other products developed using
this document.  OSTA makes no representation or warranty regarding this document, and any company using this document shall do so at
its sole risk, including specifically the risks that a product developed will not be compatible with any other product or that any particular
performance will not be achieved.  OSTA shall not be liable for any exemplary, incidental, proximate or consequential damages or expenses
arising from the use of this document.  This document defines only one approach to compatibility, and other approaches may be available in
the industry.

This document is an authorized and approved publication of OSTA.  The underlying information and materials contained herein are the
exclusive property of OSTA but may be referred to and utilized by the general public for any legitimate purpose, particularly in the design and
development of writable optical systems and subsystems.  This document may be copied in whole or in part provided that no revisions,
alterations, or changes of any kind are made to the materials contained herein.  Only OSTA has the right and authority to revise or change
the material contained in this document, and any revisions by any party other than OSTA are totally unauthorized and specifically prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the
subject of a patent, patent application, copyright, mask work right or trade secret right).  By publication of this document, no position is taken
by OSTA with respect to the validity or infringement of any patent or other proprietary right, whether owned by a Member or Associate of
OSTA or otherwise.  OSTA hereby expressly disclaims any liability for infringement of intellectual property rights of others by virtue of the
use of this document.  OSTA has not and does not investigate any notices or allegations of infringement prompted by publication of any
OSTA document, nor does OSTA undertake a duty to advise users or potential users of OSTA documents of such notices or allegations.
OSTA hereby expressly advises all users or potential users of this document to investigate and analyze any potential infringement situation,
seek the advice of intellectual property counsel, and, if indicated, obtain a license under any applicable intellectual property right or take the
necessary steps to avoid infringement of any intellectual property right.  OSTA expressly disclaims any intent to promote infringement of any
intellectual property right by virtue of the evolution, adoption, or publication of this OSTA document.

Universal Disk Format™ and UDF™ are trademarks of the Optical Storage Technology Association.



CONTENTS

1. INTRODUCTION................................ ................................ ............................... 1

1.1 Document Layout..........................................................................................................................2

1.2 Compliance...................................................................................................................................3

2. BASIC RESTRICTIONS & REQUIREMENTS................................ .................. 4

2.1 Part 1 - General............................................................................................................................6
2.1.1 Character Sets.........................................................................................................................6
2.1.2 OSTA CS0 Charspec...............................................................................................................7
2.1.3 Dstrings..................................................................................................................................7
2.1.4 Timestamp..............................................................................................................................8
2.1.5 Entity Identifier.......................................................................................................................8

2.2 Part 3 - Volume Structure..........................................................................................................13
2.2.1 Descriptor Tag......................................................................................................................13
2.2.2 Primary Volume Descriptor...................................................................................................13
2.2.3 Anchor Volume Descriptor Pointer.......................................................................................15
2.2.4 Logical Volume Descriptor....................................................................................................16
2.2.5 Unallocated Space Descriptor................................................................................................18
2.2.6 Logical Volume Integrity Descriptor.....................................................................................18
2.2.7 Implemention Use Volume Descriptor...................................................................................20

2.3 Part 4 - File System.....................................................................................................................23
2.3.1 Descriptor Tag......................................................................................................................23
2.3.2 File Set Descriptor.................................................................................................................23
2.3.3 Partition Header Descriptor...................................................................................................26
2.3.4 File Identifier Descriptor.......................................................................................................27
2.3.5 ICB Tag................................................................................................................................28
2.3.6 File Entry..............................................................................................................................30
2.3.7 Unallocated Space Entry.......................................................................................................31
2.3.8 Space Bitmap Descriptor.......................................................................................................32
2.3.9 Partition Integrity Entry........................................................................................................32
2.3.10 Allocation Descriptors.........................................................................................................32
2.3.11 Allocation Extent Descriptor...............................................................................................34
2.3.12 Pathname............................................................................................................................34

2.4 Part 5 - Record Structure...........................................................................................................34

3. SYSTEM DEPENDENT REQUIREMENTS................................ ..................... 35

3.1 Part 1 - General..........................................................................................................................35
3.1.1 Timestamp............................................................................................................................35

3.2 Part 3 - Volume Structure..........................................................................................................36
3.2.1 Logical Volume Header Descriptor........................................................................................36



OSTA Universal Disk Format Revision 1.02ii

3.3 Part 4 - File System.....................................................................................................................37
3.3.1 File Identifier Descriptor.......................................................................................................37
3.3.2 ICB Tag................................................................................................................................38
3.3.3 File Entry..............................................................................................................................40
3.3.4 Extended Attributes...............................................................................................................45

4. USER INTERFACE REQUIREMENTS................................ ........................... 58

4.1 Part 3 - Volume Structure..........................................................................................................58

4.2 Part 4 - File System.....................................................................................................................58
4.2.1 ICB Tag................................................................................................................................58
4.2.2 File Identifier Descriptor.......................................................................................................59

5. INFORMATIVE................................ ................................ ................................ 66

5.1 Descriptor Lengths.....................................................................................................................66

5.2 Using Implementation Use Areas...............................................................................................66
5.2.1 Entity Identifiers...................................................................................................................66
5.2.2 Orphan Space........................................................................................................................66

5.3 Boot Descriptor...........................................................................................................................67

5.4 Technical Contacts......................................................................................................................67

6. APPENDICES................................ ................................ ................................ .68

6.1 UDF Entity Identifier Definitions...............................................................................................68

6.2 UDF Entity Identifier Values.....................................................................................................68

6.3 Operating System Identifiers.....................................................................................................69

6.4 OSTA Compressed Unicode Algorithm.....................................................................................70

6.5 CRC Calculation.........................................................................................................................73

6.6 Algorithm for Strategy Type 4096.............................................................................................76

6.7 Identifier Translation Algorithms..............................................................................................77
6.7.1 DOS Algorithm.....................................................................................................................77
6.7.2 OS/2 , Macintosh and UNIX Algorithm................................................................................82

6.8 Extended Attribute Checksum Algorithm.................................................................................87

6.9 Requirements for DVD-ROM....................................................................................................88
6.9.1 Constraints imposed by UDF for DVD-Video........................................................................88
6.9.2 How to read a UDF disc........................................................................................................89
6.9.3 Obtaining DVD Documents..................................................................................................91



OSTA Universal Disk Format Revision 1.02iii

6.10 UDF Media Format Revision History.......................................................................................92

6.11 Developer Registration Form...................................................................................................93



OSTA Universal Disk Format Revision 1.02iv

This page left intentionally blank.



OSTA Universal Disk Format Revision 1.021

1. Introduction
The OSTA Universal Disk Format (UDF™) specification defines a subset of the
standard ISO/IEC 13346 . The primary goal of the OSTA UDF is to maximize
data interchange and minimize the cost and complexity of implementing ISO/IEC
13346.

To accomplish this task this document defines a Domain.  A domain defines
rules and restrictions on the use of ISO/IEC 13346.  The domain defined in this
specification is known as the “OSTA UDF Compliant” domain.

This document attempts to answer  the following questions for the structures of
ISO/IEC 13346 on a per operating system basis:

Given some ISO/IEC 13346 structure X, for each field in structure X
answer the following questions for a given operating system:

1) When reading this field: If the operating system supports the
data in this field then what should it map to in the operating
system?

2) When reading this field: If the operating system supports the
data in this field with certain limitations then how should the field be
interpreted under this operating system?

3) When reading this field: If the operating system does NOT
support the data in this field then how should the field be
interpreted under this operating system?

4) When writing this field: If the operating system supports the data
for this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT
support the data for this field then to what value should the field be
set?

For some structures of ISO/IEC 13346 the answers to the above questions were
self explanatory and therefore those structures are not included in this
document.

In some cases additional information is provided for each structure to help clarify
the standard.

This document should help make the task of implementing the ISO/IEC 13346
standard easier.



OSTA Universal Disk Format Revision 1.022

To be informed of changes to this document please fill out and return the OSTA
UDF Developers Registration Form located in appendix 6.10.

1.1 Document Layout
This document presents information on the treatment of structures defined under
standard ISO/IEC 13346. The following areas are covered
This document is separated into the following 4 basic sections:

• Basic Restrictions and Requirements - defines the restrictions and
requirements which are operating system independent.

• System Dependent Requirements - defines the restrictions and
requirements which are operating system dependent.

• User Interface Requirements - defines the restrictions and
requirements which are related to the user interface.

• Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under
standard ISO/IEC 13346. The following areas are covered :

Interpretation of a structure/field upon reading from media.

Contents of a structure/field upon writing to media.  Unless specified
otherwise writing refers only to creating a new structure on the media.
When it applies to updating an existing structure on the media it will be
specifically noted as such.

The fields of each structure are listed first, followed by a description of each field
with respect to the categories listed above.  In certain cases, one or more fields
of a structure are not described if the semantics associated with the field are
obvious.

A word on terminology: in common with ISO/IEC 13346, this document will use
shall to indicate a mandatory action or requirement, may to indicate an optional
action or requirement, and should to indicate a preferred but still optional,
action or requirement.

The standard ISO/IEC 13346 is commonly referred to as the NSR standard
where NSR stands for “Non-Sequential Recording.”  In this document we
sometimes use the term NSR to refer to ISO/IEC 13346.

Also, special comments associated with fields and/or structures are prefaced by
the notification: "NOTE:"



OSTA Universal Disk Format Revision 1.023

1.2  Compliance
This document requires conformance to parts 1, 2, 3 and 4 of ISO/IEC 13346.
Compliance to part 5 of ISO/IEC 13346 is not supported by this document.  Part
5 may be supported in a later revision of this document.

For an implementation to claim compliance to this document the implementation
shall meet all the requirements (indicated by the word  shall) specified in this
document.

The following are a few points of clarification in regards to compliance:

• Multi-Volume support is optional.  An implementation can claim
compliance and only support single volumes.

• Multi-Partition support is optional.  An implementation can claim
compliance without supporting the special multi-partition case on a
single volume defined in this specification.

• Media support.  An implementation can claim compliance and support
Rewritable  and Overwritable  media only, or WORM  media only, or
both.  All implementations should be able to support Read-Only
media.

• File Name Translation - Any time an implementation has the need to
transform a filename to meet operating system restrictions it shall use
the algorithms specified in this document.

• Extended Attributes - All compliant implementations shall preserve
existing extended attributes encountered on the media.
Implementations shall create and maintain the extended attributes for
the operating systems they support.  For example, an implementation
that supports Macintosh  shall preserve any OS/2  extended attributes
encountered on the media.  An implementation that supports
Macintosh shall also create and maintain all Macintosh extended
attributes specified in this document.

The full definition of compliance to this document is defined in a separate OSTA
document.



OSTA Universal Disk Format Revision 1.024

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and
requirements defined in this specification.  These restrictions & requirements as
well as additional ones are described in detail in the following sections of this
specification.

Item Restrictions & Requirements
Logical Sector Size The Logical Sector Size for a specific volume shall be

the same as the physical sector size of the specific
volume.

Logical Block Size The Logical Block Size for a Logical Volume shall be
set to the logical sector size of the volume or volume
set on which the specific logical volume resides.

Volume Sets All media within the same Volume Set shall have the
same physical sector size.  Rewritable /Overwritable
media and WORM  media shall not be mixed in/ be
present in the same volume set.

First 32K of Volume Space The first 32768 bytes of the Volume space shall not
be used for the recording of NSR structures.  This
area shall not be referenced by the Unallocated
Space Descriptor or any other NSR descriptor.  This is
intended for use by the native operating system.

Volume Recognition Sequence The Volume Recognition Sequence as described in
part 2 of ISO/IEC 13346 shall be recorded.

Timestamp All timestamps shall be recorded in local time.  Time
zones shall be recorded on operating systems that
support the concept of a time zone.

Entity Identifier s Entity Identifier s shall be recorded in accordance with
this document.  Unless otherwise specified in this
specification the Entity Identifiers shall contain a value
that uniquely identifies the implementation.

Descriptor CRCs CRCs shall be supported and calculated for all
Descriptors, except for the Space Bitmap Descriptor.

File Name Length Maximum of 255 bytes
Maximum Pathsize Maximum of 1023 bytes
Extent Length Maximum Extent Length  shall be 230 - Logical Block

Size
Primary Volume Descriptor There shall be exactly one prevailing Primary Volume

Descriptor recorded per volume.
Anchor Volume Descriptor Pointer Shall only be recorded at 2 of the following 3

locations:  256, N-256, or N.  Where N is the last
addressable sector of a volume.

Partition Descriptor A Partition Access Type of Read-Only , Rewritable,
Overwritable and WORM shall be supported.
There shall be exactly one prevailing Partition
Descriptor recorded per volume, with one exception.
For Volume Sets that consist of single volume, the
volume may contain 2 Partitions with 2 prevailing
Partition Descriptors only if one has an access type of
read only and the other has an access type of
Rewritable or Overwritable.  The Logical Volume for



OSTA Universal Disk Format Revision 1.025

this volume would consist of the contents of both
partitions.

Logical Volume Descriptor There shall be exactly one prevailing Logical Volume
Descriptor recorded per Volume Set.  The Partition
Maps field shall contain only Type 1 Partition Maps.

The LogicalVolumeIdentifier field shall not be null and
should contain a identifier that aids in the
identification of the logical volume. Specifically,
software generating volumes conforming to this
specification shall not set this field to a fixed or trivial
value.  Duplicate disks which are intended to be
identical may contain the same value in this field. This
field is extremely important in logical volume
identification when multiple media are present within a
jukebox. This name is typically what is displayed to
the user.

Logical Volume Integrity Descriptor Shall be recorded.
Unallocated Space Descriptor A single prevailing Unallocated Space Descriptor  shall

be recorded per volume.
File Set Descriptor There shall be exactly one File Set Descriptor

recorded per Logical Volume on
Rewritable/Overwritable media.  For WORM media
multiple File Set Descriptors may be recorded based
upon certain restrictions defined in this document.

ICB Tag Only strategy types 4 or 4096 shall be recorded.
File Identifier Descriptor The total length of a File Identifier Descriptor shall not

exceed the size of one Logical Block.
File Entry The total length of a File Entry shall not exceed the

size of one Logical Block.
Allocation Descriptors Only Short and Long Allocation Descriptors  shall be

recorded.
Allocation Extent Descriptors The length of any single Allocation Extent Descriptor

shall not exceed the Logical Block Size.
Unallocated Space Entry The total length of an Unallocated Space Entry shall

not exceed the size of one Logical Block.
Space Bitmap Descriptor CRC not required.
Partition Integrity Entry Shall not be recorded.
Volume Descriptor Sequence Extent Both the main and reserve volume descriptor

sequence extents shall each have a minimum length
of 16 logical sectors.

Record Structure Record structure files, as defined in part 5 of ISO/IEC
13346, shall not be created.



OSTA Universal Disk Format Revision 1.026

2.1 Part 1 - General
2.1.1 Character Sets

The character set used by UDF for the structures defined in this
document is the CS0  character set.  The OSTA CS0 character set is
defined as follows:

OSTA CS0 shall consist of the d-characters specified in the Unicode  1.1
standard (excluding #FEFF and FFFE) stored in the OSTA Compressed
Unicode format which is defined as follows:

OSTA Compressed Unicode format
RBP Length Name Contents

0 1 Compression ID Uint8
1 ?? Compressed Bit Stream byte

The CompressionID shall identify the compression algorithm used to
compress the CompressedBitStream field.  The following algorithms are
currently supported:

Compression Algorithm
Value Description
0 - 7 Reserved

8 Value indicates there are 8 bits per
character in the CompressedBitStream.

9-15 Reserved
16 Value indicates there are 16 bits per

character in the CompressedBitStream.
17-255 Reserved

For a CompressionID of 8 or 16, the value of the CompressionID  shall
specify the number of BitsPerCharacter for the d-characters defined in the
CharacterBitStream field. Each sequence of CompressionID bits in the
CharacterBitStream field shall represent an OSTA Compressed Unicode
d-character.  The bits of the character being encoded shall be added to
the CharacterBitStream from most- to least-significant-bit.  The bits shall
be added to the CharacterBitStream starting from the most-significant-bit
of the  current byte being encoded into.

The value of the OSTA Compressed Unicode d-character interpreted as a
Uint16 defines the value of the corresponding d-character in the Unicode
1.1 standard.  Refer to appendix on OSTA Compressed Unicode for
sample C source code to convert between OSTA Compressed Unicode
and standard Unicode 1.1.



OSTA Universal Disk Format Revision 1.027

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

2.1.2 OSTA CS0 Charspec

struct Charspec {
Uint8 CharacterSetType;
byte CharacterSetInfo[63];

}

The CharacterSetType field shall have the value of 0 to indicate the CS0
coded character set.

The CharacterSetInfo field shall contain the following byte values with the
remainder of the field set to a value of 0.

#4F, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #73,
#65, #64, #20, #55, #6E, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode ”

2.1.3 Dstrings
The ISO 13346 standard, as well as this document, has normally defined byte
positions  relative to 0.  In section 7.2.12 of  ISO 13346, dstrings are defined in
terms of being relative to 1.  Since this offers an opportunity for confusion, the
following shows what the definition would be if described relative to 0.

7.2.12 Fixed-length character fields
A dstring of length n is a field of n bytes where d-characters (1/7.2) are recorded. The
number of bytes used to record the characters shall be recorded as a Uint8 (1/7.1.1) in
byte n-1, where n is the length of the field. The characters shall be recorded starting with
the first byte of the field, and any remaining byte positions after the characters up until
byte n-2 inclusive shall be set to #00.

If the number of d-characters to be encoded is zero, the length of the dstring
shall be zero.  NOTE: The length of a dstring includes the compression code
byte(2.1.1) except for the case of a zero length string.  A zero length string shall
be recorded by setting the entire dstring field to all zeros.



OSTA Universal Disk Format Revision 1.028

2.1.4 Timestamp
struct timestamp { /* ISO 13346 1/7.3 */

Uint16 TypeAndTimezone;
Uint16 Year;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 HundredsofMicroseconds;
Uint8 Microseconds;

}

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of
this field, and TimeZone refers to the least significant 12 bits of this field.

The time within the structure shall be interpreted as Local Ti me
since Type shall be equal to ONE for OSTA UDF compliant media.

Type shall be set to ONE to indicate Local Time.

Shall be interpreted as the specifying the time zone  for the
location when this field was last modified. If this field contains
-2047 then the time zone has not been specified.

For operating systems that support the concept of a time zone, the
offset of the time zone (in 1 minute increments), from Coordinated
Universal Time, shall be inserted in this field. Otherwise the time
zone portion of this field shall be set to -2047.

2.1.5 Entity Identifier
struct EntityID { /* ISO 13346 1/7.4 */

Uint8 Flags;
char Identifier[23];
char IdentifierSuffix[8];

}

UDF classifies Entity Identifiers into 3 separate types as follows:

• Domain Entity Identifiers
• UDF Entity Identifiers
• Implementation Entity Identifiers



OSTA Universal Disk Format Revision 1.029

The following sections describes the format and use of Entity Identifiers
based upon the different types mentioned above.

2.1.5.1 Uint8 Flags
Self explanatory.

Shall be set to ZERO.

2.1.5.2 char Identifier
Unless stated otherwise in this document this field shall be set to an
identifier that uniquely identifies the implementation.  This methodology
will allow for identification of the implementation responsible for creating
structures recorded on media interchanged between different
implementations.

If an implementation updates existing structures on the media written by
other implementations the updating implementation shall set the Identifier
field to a value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the
NSR standard and shows to what values they shall be set.

Entity Identifiers
Descriptor Field ID Value Suffix Type

Primary Volume
Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Implementation
Use Volume
Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Implementation
Use Volume
Descriptor

Implementation ID “*UDF LV Info” UDF Identifier Suffix

Partition Descriptor Implementation ID “*Developer ID” Implementation
Identifier Suffix

Logical Volume
Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Logical Volume
Descriptor

Domain ID "*OSTA UDF
Compliant"

DOMAIN Identifier
Suffix

File Set Descriptor Domain ID "*OSTA UDF
Compliant"

DOMAIN Identifier
Suffix

File Identifier
Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix
(optional)

File Entry Implementation ID “*Developer ID” Implementation
Identifier Suffix

UDF Extended
Attribute

Implementation ID See Appendix UDF Identifier Suffix



OSTA Universal Disk Format Revision 1.0210

Non-UDF Extended
Attribute

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Device
Specification
Extended Attribute

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Logical Volume
Integrity Descriptor

Implementation ID “*Developer ID” Implementation
Identifier Suffix

Partition Integrity
Entry

Implementation ID N/A N/A

NOTE: The value of the Entity Identifier field is interpreted as a
sequence of bytes, and not as a dstring specified in CS0 .  For ease
of use the values used by UDF for this field are specified in terms
of ASCII character strings.  The actual sequence of bytes used for
the Entity Identifiers defined by UDF are specified in the appendix.

In the ID Value column in the above table “*Developer ID”  refers to a Entity
Identifier that uniquely identifies the current implementation.  The value specified
should be used when a new descriptor is created.  Also, the value specified
should be used for an existing descriptor when anything within the scope of the
specified EntityID field is modified.

The Suffix Type column in the above table defines the format of the suffix to be
used with the corresponding Entity Identifier.  These different suffix types are
defined in the following paragraphs.

NOTE: All Identifiers defined in this document (appendix 6.1) shall be
registered by OSTA as UDF Identifiers.

2.1.5.3 IdentifierSuffix
The format of the IdentifierSuffix field is dependent on the type of the
Identifier.

In regard to OSTA Domain  Entity Identifiers specified in this document
(appendix 6.1) the IdentifierSuffix field shall be constructed as follows:

Domain IdentifierSuffix field format
RBP Length Name Contents

0 2 UDF Revision Uint16 (= #0102)
2 1 Domain Flags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #0102 to indicate revision 1.02 of this
document.  This field will allow an implementation to detect changes
made in newer revisions of this document. The OSTA Domain  Identifiers



OSTA Universal Disk Format Revision 1.0211

are only used in the Logical Volume Descriptor and the File Set
Descriptor.  The DomainFlags field defines the following bit flags:

Domain Flags
Bit Description
0 Hard Write-Protect
1 Soft Write-Protect

2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the
volume or file system structures within the scope of the descriptor in
which it resides are write protected. A SoftWriteProtect flag value of ONE
shall indicate user write protected structures. This flag may be set or reset
by the user. The HardWriteProtect flag is an implementation settable flag
that indicates that the scope of the descriptor in which it resides is
permanently write protected. A HardWriteProtect flag value of ONE shall
indicate a permanently write protected structure.  Once set this flag shall
not be reset.   The HardWriteProtect  flag overrides the SoftWriteProtect
flag. These flags  are only used in the Logical Volume Descriptor and the
File Set Descriptor.  The flags in the Logical Volume descriptor have
precedence over the flags in the File Set Descriptors.

Implementation use Entity Identifiers defined by UDF (appendix 6.1) the
IdentifierSuffix field shall be constructed as follows:

UDF IdentifierSuffix
RBP Length Name Contents

0 2 UDF Revision Uint16 (= #0102)
2 1 OS Class Uint8
3 1 OS Identifier Uint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in the
Appendix on Operating System Identifiers.

For implementation use  Entity Identifiers not defined by UDF the
IdentifierSuffix field shall be constructed as follows:

Implementation IdentifierSuffix
RBP Length Name Contents

0 1 OS Class Uint8
1 1 OS Identifier Uint8
2 6 Implementation Use Area bytes

NOTE: It is important to understand the intended use and importance of the OS
Class and OS Identifier fields.  The main purpose of these fields is to aid in



OSTA Universal Disk Format Revision 1.0212

debugging when problems are found on a UDF volume.  The fields also provide
useful information which could be provided to the end user.  When set correctly
these two fields provide an implementation with information such as the
following:

• Identify under which operating system a particular structure was last
modified.

• Identify under which operating system a specific file or directory was
last modified.

• If a developer supports multiple operating systems with their
implementation, it helps to determine under which operating system a
problem may have occurred.



OSTA Universal Disk Format Revision 1.0213

2.2 Part 3 - Volume Structure
2.2.1 Descriptor Tag

struct tag { /* ISO 13346 3/7.2 */
Uint16 TagIdentifier;
Uint16 DescriptorVersion;
Uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 DescriptorCRCLength;
Uint32 TagLocation;

}

2.2.1.1 Uint16 TagSerialNumber
Ignored. Intended for disaster recovery.

Reset to a (possibly non-unique) value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones
previously recorded, upon volume re-initialization.   It is suggested that
the value in the prevailing Primary Volume Descriptor  + 1 be used.

2.2.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor.  The value
of this field shall be set to the size of the Descriptor - Length of Descriptor
Tag.  When reading a descriptor the CRC  should be validated.

2.2.2 Primary Volume Descriptor
struct PrimaryVolumeDescriptor { /* ISO 13346 3/10.1 */

struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
Uint32 PrimaryVolumeDescrip torNumber;
dstring VolumeIdentifier[32];
Uint16 VolumeSequenceNumber;
Uint16 MaximumVolumeSequenceNumber;
Uint16 InterchangeLevel;
Uint16 MaximumInterchangeLevel;
Uint32 CharacterSetList;
Uint32 MaximumCharacterSetList;
dstring VolumeSetIdentifier[128];
struct charspec DescriptorCharacterSet;
struct charspec ExplanatoryCharacterSet;
struct extent_ad VolumeAbstract;
struct extent_ad VolumeCopyrightNotice;



OSTA Universal Disk Format Revision 1.0214

struct EntityID ApplicationIdentifier;
struct timestamp RecordingDateandTime;
struct EntityID ImplementationIdentifier;
byte ImplementationUse[64];
Uint32 PredecessorVolumeDescriptorSequenceLocation;
Uint16 Flags;
byte Reserved[22];

}

2.2.2.1 Uint16  InterchangeLevel
Interpreted as specifying the current interchange level (as specified
in ISO/IEC 13346 3/11), of the contents of the associated volume
and the restrictions implied by the specified level.

If this volume is part of a multi-volume Volume Set then the level
shall be set to 3, otherwise the level shall be set to 2.

ISO 13346 requires an implementation to enforce the restrictions
associated with the specified current Interchange Level.  The
implementation may change the value of this field as long as it does not
exceed the value of the Maximum Interchange Level field.

2.2.2.2 Uint16  MaximumInterchangeLevel
Interpreted as specifying the maximum interchange level  (as
specified in ISO/IEC 13346 3/11), of the contents of the associated
volume.

This field shall be set to level 3 (No Restrictions Apply), unless
specifically given a different value by the user.

NOTE: This field is used to determine the intent of the originator of the
volume.  If this field has been set to 2 then the originator does not wish
the volume to be included in a multi-volume set (interchange level 3).
The receiver may override this field and set it to a 3 but the
implementation should give the receiver a strict warning explaining the
intent of the originator of the volume.

2.2.2.3 Uint32  CharacterSetList
Interpreted as specifying the character set(s) in use by any of the
structures defined in Part 3 of ISO/IEC 13346 (3/10.1.9).

Shall be set to indicate support for CS0  only as defined in 2.1.2.



OSTA Universal Disk Format Revision 1.0215

2.2.2.4 Uint32  MaximumCharacterSetList
Interpreted as specifying the maximum supported charact er sets
(as specified in ISO/IEC 13346) which may be specified in the
CharacterSetList field.

Shall be set to indicate support for CS0  only as defined in 2.1.2.

2.2.2.5 dstring  VolumeSetIdentifier
Interpreted as specifying the identifier for the volume set .

The first 16 characters of this field should be set to a unique value.
The remainder of the field may be set to any allowed value.
Specifically, software generating volumes conforming to this
specification shall not set this field to a fixed or trivial value.
Duplicate disks which are intended to be identical may contain the
same value in this field.

NOTE: The intended purpose of this is to guarantee Volume Sets
with unique identifiers.  The first 8 characters of the unique part
should come from a CS0  hexadecimal representation of a 32-bit
time value.  The remaining 8 characters are free for implementation
use.

2.2.2.6 struct charspec  DescriptorCharacterSet
Interpreted as specifying the character sets allowed in the Volume
Identifier and Volume Set Identifier fields.

Shall be set to indicate support for CS0  as defined in 2.1.2.

2.2.2.7 struct charspec  ExplanatoryCharacterSet
Interpreted as specifying the character sets used to interpret the
contents of the VolumeAbstract and VolumeCopyrightNotice
extents.

Shall be set to indicate support for C S0 as defined in 2.1.2.

2.2.2.8 struct EntityID  ImplementationIdentifier;
For more information on the proper handling of this field see the section
on Entity Identifier.

2.2.3 Anchor Volume Descriptor Pointer
struct AnchorVolumeDescriptorPointer { /* ISO 13346 3/10.2 */



OSTA Universal Disk Format Revision 1.0216

struct tag DescriptorTag;
struct extent_ad MainVolumeDescriptorSequenceExtent;
struct extent_ad ReserveVolumeDescriptorSequenceExtent;
byte Reserved[480];

}

NOTE: An AnchorVolumeDescriptorPointer structure shall only be
recorded at 2 of the following 3 locations on the media :

• Logical Sector 256.
• Logical Sector (N - 256).
• N

 
  

2.2.3.1 struct MainVolumeDescriptorSequenceExtent
The main VolumeDescriptorSequenceExtent shall have a minimum length
of 16 logical sectors.

2.2.3.2 struct ReserveVolumeDescriptorSequenceExtent
The reserve VolumeDescriptorSequenceExtent shall have a minimum
length of 16 logical sectors.

2.2.4 Logical Volume Descriptor
struct LogicalVolumeDescriptor { /* ISO 13346 3/10.6 */

struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
struct charspec DescriptorCharacterSet;
dstring LogicalVolumeIdentifier[128];
Uint32 LogicalBlockSize,
struct EntityID DomainIdentifier;
byte LogicalVolumeContentsUse[16];
Uint32 MapTableLength;
Uint32 NumberofPartitionMaps;
struct EntityID ImplementationIdentifier;
byte ImplementationUse[128];
extent_ad IntegritySequenceExtent,
byte PartitionMaps[??];

}

2.2.4.1 struct charspec  DescriptorCharacterSet
Interpreted as specifying the character set allowed in the
LogicalVolumeIdentifier field.



OSTA Universal Disk Format Revision 1.0217

Shall be set to indicate support for CS0 as defined in 2.1.2 .

2.2.4.2 Uint32  LogicalBlockSize
Interpreted as specifying the Logical Block Size for the logical
volume identified by this LogicalVolumeDescriptor.

This field shall be set to the largest logical sector size encountered
amongst all the partitions on media that constitute the logical
volume identified by this LogicalVolumeDescriptor.  Since UDF
requires that all Volumes within a VolumeSet have the same logical
sector size, the Logical Block Size will be the same as the logical
sector size of the Volume.

2.2.4.3 struct EntityID  DomainIdentifier
Interpreted as specifying a domain specifying rules on the use of,
and restrictions on, certain fields in the descriptors.  If this field is
all zero then it is ignored, otherwise the Entity Identifier rules are
followed.  NOTE: If the field does not contain “*OSTA UDF
Compliant” then an implementation may deny the user access to
the logical volume.

This field shall indicate that the contents of this logical volume
conforms to the domain defined in this document, therefore  the
DomainIdentifier shall be set to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the IdentifierSuffix
field of this EntityID shall contain the revision of this document for
which the contents of the Logical Volume is compatible.  For more
information on the proper handling of this field see the section on
Entity Identifier.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.4.3.

2.2.4.4 struct EntityID  ImplementationIdentifier;
For more information on the proper handling of this field see the
section on Entity Identifier.

2.2.4.5 struct extent_ad  IntegritySequenceExtent
A value in this field is required for the Logical Volume Integrity Descriptor .
For Rewriteable or Overwriteable media this shall be set to a minimum of
8K bytes.



OSTA Universal Disk Format Revision 1.0218

WARNING: For WORM media this field should be set to an extent of
some substantial length.  Once the WORM volume on which the Logical
Volume Integrity Descriptor  resides is full a new volume must be added to
the volume set since the Logical Volume Integrity Descriptor must reside
on the same volume as the prevailing Logical Volume Descriptor .

2.2.4.6 byte  PartitionMaps
For the purpose of interchange partition maps shall be limited to Partition
Map type 1.

2.2.5 Unallocated Space Descriptor
struct UnallocatedSpaceDesc { /* ISO 13346 3/10.8 */

struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber
Uint32 NumberofAllocationDescriptors;
extent_ad AllocationDescriptors[??];

}

This descriptor shall be recorded, even if there is no free volume space.
2.2.6  Logical Volume Integrity Descriptor

struct LogicalVolumeIntegrityDesc { /* ISO 13346 3/10.10 */
struct tag DescriptorTag,
Timestamp RecordingDateAndTime,
Uint32 IntegrityType,
struct extend_ad NextIntegrityExtent,
byte LogicalVolumeContentsUse[32],
Uint32 NumberOfPartitions,
Uint32 LengthOfImplementationUse,
Uint32 FreeSpaceTable[??],
Uint32 SizeTable[??],
byte ImplementationUse[??]

}

The Logical Volume Integrity Descriptor is a structure that shall be written
any time the contents of the associated Logical Volume is modified.
Through the contents of the Logical Volume Integrity Descriptor an
implementation can easily answer the following useful questions:

1) Are the contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
Volume was modified?

3) What is the total Logical Volume free space in logical blocks?



OSTA Universal Disk Format Revision 1.0219

4) What is the total size of the Logical Volume in logical blocks?

5) What is the next available UniqueID  for use within the Logical
Volume?

6) Has some other implementation modified the contents of the
logical volume since the last time that the original implementation
which created the logical volume accessed it.

2.2.6.1 byte  LogicalVolumeContentsUse
See the section on Logical Volume Header Descriptor for information on
the contents of this field.

2.2.6.2 Uint32  FreeSpaceTable
Since most operating systems require that an implementation provide the
true free space of a Logical Volume at mount time it is important that
these values be maintained.  The optional value of #FFFFFFFF which
indicates that the amount of available free space is not known shall not be
used.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the
Logical Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable
Since most operating systems require that an implementation provide the
total size of a Logical Volume at mount time it is important that these
values be maintained.  The optional value of #FFFFFFFF which indicates
that the partition size is not known shall not be used.

2.2.6.4 byte  ImplementationUse
The ImplementationUse area for the  Logical Volume Integrity Descriptor
shall be structured as follows:

ImplementationUse format
RBP Length Name Contents

0 32 ImplementationID EntityID
32 4 Number of Files Uint32
36 4 Number of Directories Uint32
40 2 Minimum UDF Read Revision Uint16
42 2 Minimum UDF Write Revision Uint16
44 2 Maximum UDF Write Revision Uint16
46 ?? Implementation Use byte

Implementation ID - The implementation identifier EntityID of the
implementation which last modified anything within the scope of
this EntityID. The scope of this EntityID is the Logical Volume



OSTA Universal Disk Format Revision 1.0220

Descriptor, and the contents of the associated Logical Volume.
This field allows an implementation to identify which
implementation last modified the contents of a Logical Volume.

Number of Files - The current number of files in the associated
Logical Volume. This information is needed by the Macintosh  OS.
All implementations shall maintain this information.  NOTE: This
value does not include Extended Attributes  as part of the file count.

Number of Directories - The current number of directories in the
associated Logical Volume.  This information is needed by the
Macintosh OS. All implementations shall maintain this information.
NOTE: The root directory shall be included in the directory count.

Minimum UDF Read Revision - Shall indicate the minimum
recommended revision of the UDF specification that an
implementation is required to support to successfully be able to
read all potential structures on the media.  This number shall be
stored in binary coded decimal format, for example #0102 would
indicate revision 1.02 of the UDF specification.

Minimum UDF Write Revision - Shall indicate the minimum revision
of the UDF specification that an implementation is required to
support to successfully be able to modify all structures on the
media.  This number shall be stored in binary coded decimal
format, for example #0102 would indicate revision 1.02 of the UDF
specification.

Maximum UDF Write Revision - Shall indicate the maximum
revision of the UDF specification that an implementation which has
modified the media has supported.  An implementation shall
update this field only if it has modified the media and the level of
the UDF specification it supports is higher than the current value of
this field.  This number shall be stored in binary coded decimal
format, for example #0102 would indicate revision 1.02 of the UDF
specification.

Implementation Use - Contains implementation specific information
unique to the implementation identified by the Implementation ID.



OSTA Universal Disk Format Revision 1.0221

2.2.7 Implemention Use Volume Descriptor
struct ImpUseVolumeDescriptor {

struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
struct EntityID ImplementationIdentifier;
byte ImplementationUse[460];

}

This section defines an UDF Implementation Use Volume Descriptor .
This descriptor shall be recorded on every Volume of a Volume Set.  The
Volume may also contain additional Implementation Use Volume
Descriptors which are implementation specific.  The intended purpose of
this descriptor is to aid in the identification of a Volume within a Volume
Set that belongs to a specific Logical Volume.

NOTE: An implementation may still record an additional Implementation
Use Volume Descriptor  in its own format on the media.  The UDF
Implementation Use Volume Descriptor does not preclude an additional
descriptor.

2.2.7.1 EntityID Implementation Identifier
This field shall specify “*UDF LV Info”.

2.2.7.2 bytes Implementation Use
The implementation use area shall contain the following structure:

struct LVInformation {
struct charspec LVICharset,
dstring LogicalVolumeIdentifier[128],
dstring LVInfo1[36],
dstring LVInfo2[36],
dstring LVInfo3[36],
struct EntityID ImplementionID,
bytes ImplementationUse[128];

}

2.2.7.2.1 charspec LVICharset
Interpreted as specifying the character sets allowed in the
LogicalVolumeIdentifier and LVInfo fields.

Shall be set to indicate support for CS0 only as defined in
2.1.2.

.



OSTA Universal Disk Format Revision 1.0222

2.2.7.2.2 dstring LogicalVolumeIdentifier
Identifies the Logical Volume referenced by this descriptor.

2.2.7.2.3 dstring LVInfo1
The fields LVInfo1, LVInfo2 and LVInfo3 should contain additional
information to aid in the identification of the media.  For example the
LVInfo fields could contain information such as Owner Name,
Organization Name,  and Contact Information.

2.2.7.2.4 struct EntityID ImplementionID
Refer to the section on Entity Identifier.

2.2.7.2.5 bytes ImplementationUse[128]
This area may be used by the implementation to store any additional
implementation specific information.



OSTA Universal Disk Format Revision 1.0223

2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { /* ISO 13346 4/7.2 */
Uint16 TagIdentifier;
Uint16 DescriptorVersion;
Uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 DescriptorCRCLength;
Uint32 TagLocation;

}

2.3.1.1 Uint16  TagSerialNumber
Ignored.

Reset to a non-unique v alue at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones
previously recorded, upon volume re-initialization. The intended use of
this field is for disaster recovery.  The TagSerialNumber for all descriptors
in Part 4 should be the same as the serial number used in the associated
File Set Descriptor

2.3.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor, unless
otherwise noted.  The value of this field shall be set to the size of the
Descriptor - Length of Descriptor Tag .  When reading a descriptor the
CRC should be validated.

2.3.2 File Set Descriptor
struct FileSetDescriptor { /* ISO 13346 4/14.1 */

struct tag DescriptorTag;
struct timestamp RecordingDateandTime;
Uint16 InterchangeLevel;
Uint16 MaximumInterchangeLevel;
Uint32 CharacterSetList;
Uint32 MaximumCharacterSetList;
Uint32 FileSetNumber;
Uint32 FileSetDescriptorNumber;
struct charspec LogicalVolumeIdentifierCharacterSet;
dstring LogicalVolumeIdentifier[128];
struct charspec FileSetCharacterSet;



OSTA Universal Disk Format Revision 1.0224

dstring FileSetIdentifer[32];
dstring CopyrightFileIdentifier[32];
dstring AbstractFileIdentifier[32];
struct long_ad RootDirectoryICB;
struct EntityID DomainIdentifier;
struct long_ad NextExtent;
byte Reserved[48];

}

On rewritable/overwritable media, only one FileSet descriptor shall be
recorded.  On WORM  media, multiple FileSet descriptors may be
recorded.

The UDF provision for multiple File Sets is as follows:

• Multiple FileSets are only allowed on WORM media.
• The default FileSet shall be the one with the highest

FileSetNumber.
• Only the default FileSet may be flagged as writable.  All other

FileSets in the sequence shall be flagged HardWriteProtect
(see EntityID definition).

• No writable FileSet shall reference any metadata structures
which are referenced (directly or indirectly) by any other
FileSet.  Writable FileSets may, however, reference the actual
file data extents.

Within a FileSet on WORM, if all files and directories have been recorded
with ICB strategy  type 4, then the DomainID of the corresponding FileSet
Descriptor shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM is to support the
ability to have multiple archive images on the media.  For example one
FileSet could represent a backup of a certain set of information made at a
specific point in time.  The next FileSet could represent another backup of
the same set of information made at a later point in time.

2.3.2.1 Uint16  InterchangeLevel
Interpreted as specifying the current interchange level (as specified
in ISO/IEC 13346 4/15), of the contents of the associated file set
and the restrictions implied by the specified level.

Shall be set to a level of 3.

An implementation shall enforce the restrictions associated with the
specified current Interchange Level.



OSTA Universal Disk Format Revision 1.0225

2.3.2.2 Uint16  MaximumInterchangeLevel
Interpreted as specifying the maximum interchange level of the
contents of the associated file set.  This value restricts to what the
current Interchange Level field may be set.

Shall be set to level 3.

2.3.2.3 Uint32  CharacterSetList
Interpreted as specifying the character set(s) specified by any field,
whose contents are specified to be a charspec, of any descriptor
specified in Part 4 of ISO/IEC 13346 and recorded in the file set
described by this descriptor.

Shall be set to indicate support for CS0 only as defined in 2.1.2 .

2.3.2.4 Uint32  MaximumCharacterSetList
Interpreted as specifying the maximum supported character set in
the associated file set and the restrictions implied by the specified
level.

Shall be set to indicate support for C S0 only as defined in 2.1.2 .

2.3.2.5 struct charspec LogicalVolumeIdentifierCharacterSet
Interpreted as specifying the d-characters allowed in the Logical
Volume Identifier field.

Shall be set to indicate support for CS0 as defined in 2.1.2 .

2.3.2.6 struct charspec FileSetCharacterSet
Interpreted as specifying the d-characters allowed in dstring fields
defined in Part 4 of ISO 13346 that are within the scope of the
FileSetDescriptor.

Shall be set to indicate support for CS0 as defined in 2.1.2 .

2.3.2.7 struct EntityID  DomainIdentifier
Interpreted as specifying a domain specifying rules on the use of,
and restrictions on, certain fields in the descriptors.  If this field is
NULL then it is ignored, otherwise the Entity Identifier rules are
followed.



OSTA Universal Disk Format Revision 1.0226

This field shall indicate that the scope of this File Set Descriptor
conforms to the domain defined in this document, therefore  the
ImplementationIdentifier shall be set to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the IdentifierSuffix
field of this EntityID shall contain the revision of this document for
which the contents of the Logical Volume is compatible.  For more
information on the proper handling of this field see the section on
Entity Identifier.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags.

2.3.3 Partition Header Descriptor
struct PartitionHeaderDescriptor { /* ISO 13346 4/14.3 */

struct short_ad UnallocatedSpaceTable;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionIntegrityTable;
struct short_ad FreedSpaceTable;
struct short_ad FreedSpaceBitmap;
byte Reserved[88];

}

As a point of clarification the logical blocks represented as Unallocated
are blocks that are ready to be written without any preprocessing.  In the
case of Rewritable  media this would be a write without an erase pass.
The logical blocks represented as Freed are blocks that are not ready to
be written, and require some form of  preprocessing.  In the case of
Rewritable media this would be a write with an erase pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent
across a Logical Volume.  Space Tables and Space Bitmaps shall not
both be used at the same time within a Logical Volume.

2.3.3.1 struct short_ad PartitionIntegrityTable
Shall be set to all 0’s since PartitionIntegrityEntrys are not used.



OSTA Universal Disk Format Revision 1.0227

2.3.4 File Identifier Descriptor
struct FileIdentifierDescriptor { /* ISO 13346 4/14.4 */

struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileIdentifier;
struct long_ad ICB ;
Uint16 LengthofImplementationUse;
byte ImplementationUse[??];
char FileIdentifier[??];
byte Padding[??];

}

The File Identifier Descriptor shall be restricted to the length of one
Logical Block.

2.3.4.1 Uint16  FileVersionNumber
There shall be only one version of a file as specified below with the
value being set to 1.

Shall be set to 1.

2.3.4.2 Uint16  Lengthof ImplementationUse
Shall specifiy the length of the ImplementationUse field.

Shall specifiy the length of the ImplementationUse field.  This field
may be ZERO, indicating that the ImplementationUse field has not
been used.

2.3.4.3 byte  ImplementationUse
If the LengthofImplementationUse field is non ZERO then the first
32 bytes of this field shall be interpreted as specifying the
implementation identifier EntityID of the implementation which last
modified the File Identifier Descriptor.

If the LengthofImplementationUse field is non ZERO then the first
32 bytes of this field shall be set to the implementation identifier
EntityID of the current implementation.

NOTE:  For additional information on the proper handling of this field
refer to the section on Entity Identifier.

This field allows an implementation to identify which implementation last
created and/or modified a specific File Identifier Descriptor .



OSTA Universal Disk Format Revision 1.0228

2.3.5 ICB Tag
struct icbtag { /* ISO 13346 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved;
Uint8 FileType;
Lb_addr ParentICBLocation;
Uint16 Flags;

}

2.3.5.1 Uint16 StrategyType
The contents of this field specifies the ICB  strategy type used.  For
the purposes of read access an implementation shall support
strategy types 4 and 4096.

Shall be set to 4 or 4096.

NOTE: Strategy type 4096, which is defined in the appendix, is intended
for primary use on WORM media, but may also be used on rewritable and
overwritable media.

2.3.5.2 Uint8 FileType
As a point of clarification a value of 5 shall be used for a standard byte
addressable file, not 0.

2.3.5.3 ParentICBLocation
The use of this field by is optional.
NOTE: In ISO 13346-4/14.6.7 it states that “If this field contains 0, then
no such ICB is specified.”  This is a flaw in the ISO standard in that an
implementation could store a directory ICB at logical block address 0.
Therefore if you decide to use this field do not store a directory ICB at
logical block address 0.

2.3.5.4 Uint16 Flags
Bits 0-2: These bits specify the type of allocation descriptors used. Refer
to the section on Allocation Descriptors for the guidelines on choosing
which type of allocation descriptor to use.



OSTA Universal Disk Format Revision 1.0229

Bit 3 (Sorted):
For OSTA UDF com pliant media this bit shall indicate (ZERO) that
directories may be unsorted.

Shall be set to ZERO.

Bit 4 (Non-relocatable):
For OSTA UDF compliant media this bit may indicate (ONE) that
the file is non-relocatable. An implementation may reset this bit to
ZERO to indicate that the file is relocatable if the implementation
can not assure that the file will not be relocated.

Should be set to ZERO.

Bit 9 (Contiguous):
For OSTA UDF compliant media this bit may indicate (ONE) that
the file is contiguous.  An implementation may reset this bit to
ZERO to indicate that the file may be non-contiguous if the
implementation can not assure that the file is contiguous.

Should be set to ZERO.

Bit 11 (Transformed):
For OSTA UDF compliant media this bit shall indicate (ZERO) that
no transformation has taken place.

Shall be set to ZE RO.

The methods used for data compression and other forms of data
transformation  shall be addressed in a future OSTA document.

Bit 12 (Multi-versions):
For OSTA UDF compliant media this bit shall indicate (ZERO) that
multi-versioned files are not present.

Shall be set to ZERO.



OSTA Universal Disk Format Revision 1.0230

2.3.6 File Entry
struct FileEntry { /* ISO 13346 4/14.9 */

struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Uid;
Uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFormat;
Uint8 RecordDisplayAttributes;
Uint32 RecordLength;
Uint64 InformationLength;
Uint64 LogicalBlocksRecorded;
struct timestamp AccessTime;
struct timestamp ModificationTime;
struct timestamp AttributeTime;
Uint32 Checkpoint;
struct long_ad ExtendedAttributeICB;
struct EntityID ImplementationIdentifier;
Uint64 UniqueID,
Uint32 LengthofExtendedAttributes;
Uint32 LengthofAllocationDescriptors;
byte ExtendedAttributes[??];
byte AllocationDescriptors[??];

}

NOTE: The total length of a FileEntry shall not exceed the size of one
logical block.

2.3.6.1 Uint8  RecordFormat;
For OSTA UDF compliant media this bit shall indicate (ZERO) that
the structure of the information recorded in the file is not specified
by this field.

Shall be set to ZERO.

2.3.6.2 Uint8  RecordDisplayAttributes;
For OSTA UDF compliant media this bit shall indicate (ZERO) that
the structure of the information recorded in the file is not specified
by this field.

Shall be set to ZERO.



OSTA Universal Disk Format Revision 1.0231

2.3.6.3 Uint8  RecordLength;
For OSTA UDF compliant media this bit shall indicate (ZERO) that
the structure of the information recorded in the file is not specified
by this field.

Shall be set to ZERO.

2.3.6.4 struct EntityID  ImplementationIdentifier;
Refer to the section on Entity Identifier.

2.3.6.5  Uint64  UniqueID
For the root directory of a file set  this value shall be set to ZERO.

It is required that this value be maintained and unique for every file and
directory in the LogicalVolume. This includes FileEntry descriptors
defined for Extended Attribute spaces.  The FileEntry for the Extended
Attribute space shall contain the same UniqueID as the file to which it is
attached.

NOTE: The UniqueID values 1-15 shall be reserved for the use of
Macintosh implementations.

2.3.7 Unallocated Space Entry
struct UnallocatedSpaceEntry { /* ISO 13346 4/14.11 */

struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 LengthofAllocationDescriptors;
byte AllocationDescriptors[??];

}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one
Logical Block.

2.3.7.1 byte AllocationDescriptors
Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in allocation descriptors
specify an extent type (ISO 13346 4/14.14.1.1).  For the allocation
descriptors specified for the UnallocatedSpaceEntry the type shall be set
to a value of 1 to indicate extent allocated but not recorded, or shall be
set to a value of 3 to indicate the extent is the next extent of allocation
descriptors.  This next extent of allocation descriptors shall be limited to
the length of one Logical Block.



OSTA Universal Disk Format Revision 1.0232

AllocationDescriptors shall be ordered sequentially in ascending location
order. No overlapping AllocationDescriptors shall exist in the table. For
example, ad.location = 2, ad.length = 2048  (logical block size = 1024)
then  nextad.location = 3 is not allowed.  Adjacent AllocationDescriptors
shall not be contiguous. For example ad.location = 2, ad.length = 1024
(logical block size = 1024), nextad.location = 3 is not allowed and would
instead be a single AllocationDescriptor, ad.location = 2, ad.length =
2048.  The only case where adjacent AllocationDescriptors may be
contiguous is when the ad.length of one of the adjacent
AllocationDescriptors is equal to the maximum AllocationDescriptors
length.

2.3.8 Space Bitmap Descriptor
struct SpaceBitmap { /* ISO 13346 4/14.11 */

struct Tag DescriptorTag;
Uint32 NumberOfBits;
Uint32 NumberOfBytes;
byte Bitmap[??];

}

2.3.8.1 struct Tag DescriptorTag
The calculation and maintenance of the DescriptorCRC field of the
Descriptor Tag  for the SpaceBitmap descriptor is optional.  If the CRC  is
not maintained then both the DescriptorCRC and DescriptorCRCLength
fields shall be ZERO.

2.3.9  Partition Integrity Entry
struct PartitionIntegrityEntry { /* ISO 13346 4/14.13 */

struct tag DescriptorTag;
struct icbtag ICBTag;
struct timestamp RecordingTime;
Uint8 IntegrityType;
byte Reserved[175];
struct EntityID ImplementationIdentifier ;
byte ImplementationUse[256];

}

With the functionality of the Logical Volume Integrity Descriptor this
descriptor is not needed, therefore this descriptor shall not be recorded.

2.3.10  Allocation Descriptors



OSTA Universal Disk Format Revision 1.0233

When constructing the data area of a file an implementation has several types of
allocation descriptors from which to choose.  The following guidelines shall be
followed in choosing the proper  allocation descriptor to be used:

Short Allocation Descriptor - For a Logical Volume that resides on a single
Volume with no intent to expand the Logical Volume beyond the single
volume Short Allocation Descriptors should be used.  For example a
Logical Volume created for a stand alone drive.

NOTE: Refer to section 2.2.2.2 on the MaximumInterchangeLevel.

Long Allocation Descriptor - For a Logical Volume that resides on a single
Logical Volume with intent to later expand the Logical Volume beyond the
single volume, or a Logical Volume that resides on multiple Volumes Long
Allocation Descriptors should be used.  For example a Logical Volume
created for a jukebox.

NOTE: There is a benefit of using Long Allocation Descriptors even on a
single volume, which is the support of tracking erased extents on
rewritable media.  See section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of
the ExtentLength field is 0, then the 2 most significant bits shall be 0.

2.3.10.1 Long Allocation Descriptor
struct long_ad { /* ISO 13346 4/14.14.2 */

Uint32 ExtentLength;
Lb_addr ExtentLocation;
byte ImplementationUse[6];

}

To allow use of the ImplementationUse field by UDF and also by
implementations the following structure shall be recorded within the 6 byte
Implementation Use field.

struct ADImpUse
{

Uint16 flags;
byte impUse[4];

}

/*
 * ADImpUse Flags  (NOTE: bits 1-15 reserved for future use by UDF)
*/
#define EXTENTErased (0x01)



OSTA Universal Disk Format Revision 1.0234

In the interests of efficiency on Rewritable media that benefits from
preprocessing, the EXTENTErased flag shall be set to ONE to indicate an
erased extent.  This applies only to extents of type not recorded but
allocated.

2.3.11  Allocation Extent Descriptor
struct AllocationExtentDescriptor {  /* ISO 13346 4/14.5 */

struct tag DescriptorTag;
Uint32 PreviousAllocationExtentLocation;
Uint32 LengthOfAllocationDescriptors;

}

NOTE:. AllocationDescriptor extents shall be a maximum of one logical
block in length.

2.3.11.1 Uint12  PreviousAllocationExtentLocation
The previous allocation extent location shall not be used as
specified below.

Shall be set to 0.

2.3.12  Pathname
2.3.12.1  Path Component

struct PathComponent { /* ISO 13346 4/14.16.1 */
Uint8 ComponentType;
Uint8 LengthofComponentIdentifier;
Uint16 ComponentFileVersionNumber;
char ComponentIdentifier[ ];

}

2.3.12.1.1 Uint16  ComponentFileVersionNumber
There shall be only one version of a file as specified below with the
value being set to ZERO.

Shall be set to ZERO.



OSTA Universal Disk Format Revision 1.0235

2.4 Part 5 - Record Structure
Record structure files shall not be created.  If they are encountered on the media
and they are not supported by the implementation they shall be treated as an
uninterpreted stream of bytes.



OSTA Universal Disk Format Revision 1.0236

3. System Dependent Requirements
3.1 Part 1 - General
3.1.1 Timestamp

struct timestamp { /* ISO 13346 1/7.3 */
Uint16 TypeAndTimezone;
Uint16 Year;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 HundredsofMicroseconds;
Uint8 Microseconds;

}

3.1.1.1 Uint8 Centiseconds;
For operating systems that do not support the concept of
centiseconds the implementation shall ignore this field.

For operating systems that do not support the concept of
centiseconds the implementation shall set this field to
ZERO.

3.1.1.2 Uint8 HundredsofMicroseconds;
For operating systems that do not support the concept of
hundreds of Microseconds the implementation shall ignore
this field.

For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set this
field to ZERO.

3.1.1.3 Uint8 Microseconds;
For operating systems that do not support the concept of
microseconds the implementation shall ignore this field.

For operating systems that do not support the concept of
microseconds the implementation shall set this field to
ZERO.



OSTA Universal Disk Format Revision 1.0237

3.2 Part 3 - Volume Structure
3.2.1 Logical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { /* ISO 13346 4/14.15 */
Uint64 UniqueID,
bytes reserved[24]

}

3.2.1.1 Uint64  UniqueID
This field contains the next UniqueID value which should be used.

NOTE: For compatibility with Macintosh  systems implementations should
keep this value less than the maximum value of a Int32 (2 31 - 1).



OSTA Universal Disk Format Revision 1.0238

3.3 Part 4 - File System
3.3.1 File Identifier Descriptor

struct FileIdentifierDescriptor { /* ISO 13346 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileIdentifier;
struct long_ad ICB ;
Uint16 LengthofImplementationUse;
byte ImplementationUse[??];
char FileIdentifier[??];
byte Padding[??];

}

NOTE: All UDF directories shall include a File Identifier Descriptor that
indicates the location of the parent directory.    The File Identifier
Descriptor describing the parent directory shall be the first File Identifier
Descriptor recorded in the directory.  The parent directory of the Root
directory shall be Root, as stated in ISO 13346-4, section 8.6

3.3.1.1 Uint8  FileCharacteristics
The following sections describe the usage of the FileCharacteristics under
various operating systems.

3.3.1.1.1 MS-DOS, OS/2, Macintosh
If Bit 0 is set to ONE, the file shall be considered a "hidden" file.
If Bit 1 is set to ONE, the file shall be considered a "directory."
If Bit 2 is set to ONE, the file shall be considered "deleted."
If Bit 3 is set to ONE, the ICB  field within the associated
FileIdentifier structure shall be considered as identifying the
"parent" directory of the directory that this descriptor is
recorded in

If the file is designated as a "hidden" file, Bit 0 shall be set to
ONE.
If the file is designated as a "directory", Bit 1 shall be set to
ONE.
If the file is designated as  "deleted", Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX
Under UNIX these bits shall be processed the same as specified in
3.3.1.1.1., except for hidden files which will be processed as
normal non-hidden files.



OSTA Universal Disk Format Revision 1.0239

3.3.2 ICB Tag
struct icbtag { /* ISO 13346 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved;
Uint8 FileType;
Lb_addr ParentICBLocation;
Uint16 Flags;

}

3.3.2.1 Uint16 Flags

3.3.2.1.1 MS-DOS,  OS/2
Bits 6 & 7 (Setuid & Setgid):

Ignored.

In the interests of maintaining security under environments which
do support these bits; bits 6 and 7 shall be set to ZERO if any one
of the following conditions are true :

• A file is created.

• The attributes/permissions associated with a file, are
modified .

• A file is written to ( the contents of the data associated with
a file are modified ).

Bit 8 (Sticky):
Ignored.

Shall be set to ZERO.

Bit 10 (System):
Mapped to the MS-DOS  / OS/2 system bit.

Mapped from the MS-DOS  / OS/2 system bit.



OSTA Universal Disk Format Revision 1.0240

3.3.2.1.2 Macintosh
Bits 6 & 7 (Setuid & Setgid):

Ignored.

In the interests of maintaining security under environments which
do support these bits; bits 6 and 7 shall be set to ZERO if any one
of the following conditions are true :

• A file is created.

• The attributes/permis sions associated with a file, are
modified .

• A file is written to ( the contents of the data associated with
a file are modified ).

Bit 8 (Sticky):
Ignored.

Shall be set to ZERO.

Bit 10 (System):
Ignored.

Shall be set to ZERO.

3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX  file
system bits.

Bit 10 (System):
Ignored.

Shall be set to ZERO upon file creation only, otherwise maintained.



OSTA Universal Disk Format Revision 1.0241

3.3.3 File Entry
struct FileEntry { /* ISO 13346 4/14.9 */

struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Uid;
Uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFormat;
Uint8 RecordDisplayAttributes;
Uint32 RecordLength;
Uint64 InformationLength;
Uint64 LogicalBlocksRecorded;
struct timestamp AccessTime;
struct timestamp ModificationTime;
struct timestamp AttributeTime;
Uint32 Checkpoint;
struct long_ad ExtendedAttributeICB;
struct EntityID ImplementationIdentifier ;
Uint64 UniqueID,
Uint32 LengthofExtendedAttributes;
Uint32 LengthofAllocationDescriptors;
byte ExtendedAttributes[??];
byte AllocationDescriptors[??];

}

NOTE: The total length of a FileEntry shall not exceed the size of one
logical block.

3.3.3.1 Uint32  Uid
For operating systems that do not support the concept of a user
identifier the implementation shall ignore this field.  For operating
systems that do support this field a value of 2 32 - 1 shall indicate an
invalid UID, otherwise the field contains a valid user identifier.

For operating systems that do not support the concept of a user
identifier the implementation shall set this field to 2 32 - 1 to indicate
an invalid UID, unless otherwise specified by the user.

3.3.3.2 Uint32  Gid
For operating systems that do not support the concept of a group
identifier the implementation shall  ignore this field. For operating
systems that do support this field a value of 2 32 - 1 shall indicate an
invalid GID, otherwise the field contains a valid group identifier.



OSTA Universal Disk Format Revision 1.0242

For operating systems that do not support the concept of a group
identifier the implementation shall set this field to  2 32 - 1 to indicate
an invalid GID, unless otherwise specified by the user.

3.3.3.3 Uint32  Permissions;
/* Definitions: */
/*  Bit     for a File                 for a Directory              */
/*  ------- ------------------------   ---------------------------- */
/*  Execute May execute file           May search directory         */
/*  Write   May change file contents   May create and delete files  */
/*  Read    May examine file contents  May list files in directory  */
/*  ChAttr  May change file attributes May change dir attributes    */
/*  Delete  May delete file            May delete directory         */

#define OTHER_Execute 0x00000001
#define OTHER_Write   0x00000002
#define OTHER_Read    0x00000004
#define OTHER_ChAttr  0x00000008
#define OTHER_Delete  0x00000010

#define GROUP_Execute 0x00000020
#define GROUP_Write   0x00000040
#define GROUP_Read    0x00000080
#define GROUP_ChAttr  0x00000100
#define GROUP_Delete  0x00000200

#define OWNER_Execute 0x00000400
#define OWNER_Write   0x00000800
#define OWNER_Read    0x00001000
#define OWNER_ChAttr  0x00002000
#define OWNER_Delete  0x00004000

The concept of permissions which deals with security is not completely portable
between operating systems.  This document attempts to maintain consistency
among implementations in processing the permission bits by addressing the
following basic issues:

1. How should an implementation handle Owner, Group and Other
permissions when the operating system has no concept of User and
Group Ids?

2. How should an implementation process permission bits when
encountered, specifically permission bits that do not directly map to an
operating system supported permission bit?

3. What default values should be used for permission bits that do not
directly map to an operating system supported permission bit  when
creating a new file?

User, Group and Other
In general, for operating systems that do not support User and Group Ids the
following algorithm should be used when processing permission bits:



OSTA Universal Disk Format Revision 1.0243

When reading a specific permission,  the logical OR of all three (owner,
group, other) permissions should be the value checked.  For example a
file would be considered writable if the logical OR of OWNER_Write,
GROUP_Write and OTHER_Write was equal to one.

When setting a specific permission the implementation should set all
three (owner, group, other) sets of permission bits.  For example to mark
a file as writable the OWNER_Write, GROUP_Write and OTHER_Write
should all be set to one.

Processing Permissions
Implementation shall process the permission bits according to the following table
which describes how to process the permission bits under the operating systems
covered by this document.  The table addresses the issues associated with
permission bits that do not directly map to an operating system supported
permission bit.

Permission File/Directory Description DOS OS/2 Mac
OS

UNIX

Read file The file may be read E E E E
Read directory The directory may be read E E E E
Write file The file’s contents may be

modified
E E E E

Write directory Files or subdirectories may
be created,  deleted or
renamed

E E E E

Execute file The file by be executed. I I I E
Execute directory The directory may be

searched for a specific file or
subdirectory.

E E E E

Attribute file The file’s permissions may
be changed.

E E E E

Attribute directory The directory’s permissions
may be changed.

E E E E

Delete file The file may be deleted. E E E E
Delete directory The directory may be

deleted.
E E E E

E - Enforce, I - Ignore

The Execute bit for a directory, sometimes referred to as the search bit, has
special meaning.  This bit enables a directory to be searched, but not have its
contents listed.  For example assume a directory called PRIVATE exists which
only has the Execute permission and does not have the Read permission bit set.
The contents of the directory PRIVATE can not be listed.  Assume there is a file
within the PRIVATE directory called README.  The user can get access to the
README file since the PRIVATE directory is searchable.



OSTA Universal Disk Format Revision 1.0244

To be able to list the contents of a directory both the Read and Execute
permission bits must be set for the directory.  To be able to create, delete and
rename a file or subdirectory both the Write and Execute permission bits must be
set for the directory.
To get a better understanding of the Execute bit for a directory reference any
UNIX book that covers file and directory permissions.  The rules defined by the
Execute bit for a directory shall be enforced by all implementations.

NOTE: To be able to delete a file or subdirectory the Delete  permission bit for
the file or subdirectory must be set, and both the Write and Execute permission
bits must be set for the directory it occupies.

Default Permission Values
For the operating systems covered by this document the following table
describes what default values should be used for permission bits that do not
directly map to an operating system supported permission bit  when creating a
new file.

Permission File/Directory Description DOS OS/2 Mac
OS

UNIX

Read file The file may be read 1 1 1 U
Read directory The directory may be read,

only if the directory is also
marked as Execute.

1 1 1 U

Write file The file’s contents may be
modified

U U U U

Write directory Files or subdirectories may
be renamed, added, or
deleted, only if the directory
is also marked as Execute.

U U U U

Execute file The file by be executed. 0 0 0 U
Execute directory The directory may be

searched for a specific file or
subdirectory.

1 1 1 U

Attribute file The file’s permissions may
be changed.

1 1 1 Note 1

Attribute directory The directory’s permissions
may be changed.

1 1 1 Note 1

Delete file The file may be deleted. Note 2 Note 2 Note 2 Note 2

Delete directory The directory may be
deleted.

Note 2 Note 2 Note 2 Note 2

U - User Specified, 1 - Set, 0 - Clear

NOTE 1: Under UNIX only the owner of a file/directory may change its attributes.

NOTE 2: The Delete permission bit should be set based upon the status of the
Write permission bit.  Under DOS , OS/2 and Macintosh , if a file or directory is
marked as writable ( Write permission set) then the file is considered deletable



OSTA Universal Disk Format Revision 1.0245

and the Delete permission bit should be set.  If a file is read only then the Delete
permission bit should not be set.  This applies to file create as well as changing
attributes of a file.

3.3.3.4  Uint64  UniqueID
NOTE: For some operating systems (i.e. Macintosh ) this value needs to
be less than the max value of a Int32 (231 - 1).  Under the Macintosh
operating system this value is used to represent the Macintosh
directory/file ID.  Therefore an implementation should attempt to keep this
value less than the max value of a Int32 (231 - 1). The values 1-15 shall be
reserved for the use of Macintosh implementations.

3.3.3.5  byte  Extended Attributes
Certain extended attributes should be recorded in this field of the
FileEntry for performance reasons. Other extended attributes should be
recorded in an ICB  pointed to by the field ExtendedAttributeICB.  In the
section on Extended Attributes it will be specified which extended
attributes should be recorded in this field.



OSTA Universal Disk Format Revision 1.0246

3.3.4 Extended Attributes

In order to handle some of the longer Extended Attributes  (EAs) which may vary
in length, the following rules apply to the EA space.

1. All EAs with an attribute length greater than or equal to a logical block
shall be block aligned by starting and ending on a logical block
boundary.

2. Smaller EAs shall be constrained to an attribute length which is a
multiple of 4 bytes.

3. The Extended Attribute space shall appear as a single contiguous
logical space constructed as follows:

ISO/IEC 13346  EAs
Non block aligned Implementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { /* ISO 13346 4/14.10.1 */

struct tag DescriptorTag;
Uint32 ImplementationAttributesLocation;
Uint32 ApplicationAttributesLocation;

}

If the attributes associated with the location fields highlighted above do
not exist, then the value of the location field shall be the end of the
extended attribute  space.

3.3.4.2 Alternate Permissions
struct AlternatePermissionsExtendedAttribute { /* ISO 13346 4/14.10.4 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint16 OwnerIdentifi cation;
Uint16 GroupIdentification;
Uint16 Permission;

}

This structure shall not be recorded.



OSTA Universal Disk Format Revision 1.0247

3.3.4.3 File Times Extended Attribute
struct FileTimesExtendedAttribute { /* ISO 13346 4/14.10.5 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint32 DataLength;
Uint32 FileTimeExistence;
byte FileTimes;

}

3.3.4.3.1 Uint32  FileTimeExistance
3.3.4.3.1.1 Macintosh OS

This field shall be set to indicate that only the file creation time has
been recorded.

3.3.4.3.1.2 Other OS
This structure need not be recorded.

3.3.4.3.2 byte  FileTimes
3.3.4.3.2.1 Macintosh OS

Shall be interpreted as the creation time of the associated
file.

Shall be set to creation time of the associated file.

If the File Times Extended Attribute does not exist then a
Macintosh implementation shall use the ModificationTime field of
the File Entry to represent the file creation time.

3.3.4.3.2.2 Other OS
This structure need not be recorded.

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute { /* ISO 13346 4/14.10.7 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint32 ImplementationUseLength;    /* (=IU_L) */
Uint32 MajorDeviceIdentification;
Uint32 MinorDeviceIdentification;
byte ImplementationUse[IU_L];

}



OSTA Universal Disk Format Revision 1.0248

The following paradigm shall be followed by an implementation that
creates a Device Specification Extended Attribute associated with a file :

If and only if a file has a DeviceSpecificationExtendedAttribute
associated with it, the contents of the FileType field in the icbtag
structure be set to 6 (indicating a block special device file), OR 7
(indicating a character special device file).

If the contents of the FileType field in the icbtag structure do not
equal 6 or 7, the DeviceSpecificationExtendedAttribute associated
with a file shall be ignored.

In the event that the contents of the FileType field in the icbtag
structure equal 6 or 7, and the file does not have a
DeviceSpecificationExtendedAttribute associated with it, access to
the file shall be denied.

For operating system environments that do not provide for the
semantics associated with a block special device file, requests to
open/read/write/close a file that has the
DeviceSpecificationExtendedAttribute associated with it shall be
denied.

All implementations shall record a developer ID in the
ImplementationUse field that uniquely identifies the current
implementation.

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute { /* ISO 13346 4/14.10.8 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint32 ImplementationUseLength;   /* (=IU_L) */
struct EntityID  ImplementationIdentifier;
byte ImplementationUse[IU_L];

}

The AttributeLength field specifies the length of the entire extended
attribute.  For variable length extended attributes defined using the
Implementation Use Extended Attribute the Attribute Length field should
be large enough to leave padding space between the end of the
Implementation Use field and the end of the Implementation Use
Extended Attribute.



OSTA Universal Disk Format Revision 1.0249

The following sections describe how the Implementation Use Extended
Attribute is used under various operating systems to store operating
system specific extended attribute s.

The structures defined in the following sections contain a header
checksum field.  This field represents a 16-bit checksum of the
Implementation Use Extended Attribute header.  The fields AttributeType
through ImplementationIdentifier inclusively represent the data covered by
the checksum.  The header checksum field is used to aid in disaster
recovery of the extended attribute  space.  C source code for the header
checksum may be found in the appendix.

NOTE:  All compliant implementations shall preserve existing extended
attributes encountered on the media.  Implementations shall create and
support the extended attributes for the operating system they currently
support.  For example, a Macintosh  implementation shall preserve any
OS/2 extended attributes encountered on the media.  It shall also create
and support all Macintosh extended attributes specified in this document.

3.3.4.5.1  All Operating Systems
3.3.4.5.1.1 FreeEASpace

This extended attribute  shall be used to indicate unused space
within the  extended attribute space.  This extended attributes shall
be stored as an Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:

"*UDF FreeEASpace"

The ImplementationUse area for this extended attribute  shall be
structured as follows:

FreeEASpace format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 IU_L-1 Free EA Space bytes

This extended attribute  allows an implementation to shrink/grow
the total size of other extended attributes without rewriting the
complete extended attribute space.  The  FreeEASpace extended
attribute may be overwritten and the space re-used by any
implementation who sees a need to overwrite it.

3.3.4.5.1.2 DVD Copyright Management Information



OSTA Universal Disk Format Revision 1.0250

This extended attribute  shall be used store DVD  Copyright
Management Information .  This extended attribute shall be stored
as an Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:

"*UDF DVD CGMS Info"

The ImplementationUse area for this extended attribute  shall be
structured as follows:

DVD CGMS Info format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended attribute  allows DVD Copyright Management
Information  to be stored.  The interpretation of this format shall be
defined in the DVD specification published by the DVD Consortium
(see 6.9.3).  Support for this extended attribute is optional.

3.3.4.5.2 MS-DOS
  Ignored.

 Not supported.  Extended attributes for existing files on the media
shall be preserved.

3.3.4.5.3  OS/2
OS/2 supports an unlimited number of extended attribute s which shall be
supported through the use of the following  two Implementation Use
Extended Attributes.

3.3.4.5.3.1 OS2EA
This extended attribute  contains all OS/2  definable extended
attributes  which  shall be stored as an Implementation Use
Extended Attribute whose ImplementationIdentifier shall be set to:

"*UDF OS/2 EA"

The ImplementationUse area for this extended attribute  shall be
structured as follows:

OS2EA format
RBP Length Name Contents



OSTA Universal Disk Format Revision 1.0251

0 2 Header Checksum Uint16
2 IU_L-2 OS/2 Extended Attributes FEA

The OS2ExtendedAttributes field contains a table of  OS/2  Full EAs
(FEA) as shown below.

FEA format
RBP Length Name Contents

0 1 Flags Uint8
1 1 Length of Name (=L_N) Uint8
2 2 Length of Value (=L_V) Uint16
4 L_N Name bytes

4+L_N L_V Value bytes

For a complete description of Full EAs ( FEA) please reference the
following IBM document:

"Installable File System for OS/2 Version 2.0"
OS/2 File Systems Department
PSPC Boca Raton, Florida
February 17, 1992

3.3.4.5.3.2  OS2EALength
This attribute specifies the OS/2  Extended Attribute information
length.  Since this value needs to be reported back to OS/2 under
certain directory operations, for performance reasons it should be
recorded in the ExtendedAttributes field of the FileEntry. This
extended attribute   shall be stored as an Implementation Use
Extended Attribute whose ImplementationIdentifier shall be set to:

"*UDF OS/2 EALength"

The ImplementationUse area for this extended attribute  shall be
structured as follows:

OS2EALength format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 4 OS/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall
be equal to the ImplementationUseLength field of the OS2EA
extended attribute  - 2.

3.3.4.5.4  Macintosh OS
The Macintosh  OS requires the use of the following four extended
attributes.



OSTA Universal Disk Format Revision 1.0252

3.3.4.5.4.1 MacVolumeInfo
This extended attribute  contains Macintosh  volume information
which  shall be stored as an Implementation Use Extended
Attribute whose ImplementationIdentifier shall be set to:

"*UDF Mac VolumeInfo"

The ImplementationUse area for this extended attribute  shall be
structured as follows:

MacVolumeInfo format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 12 Last Modification Date timestamp

14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

The MacVolumeInfo extended attribute  shall be recorded as an
extended attribute of the root directory FileEntry.

3.3.4.5.4.2 MacFinderInfo
This extended attribute  contains Macintosh  Finder information for
the associated file or directory.  Since this information is accessed
frequently, for performance reasons it should be recorded in the
ExtendedAttributes field of the FileEntry.

The MacFinderInfo extended attribute  shall be stored as an
Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:

"*UDF Mac FinderInfo"

The ImplementationUse area for this extended attribute  shall be
structured as follows:

MacFinderInfo format for a directory
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Reserved for padding (=0) Uint16
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo

24 16 Directory Extended Information UDFDXInfo

MacFinderInfo format for a file
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Reserved for padding (=0) Uint16
4 4 Parent Directory ID Uint32



OSTA Universal Disk Format Revision 1.0253

8 16 File Information UDFFInfo
24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data Length Uint32
44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute  shall be recorded as an
extended attribute of every file and directory within the Logical
Volume.

The following structures used within the MacFinderInfo structure
are listed below for clarity.  For complete information on these
structures refer to the Macintosh  books called "Inside Macintosh".
The volume and page number listed with each structure
correspond to a specific "Inside Macintosh" volume and page.

UDFPoint format (Volume I, page 139)
RBP Length Name Contents

0 2 v Int16
2 2 h Int16

UDFRect format (Volume I, page 141)
RBP Length Name Contents

0 2 top Int16
2 2 left Int16
4 2 bottom Int16
6 2 right Int16

UDFDInfo format (Volume IV, page 105)
RBP Length Name Contents

0 8 frRect UDFRect
8 2 frFlags Int16

10 4 frLocation UDFPoint
14 2 frView Int16

UDFDXInfo format (Volume IV, page 106)
RBP Length Name Contents

0 4 frScroll UDFPoint
4 4 frOpenChain Int32
8 1 frScript Uint8
9 1 frXflags Uint8

10 2 frComment Int16
12 4 frPutAway Int32

UDFFInfo format (Volume II, page 84)
RBP Length Name Contents

0 4 fdType Uint32
4 4 fdCreator Uint32



OSTA Universal Disk Format Revision 1.0254

8 2 fdFlags Uint16
10 4 fdLocation UDFPoint
14 2 fdFldr Int16

UDFFXInfo format (Volume IV, page 105)
RBP Length Name Contents

0 2 fdIconID Int16
2 6 fdUnused bytes
8 1 fdScript Int8
9 1 fdXFlags Int8

10 2 fdComment Int16
12 4 fdPutAway Int32

NOTE: The above mentioned structures have there original
Macintosh names preceded by "UDF" to indicate that they are
actually different from the original Macintosh structures.  On the
media the UDF structures are stored little endian as opposed to the
original Macintosh structures which are in big endian format.

3.3.4.5.4.3  MacUniqueIDTable
This extended attribute  contains a table used to look up the
FileEntry for a specified UniqueID.  This table shall be stored as an
Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:

"*UDF Mac UniqueIDTable"

The ImplementationUse area for this extended attribute  shall be
structured as follows:

MacUniqueIDTable format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Reserved for padding (=0) Uint16
4 4 Number of Unique ID Maps (=N_DID) Uint32
8 N_DID x 8 Unique ID Maps UniqueIDMap

UniqueIDMap format
RBP Length Name Contents

0 8 File Entry Location small_ad

small_ad format
RBP Length Name Contents

0 2 Extent Length Uint16
2 6 Extent Location lb_addr (4/7.1)



OSTA Universal Disk Format Revision 1.0255

This UniqueIDTable is used to look up the corresponding FileEntry
for a specified Macintosh  directory/file ID ( UniqueID).  For example,
given some Macintosh directory/file ID i the corresponding
FileEntry location may be found in the (i-2) UniqueIDMap in the
UniqueIDTable.  The correspondence of directory/file ID to
UniqueID is (Directory/file ID -2) because Macintosh directory/file
IDs start at 2 while UniqueIDs start at 0.  In the Macintosh the root
directory always has a directory ID of 2, which corresponds to the
requirement of having the UniqueID of the root FileEntry have the
value of 0.

If the value of the Extent Length field of the File Entry Location is 0
then the corresponding UniqueID is free.

The MacUniqueIDTable extended attribute  shall be recorded as an
extended attribute of the root directory.

The MacUniqueIDTable is created and updated only by
implementations that support the Macintosh . When the Logical
Volume is modified by implementations that do not support the
MacUniqueIDTable can become out of date in the following ways:

• Files can exist on the media which are not referenced in the
MacUniqueIDTable.  This can result from a non-Macintosh
implementation creating a new file on the media.

• Files in the UniqueID  table may no longer exist on the
media.  This can result from a non-Macintosh
implementation deleting a file on the media

The Macintosh  uses the UniqueID  to directly address a file on the
media without reference to its file name.  This will only happen if
the file was originally created by an implementation that supports
the Macintosh.  Therefore any new files added to the logical
volume by non-Macintosh implementations will always be
referenced by file name first, never by UniqueID.  At the first
access of the file by file name, the Macintosh implementation can
detect that this UniqueID is not in the MacUniqueIDTable and
update the table appropriately.

The second problem is a little more difficult to address.  The
problem occurs when a Macintosh  implementation gets a reference
to a file on the media given a UniqueID .  The Macintosh
implementation needs to make sure that the file the UniqueID
references still exists.  The following things can be done:

• Verify that the File Entry (FE) pointed to by the UniqueID
contains the same UniqueID.



OSTA Universal Disk Format Revision 1.0256

• AND Verify that the block that contains the FE is not on the
free list.  This could occur when the file is deleted by a non-
Macintosh implementation, and the FE has not been
overwritten.

The only case that these two tests do not catch is when a file has
been deleted by a non -Macintosh implementation, and the logical
block associated with the FE has been reassigned to a new file,
and the new file has used the block in an extent of Allocated but
not recorded.

3.3.4.5.4.4  MacResourceFork
This extended attribute  contains the Macintosh  resource fork data
for the associated file.   The resource fork data  shall be stored as
an Implementation Use Extended Attribute whose
ImplementationIdentifier shall be set to:

"*UDF Mac ResourceFork"

The ImplementationUse area for this extended attribute  shall be
structured as follows:

MacResourceFork format
RBP Length Name Contents

0 2 HeaderChecksum Uint16
2 IU_L-2 Resource Fork Data bytes

The MacResourceFork extended attribute  shall be recorded as an
extended attribute of all files, with > 0 bytes in the resource fork,
within the Logical Volume.

The two fields of the MacFinderInfo extended attribute the
reference the MacResourceFork extended attributes are defined as
follows:

Resource Fork Data Length - Shall be set to the length of
the actual data considered to be part of the resource fork.
Resource Fork Allocated Length - Shall be set to the total
amount of space in bytes allocated to the resource fork .

3.3.4.5.5  UNIX
Ignored.

 Not supported. Extended attributes for existing files on the
media shall be preserved.



OSTA Universal Disk Format Revision 1.0257

3.3.4.6 Application Use Extended Attribute
struct ApplicationUseExtendedAttribute { /* ISO 13346 4/14.10.9 */

Uint32 AttributeType;       /* = 65536 */
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributeLength;
Uint32 ApplicationUseLength;   /* (=AU_L) */
struct EntityID  ApplicationIdentifier;
byte ApplicationUse[AU_L];

}

The AttributeLength field specifies the length of the entire extended
attribute.  For variable length extended attributes defined using the
Application Use Extended Attribute the Attribute Length field should be
large enough to leave padding space between the end of the
ApplicationUse field and the end of the Application Use Extended
Attribute.

The structures defined in the following section contains a header
checksum field.  This field represents a 16-bit checksum of the
Application Use Extended Attribute header.  The fields AttributeType
through ApplicationIdentifier inclusively represent the data covered by the
checksum.  The header checksum field is used to aid in disaster recovery
of the extended attribute  space.  C source code for the header checksum
may be found in the appendix.

NOTE:  All compliant implementations shall preserve existing extended
attributes encountered on the media.  Implementations shall create and
support the extended attributes for the operating system they currently
support.  For example, a Macintosh  implementation shall preserve any
OS/2 extended attributes encountered on the media.  It shall also create
and support all Macintosh extended attributes specified in this document.

3.3.4.6.1 All Operating Systems
This extended attribute  shall be used to indicate unused space within the
extended attribute space reserved for Application Use Extended
Attributes.  This extended attribute shall be stored as an Application Use
Extended Attribute whose ApplicationIdentifier shall be set to:

"*UDF FreeAppEASpace"



OSTA Universal Disk Format Revision 1.0258

The ApplicationUse area for this extended attribute  shall be structured as
follows:

FreeAppEASpace format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 IU_L-1 Free EA Space bytes

This extended attribute  allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete extended
attribute space.  The  FreeAppEASpace extended attribute may be
overwritten and the space re-used by any implementation who sees a
need to overwrite it.



OSTA Universal Disk Format Revision 1.0259

4. User Interface Requirements
4.1 Part 3 - Volume Structure

Part 3 of ISO/IEC 13346 contains various Identifiers which, depending
upon the implementation, may have to be presented to the user.

• VolumeIdentifier
• VolumeSetIdentifier
• LogicalVolumeID

 These identifiers, which are stored in CS0 ,  may have to go through
some form of translation to be displayable to the user.  Therefore when an
implementation must perform an OS specific translation on the above
listed identifiers the implementation shall use the algorithms described in
section 4.1.2.1.

C source code for the translation algorithms may be found in the
appendices of this document.

4.2 Part 4 - File System

4.2.1 ICB Tag
struct icbtag { /* ISO 13346 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved;  /* == #00 */
Uint8 FileType;
Lb_addr ParentICBLocation;
Uint16 Flags;

}

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the
following values in this field shall result in an Access Denied error
condition under non-UNIX operating system environments :

FileType values - 0 (Unknown), 6 (block device), 7 (character
device), 9 (FIFO), and 10 (C_ISSOCK).



OSTA Universal Disk Format Revision 1.0260

Any open/close/read/write  requests to a file of type 12 ( SymbolicLink)
shall access the file/directory to which the symbolic link is pointing.

4.2.2 File Identifier Descriptor
struct FileIdentifierDescriptor { /* ISO 13346 4/14.4 */

struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileIdentifier;
struct long_ad ICB ;
Uint16 LengthofImplementationUse;
byte ImplementationUse[??];
char FileIdentifier[??];
byte Padding[??];

}

4.2.2.1 char FileIdentifier
Since most operating systems have their own specifications as to
characteristics of a legal FileIdentifier,  this becomes a problem with
interchange.  Therefore since all implementations must perform some
form of FileIdentifier translation it would be to the users advantage if all
implementations used the same algorithm.

The problems with FileIdentifier translations fall within one or more of the
following categories:

• Name Length -Most operating systems have some fixed limit
for the length of a file identifier.

• Invalid Characters - Most operating systems have certain
characters considered as being illegal within a file identifier
name.

• Displayable Characters - Since UDF supports the Unicode
character set standard characters within a file identifier may
be encountered which are not displayable on the receiving
system.

• Case Insensitive - Some operating systems are case
insensitive in regards to file identifiers.  For example OS/2
preserves the original case of the file identifier when the file
is created, but uses a case insensitive operations when
accessing the file identifier. In OS/2 “Abc” and “ABC” would
be the same file name.



OSTA Universal Disk Format Revision 1.0261

• Reserved Names - Some operating systems have certain
names that cannot be used for a file identifier name.

The following sections outline the FileIdentifier translation algorithm for
each specific operating system covered by this document.  This algorithm
shall be used by all OSTA UDF compliant implementations.  The
algorithm only applies when reading an illegal FileIdentifier.  The original
FileIdentifier name on the media should not be modified.  This algorithm
shall be applied by any implementation  which performs some form of
FileIdentifier  translation to meet operating system file identifier
restrictions.

All OSTA UDF compliant implementations shall support the UDF
translation algorithms, but may support additional algorithms.  If multiple
algorithms are supported the user of the implementation shall be provided
with a method to select the UDF translation algorithms. It is recommended
that the default displayable algorithm be the UDF defined algorithm.

The primary goal of these algorithms is to produce a unique file name that
meets the specific operating system restrictions without having to scan
the entire directory in which the file resides.

C source code for the following algorithms may be found in the
appendices of this document.

NOTE: In the definition of the following algorithms anytime a d-character
is specified in quotes, the Unicode  hexadecimal value will also be
specified.  In addition the following algorithms reference “CS0  Hex
representation”, which corresponds to using the Unicode values #0030 -
#0039, and #0041 - #0046 to represent a value in hex.

The following algorithms could still result in name-collisions being
reported to the user of an implementation. However, the rationale
includes the need for efficient access to the contents of a directory and
consistent name translations across logical volume mounts and file
system driver implementations,  while allowing the user to obtain access
to any file within the directory (through possibly renaming a file).

Definitions:
A FileIdentifier shall be considered as being composed of two parts, a file
name and file extension.



OSTA Universal Disk Format Revision 1.0262

The character '.' (#002E) shall be considered as the separator for the
FileIdentifier of a file; characters appearing subsequent to the last '.'
(#002E) shall be considered as constituting the file extension if and only if
it is less than or equal to 5 characters in length, otherwise the file
extension shall not exist.  Characters appearing prior to the file extension,
excluding the last '.' (#002E), shall be considered as constituting the file
name.

NOTE: Even though OS/2 , Macintosh, and UNIX do not have an
official concept of a filename extension it is common file naming
conventions to end a file with “.” followed by a 1 to 5 character
extension.  Therefore the following algorithms attempt to preserve
the file extension up to a maximum of 5 characters.

4.2.2.1.1 MS-DOS
Due to the restrictions imposed by the MS DOS  operating system
environments on the FileIdentifier associated with a file the following
methodology shall be employed to handle FileIdentifier(s) under the
above-mentioned operating system environments :

Restrictions: The file name component of the FileIdentifier shall not
exceed 8 characters.  The file extension component of the FileIdentifier
shall not exceed 3 characters.

1. FileIdentifier Lookup: Upon request for a "lookUp" of a
FileIdentifier, a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid MS-DOS  file
identifier then do not apply the following steps.

3. Remove Spaces: All embedded spaces within the identifier
shall be removed.

4. Invalid Characters:  A FileIdentifier that contains characters
considered invalid within a file name or file extension (as
defined above), or not displayable in the current environment,
shall have them translated into "_" (#005F). (the file identifier on
the media is NOT modified).  Multiple sequential invalid or non-
displayable characters shall be translated into a single “_”
(#005F) character.  Reference the appendix on invalid
characters for a complete list.

5. Leading Periods:  In the event that there do not exist any
characters prior to the first "." (#002E) character, leading "."
(#002E) characters shall be disregarded up to the first non “.”
(#002E) character, in the application of this heuristic.

6. Multiple Periods:  In the event that the FileIdentifier contains
multiple "." (#002E) characters, all characters appearing
subsequent to the last '.' (#002E) shall be considered as



OSTA Universal Disk Format Revision 1.0263

constituting the file extension if and only if it is less than or
equal to 5 characters in length, otherwise the file extension
shall not exist.  Characters appearing prior to the file extension,
excluding the last '.' (#002E), shall be considered as
constituting the file name.  All embedded "." (#002E) characters
within the file name shall be removed.

7. Long Extension:  In the event that the number of characters
constituting the file extension at this step in the process is
greater than 3, the  file extension shall be regarded as having
been composed of the first 3 characters amongst the characters
constituting the file extension at this step in the process.

8. Long Filename:  In the event that the number of characters
constituting the file name at this step in the process is greater
than 8, the  file name shall be truncated to 4 characters.

9. FileIdentifier CRC:  Since through the above process character
information from the original FileIdentifier  is lost the chance of
creating a duplicate FileIdentifier  in the same directory
increases. To greatly reduce the chance of having a duplicate
FileIdentifier the file name shall be modified to contain a CRC of
the original FileIdentifier.  The file name shall be composed of
the first 4 characters constituting the file name at this step in the
process, followed by the separator “#” (#0023); followed by a 3
digit CS0 Hex representation of the least significant 12 bits of
the 16-bit CRC of the original CS0 FileIdentifier.

10. The new file identifier shall be translated to all upper case.
 
 

4.2.2.1.2 OS/2
Due to the restrictions imposed by the OS/2  operating system
environment, on the FileIdentifier associated with a file the following
methodology shall be employed to handle FileIdentifier(s) under the
above-mentioned operating system environment :

1. FileIdentifier Lookup:  Upon request for a "lookUp" of a
FileIdentifier, a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid OS/2  file
identifier then do not apply the following steps.

3. Invalid Characters:  A FileIdentifier that contains characters
considered invalid within an OS/2  file name, or not displayable
in the current environment shall have them translated into "_"
(#005F). Multiple sequential invalid or non-displayable
characters shall be translated into a single “_” (#005F)
character. Reference the appendix on invalid characters for a
complete list.



OSTA Universal Disk Format Revision 1.0264

4. Trailing Periods and Spaces:  All trailing “.” (#002E) and “ “
(#0020) shall be removed.

5. FileIdentifier CRC:  Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory
increases.  To greatly reduce the chance of having a duplicate
FileIdentifier the file name shall be modified to contain a CRC of
the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (254 - (length of (new file extension)
+ 1 (for the '.')) - 4 (for the #CRC)) characters constituting the
file name at this step in the process, followed by the separator
'#' (#0023); followed by a 3 digit CS0 Hex representation of the
least significant 12 bits of the 16-bit CRC of the original CS0
FileIdentifier, followed by '.' (#002E) and the file extension at
this step in the process .

Otherwise if there is no file extension the new FileIdentifier shall
be composed of up to the first (254 - 4 (for the #CRC))
characters constituting the file name at this step in the process.
Followed by the separator '#' (#0023); followed by a 3 digit CS0
Hex representation of the least significant 12 bits of the 16-bit
CRC of the original CS0 FileIdentifier.

4.2.2.1.3 Macintosh
Due to the restrictions imposed by the Macintosh  operating system
environment, on the FileIdentifier associated with a file the following
methodology shall be employed to handle FileIdentifier(s) under the
above-mentioned operating system environment :

1. FileIdentifier Lookup:  Upon request for a "lookUp" of a
FileIdentifier, a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid Macintosh  file
identifier then do not apply the following steps.

3. Invalid Characters:  A FileIdentifier that contains characters
considered invalid within a Macintosh  file name, or not
displayable in the current environment, shall have them
translated into "_" (#005F). Multiple sequential invalid or non-
displayable characters shall be translated into a single “_”
(#005F) character. Reference the appendix on invalid
characters for a complete list

4. Long FileIdentifier  - In the event that the number of characters
constituting the FileIdentifier at this step in the process is



OSTA Universal Disk Format Revision 1.0265

greater than 31  (maximum name length for the Macintosh
operating system), the new FileIdentifier will consist of the first
27 characters of the FileIdentifier at this step in the process .

5. FileIdentifier CRC  Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory
increases.  To greatly reduce the chance of having a duplicate
FileIdentifier the file name shall be modified to contain a CRC of
the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first (31 - (length of (new file extension) +
1 (for the '.')) - 4 (for the #CRC)) characters constituting the file
name at this step in the process, followed by the separator '#'
(#0023); followed by a 3 digit CS0 Hex representation of the
least significant 12 bits of the 16-bit CRC of the original CS0
FileIdentifier, followed by '.' (#002E) and the file extension at
this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall
be composed of up to the first (31 - 4 (for the #CRC))
characters constituting the file name at this step in the process.
Followed by the separator '#' (#0023); followed by a 3 digit CS0
Hex representation of the least significant 12 bits of the 16-bit
CRC of the original CS0 FileIdentifier.

4.2.2.1.4 UNIX
Due to the restrictions imposed by UNIX  operating system environments,
on the FileIdentifier associated with a file the following methodology  shall
be employed to handle FileIdentifier(s) under the above-mentioned
operating system environment:

1. FileIdentifier Lookup:  Upon request for a "lookUp" of a
FileIdentifier, a case-sensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid UNIX file
identifier for the current system environment then do not apply
the following steps.

3. Invalid Characters:  A FileIdentifier that contains characters
considered invalid within a UNIX file name for the current
system environment, or not displayable in the current
environment shall have them translated into "_" (#005E).
Multiple sequential invalid or non-displayable characters shall
be translated into a single “_” (#005E) character. Reference the
appendix on invalid characters for a complete list



OSTA Universal Disk Format Revision 1.0266

4. Long FileIdentifier  - In the event that the number of characters
constituting the FileIdentifier  at this step in the process is
greater than MAXNameLength (maximum name length for the
specific UNIX  operating system), the new FileIdentifier will
consist of the first MAXNameLength-4 characters of the
FileIdentifier at this step in the process .

5. FileIdentifier CRC  Since through the above process character
information from the original FileIdentifier is lost the chance of
creating a duplicate FileIdentifier in the same directory
increases.  To greatly reduce the chance of having a duplicate
FileIdentifier the file name shall be modified to contain a CRC of
the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be
composed of up to the first ( MAXNameLength - (length of (new
file extension) + 1 (for the '.')) - 4 (for the #CRC)) characters
constituting the file name at this step in the process, followed by
the separator '#' (#0023); followed by a 3 digit CS0 Hex
representation of the least significant 12 bits of the 16-bit CRC
of the original CS0 FileIdentifier, followed by '.' (#002E) and the
file extension at this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall
be composed of up to the first ( MAXNameLength - 4 (for the
#CRC)) characters constituting the file name at this step in the
process.  Followed by the separator '#' (#0023); followed by a 3
digit CS0 Hex representation of the least significant 12 bits of
the 16-bit CRC of the original CS0 FileIdentifier.

 



OSTA Universal Disk Format Revision 1.0267

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the
Descriptors described in ISO 13346.

Descriptor Length
Anchor Volume Descriptor Pointer 512
Volume Descriptor Pointer 512
Implementation Use Volume Descriptor 512
Partition Descriptor 512
Logical Volume Descriptor no max
Unallocated Space Descriptor no max
Terminating Descriptor 512
Logical Volume Integrity Descriptor no max
File Set Descriptor 512
File Identifier Descriptor Maximum of a

Logical Block
Size

Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36
File Entry Maximum of a

Logical Block
Size

Unallocated Space Entry Maximum of a
Logical Block

Size
Space Bit Map Descriptor no max
Partition Integrity Entry N/A

5.2 Using Implementation Use Areas
5.2.1 Entity Identifiers

Refer to the section on Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space
Orphan space may exist within a logical volume, but it is not
recommended since it may be reallocated by some type of logical volume
repair facility.  Orphan space is defined as space that is not  directly or



OSTA Universal Disk Format Revision 1.0268

indirectly referenced by any of the non-implementation use descriptors
defined in ISO 13346.

NOTE: Any allocated extent for which the only reference resides within an
implementation use field is considered orphan space.

5.3 Boot Descriptor
Please refer to the "OSTA Native Implementation Specification" document
for information on the Boot Descriptor.

5.4 Technical Contacts
Technical questions regarding this document may be emailed to the
OSTA Technical Committee at osta @aol.com.  Also technical questions
may be faxed to the attention of the  OSTA Technical Committee  at
1-805-962-1542.

OSTA may also be contacted through the following address:

Technical Committee Chairman
OSTA
311 East Carrillo Street
Santa Barbara, CA  93101
(805) 963-3853



OSTA Universal Disk Format Revision 1.0269

6. Appendices

6.1 UDF Entity Identifier Definitions

Entity Identifier Description
"*OSTA UDF Compliant" Indicates the contents of the specified logical volume or

file set is complaint with domain defined by this document.
“*UDF LV Info” Contains additional Logical Volume identification

information.
"*UDF FreeEASpace" Contains free unused space within the implementation

extended attribute  space.
“*UDF FreeAppEASpace” Contains free unused space within the application

extended attribute  space.
“*UDF DVD CGMS Info” Contains DVD Copyright Management Information
"*UDF OS/2 EA" Contains OS/2 extended attribute  data.
"*UDF OS/2 EALength" Contains OS/2 extended attribute  length.
"*UDF Mac VolumeInfo" Contains Macintosh volume information.
"*UDF Mac FinderInfo" Contains Macintosh finder information.
"*UDF Mac UniqueIDTable" Contains Macintosh UniqueID Table which is used to map

a Unique ID to a File Entry .
"*UDF Mac ResourceFork" Contains Macintosh resource fork information.

6.2 UDF Entity Identifier Values

Entity Identifier Byte Value
"*OSTA UDF Compliant" #2A, #4F, #53, #54, #41, #20, #55, #44, #46, #20, #43,

#6F, #6D, #70, #6C, #69, #61, #6E, #74
“*UDF LV Info” #2A, #55, #44, #46, #20, #4C, #56, #20, #49, #6E, #66,

#6F
"*UDF FreeEASpace" #2A, #55, #44, #46, #20, #46, #72, #65, #65, #45, #41,

#53, #70, #61, #63, #65
"*UDF FreeAppEASpace" #2A, #55, #44, #46, #20,

#46, #72, #65, #65, #41, #70, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info” #2A, #55, #44, #46, #20, #44, #56, #44, #20,
#43, #47, #4D, #53, #20, #49, #6E, #66, #6F

"*UDF OS/2 EA" #2A, #55, #44, #46, #41, #20, #45, #41
"*UDF OS/2 EALength" #2A, #55, #44, #46, #20, #45, #41, #4C, #65, #6E, #67,

#74, #68
"*UDF Mac VolumeInfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F,

#6C, #75, #6D, #65, #49, #6E, #66, #6F
"*UDF Mac FinderInfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69,

#6E, #64, #65, #72, #49, #6E, #66, #6F
"*UDF Mac UniqueIDTable" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #55, #6E,

#69, #71, #75, #65, #49, #44, #54, #61, #62, #6C, #65
"*UDF Mac ResourceFork" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #52, #65,

#73, #6F, #75, #72, #63, #65, #46, #6F, #72, #6B



OSTA Universal Disk Format Revision 1.0270

6.3 Operating System Identifiers
The following tables define the current allowable values for the OS Class
and OS Identifier fields in the IdentifierSuffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the
specified descriptor was recorded.  The valid values for this field are as
follows:

Value Operating System Class
0 Undefined
1 DOS
2 OS/2
3 Macintosh OS
4 UNIX

5-255 Reserved

The OS Identifier field will identify under which operating system the
specified descriptor was recorded.  The valid values for this field are as
follows:

OS
Class

OS
Identifier

Operating System Identified

0 Any Value Undefined
1 0 DOS
2 0 OS/2
3 0 Macintosh OS
4 0 UNIX - Generic
4 1 UNIX - IBM AIX
4 2 UNIX - SUN Solaris
4 3 UNIX - HP/UX
4 4 UNIX - Silicon Graphics Irix

For the most update list of values for OS Class and OS Identifier please contact
OSTA and request a copy of the UDF Entity Identifier Directory.  This directory
will also contain Implementation Identifiers of ISVs who have  provided the
necessary information to OSTA.

NOTE: If you wish to add to this list please contact the OSTA Technical
Committee Chairman at the OSTA address listed in section  5.3 Technical
Contacts.  Currently Windows 95 , Windows NT  and NetWare  are not supported
by this specification, but  OSTA has started the work on these operating
systems.



OSTA Universal Disk Format Revision 1.0271

6.4 OSTA Compressed Unicode Algorithm
/***********************************************************************
 * OSTA compliant Unicode compression, uncompression routines.
 * Copyright 1995 Micro Design International, Inc.
 * Written by Jason M. Rinn.
 * Micro Design International gives permission for the free use of the
 * following source code.
 */
#include <stddef.h>

/***********************************************************************
 * The following two typedef's are to remove compiler dependancies.
 * byte needs to be unsigned 8-bit, and unicode_t needs to be
 * unsigned 16-bit.
 */
typedef unsigned short unicode_t;
typedef unsigned char byte;

/***********************************************************************
 * Takes an OSTA CS0 compressed unicode name, and converts
 * it to Unicode.
 * The Unicode output will be in the byte order
 * that the local compiler uses for 16-bit values.
 * NOTE: This routine only performs error checking on the compID.
 * It is up to the user to ensure that the unicode buffer is large
 * enough, and that the compressed unicode name is correct.
 *
 * RETURN VALUE
 *
 *    The number of unicode characters which were uncompressed.
 *    A -1 is returned if the compression ID is invalid.
 */
int UncompressUnicode(
int numberOfBytes,   /* (Input) number of bytes read from media.  */
byte *UDFCompressed, /* (Input) bytes read from media.            */
unicode_t *unicode)    /* (Output) uncompressed unicode characters. */
{
   unsigned int compID;
   int returnValue, unicodeIndex, byteIndex;

   /* Use UDFCompressed to store current byte being read. */
   compID = UDFCompressed[0];

   /* First check for valid compID. */
   if (compID != 8 && compID != 16)
   {
      returnValue = -1;
   }
   else
   {
      unicodeIndex = 0;
      byteIndex = 1;

      /* Loop through all the bytes. */
      while (byteIndex < numberOfBytes)
      {
         if (compID == 16)
         {
          /*Move the first byte to the high bits of the unicode char. */



OSTA Universal Disk Format Revision 1.0272

            unicode[unicodeIndex] = UDFCompressed[byteIndex++] << 8;
         } else unicode[unicodeIndex] = 0;
         if (byteIndex < numberOfBytes)
         {
            /*Then the next byte to the low bits. */
            unicode[unicodeIndex] |= UDFCompressed[byteIndex++];
         }
         unicodeIndex++;
      }
      returnValue = unicodeIndex;
   }
   return(returnValue);
}

/***********************************************************************
 * DESCRIPTION:
 * Takes a string of unicode wide characters and returns an OSTA CS0
 * compressed unicode string. The unicode MUST be in the byte order of
 * the compiler in order to obtain correct results.  Returns an error
 * if the compression ID is invalid.
 *
 * NOTE: This routine assumes the implementation already knows, by
 * the local environment, how many bits are appropriate and
 * therefore does no checking to test if the input characters fit
 * into that number of bits or not.
 *
 * RETURN VALUE
 *
 *    The total number of bytes in the compressed OSTA CS0 string,
 *    including the compression ID.
 *    A -1 is returned if the compression ID is invalid.
 */
int CompressUnicode(
int numberOfChars,   /* (Input) number of unicode characters.   */
int compID,          /* (Input) compression ID to be used.      */
unicode_t *unicode,    /* (Input) unicode characters to compress. */
byte *UDFCompressed) /* (Output) compressed string, as bytes.   */
{
   int byteIndex, unicodeIndex;

   if (compID != 8 && compID != 16)
   {
      byteIndex = -1;  /* Unsupported compression ID ! */
   }
   else
   {
      /* Place compression code in first byte. */
      UDFCompressed[0] = compID;

      byteIndex = 1;
      unicodeIndex = 0;
      while (unicodeIndex < numberOfChars)
      {
         if (compID == 16)
         {
            /* First, place the high bits of the char
             * into the byte stream.
             */
            UDFCompressed[byteIndex++] =



OSTA Universal Disk Format Revision 1.0273

                         (unicode[unicodeIndex] & 0xFF00) >> 8;
         }
         /*Then place the low bits into the stream. */
         UDFCompressed[byteIndex++] = unicode[unicodeIndex] & 0x00FF;
         unicodeIndex++;
      }
   }

   return(byteIndex);
}



OSTA Universal Disk Format Revision 1.0274

6.5 CRC Calculation

The following C program may be used to calculate the CRC -CCITT checksum
used in the TAG descriptors of ISO/IEC 13346.

/*
 * CRC 010041
 */
static unsigned short crc_table[256] = {
    0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
    0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
    0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
    0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
    0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
    0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
    0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
    0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
    0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
    0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
    0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
    0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
    0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
    0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
    0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
    0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
    0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
    0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
    0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
    0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
    0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
    0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
    0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
    0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
    0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
    0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
    0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
    0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
    0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
    0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
    0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
    0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};

unsigned short
cksum(s, n)

register unsigned char *s;
register int n;

{
register unsigned short crc=0;

while (n-- > 0)
   crc = crc_table[(crc>>8 ^ *s++) & 0xff] ^ (crc<<8);

return crc;
}

#ifdef MAIN
unsigned char bytes[] = { 0x70, 0x6A, 0x77 };



OSTA Universal Disk Format Revision 1.0275

main()
{

unsigned short x;

x = cksum(bytes, sizeof bytes);
printf("checksum: calculated=%4.4x, correct=%4.4x\en", x, 0x3299);
exit(0);

}
#endif



OSTA Universal Disk Format Revision 1.0276

The CRC table in the previous listing was generated by the following
program:

#include <stdio.h>

/*
 * a.out 010041 for CRC -CCITT
 */

main(argc, argv)
int argc ; char *argv[];

{
unsigned long crc, poly;
int n, i;

sscanf(argv[1], "%lo", &poly);
if(poly & 0xffff0000){

fprintf(stderr, "polynomial is too large\en");
exit(1);

}

printf("/*\en * CRC 0%o\en */\en", poly);
printf("static unsigned short crc_table[256] = {\en");
for(n = 0; n < 256; n++){

if(n % 8 == 0)
printf("    ");

crc = n << 8;
for(i = 0; i < 8; i++){

if(crc & 0x8000)
crc = (crc << 1) ^ poly;

else
crc <<= 1;

crc &= 0xFFFF;
}
if(n == 255)

printf(" 0x%04X ", crc);
else

printf("0x%04X, ", crc);
if(n % 8 == 7)

printf("\en");
}
printf("};\en");
exit(0);

}

All the above CRC  code was devised by Don P. Mitchell of AT&T Bell
Laboratories and Ned W. Rhodes of Software Systems Group.
It has been published in "Design and Validation of Computer Protocols",
Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.
Copyright is held by AT&T.

AT&T gives permission for the free use of the above source code.



OSTA Universal Disk Format Revision 1.0277

6.6 Algorithm for Strategy Type 4096
This section describes a strategy for constructing an ICB hierarchy.  For strategy
type 4096 the root ICB hierarchy shall contain 1 direct entry and 1 indirect entry.
To indicate that there is 1 direct entry a 1 shall be recorded as a Uint16 in the
StrategyParameter field of the ICB Tag field.  A value of 2 shall be recorded in
the MaximumNumberOfEntries field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also
contain 1 direct entry and 1 indirect entry, where the indirect entry specifies the
address of another ICB of the same type.  See the figure below:

NOTE: This strategy builds an ICB hierarchy that is a simple linked list of direct
entries.

 DE
 IE

 DE
 IE

 DE
 IE



OSTA Universal Disk Format Revision 1.0278

6.7 Identifier Translation Algorithms
The following sample source code examples implement the file identifier
translation algorithms described in this document.

The following basic algorithms may also be used to handle OS specific
translations of the VolumeIdentifier, VolumeSetIdentifier, LogicalVolumeID and
FileSetID.

6.7.1 DOS Algorithm

/***********************************************************************
 * OSTA UDF compliant file name translation routine for DOS .
 * Copyright 1995 Micro Design International, Inc.
 * Written by Jason M. Rinn.
 * Micro Design International gives permission for the free use of the
 * following source code.
 */

#include <stddef.h>

#define DOS _NAME_LEN    8
#define DOS _EXT_LEN     3
#define ILLEGAL_CHAR_MARK 0x005F
#define CRC_MARK          0x0023
#define TRUE               1
#define FALSE              0
#define PERIOD            0x002E
#define SPACE             0x0020

/***********************************************************************
 * The following two typedef's are to remove compiler dependancies.
 * byte needs to be unsigned 8-bit, and unicode_t needs to
 * be unsigned 16-bit.
 */
typedef unsigned short unicode_t;
typedef unsigned char byte;

/*** PROTOTYPES ***/
unsigned short cksum(register unsigned char *s, register int n);
int IsIllegal(unicode_t current);

/* Define functions or macros to both determine if a character
 * is printable and compute the uppercase version of a character
 * under your implementation.
 */
int UnicodeIsPrint(unicode_t);
unicode_t UnicodeToUpper(unicode_t);

/***********************************************************************
 * Translate udfName to dosName using OSTA compliant.
 * dosName must be a unicode string with min length of 12.
 *
 * RETURN VALUE
 *    Number of unicode characters in dosName.



OSTA Universal Disk Format Revision 1.0279

 */
int UDFDOS Name(
unicode_t *dosName,   /* (Output)DOS  compatible name.   */
unicode_t *udfName,   /* (Input) Name from UDF volume.  */
int        udfLen,    /* (Input) Length of UDF Name.    */
byte      *fidName,   /* (Input) Bytes as read from media */
int        fidNameLen)/* (Input) Number of bytes in fidName.*/
{
   int index, dosIndex = 0, extIndex = 0, lastPeriodIndex;
   int needsCRC = FALSE, hasExt = FALSE, writingExt = FALSE;
   unsigned short valueCRC;
   unicode_t ext[DOS _EXT_LEN], current;

   /*Used to convert hex digits. Used ASCII for readability. */
   const char hexChar[] = "0123456789ABCDEF";

   for (index = 0 ; index < udfLen ; index++)
   {
      current = udfName[index];
      current = UnicodeToUpper(current);

      if (current == PERIOD)
      {
         if (dosIndex==0 || hasExt)
         {
            /* Ignore leading periods or any other than
             * used for extension.
             */
            needsCRC = TRUE;
         }
         else
         {
            /* First, find last character which is NOT a period
             * or space.
             */
            lastPeriodIndex = udfLen - 1;
            while(lastPeriodIndex >=0 &&
                  (udfName[lastPeriodIndex]== PERIOD ||
                   udfName[lastPeriodIndex] == SPACE))
            {
               lastPeriodIndex--;
            }

            /* Now search for last remaining period. */
            while(lastPeriodIndex >= 0 &&
                  udfName[lastPeriodIndex] != PERIOD)
            {
               lastPeriodIndex--;
            }

            /* See if the period we found was the last or not. */
            if (lastPeriodIndex != index)
            {
               needsCRC = TRUE; /* If not, name needs translation. */
            }

            /* As long as the period was not trailing,
             * the file name has an extension.
             */
            if (lastPeriodIndex >= 0)



OSTA Universal Disk Format Revision 1.0280

            {
               hasExt = TRUE;
            }
         }
      }
      else
      {

         if ((!hasExt && dosIndex == DOS _NAME_LEN) ||
             extIndex == DOS _EXT_LEN)
         {
            /* File name or extension is too long for DOS . */
            needsCRC = TRUE;
         }
         else
         {
            if (current == SPACE)   /* Ignore spaces. */
            {
               needsCRC = TRUE;
            }
            else
            {
               /* Look for illegal or unprintable characters. */
               if (IsIllegal(current) || !UnicodeIsPrint(current))
               {
                  needsCRC = TRUE;
                  current = ILLEGAL_CHAR_MARK;
                  /* Skip Illegal characters(even spaces),
                   * but not periods.
                   */
                  while(index+1 < udfLen
                        && (IsIllegal(udfName[index+1])
                        || !UnicodeIsPrint(udfName[index+1]))
                        && udfName[index+1] != PERIOD)
                  {
                     index++;
                  }
               }

               /* Add current char to either file name or ext. */
               if (writingExt)
               {
                  ext[extIndex++] = current;
               }
               else
               {
                  dosName[dosIndex++] = current;
               }
            }
         }
      }
      /* See if we are done with file name, either because we reached
       * the end of the file name length, or the final period.
       */
      if (!writingExt && hasExt && (dosIndex == DOS _NAME_LEN ||
                     index == lastPeriodIndex))
      {
         /* If so, and the name has an extension, start reading it. */
         writingExt = TRUE;
         /* Extension starts after last period. */



OSTA Universal Disk Format Revision 1.0281

         index = lastPeriodIndex;
      }
   }

   /*Now handle CRC if needed. */
   if (needsCRC)
   {
      /* Add CRC to end of file name or at position 4. */
      if (dosIndex >4)
      {
         dosIndex = 4;
      }

      dosName[dosIndex++] = CRC_MARK;
      valueCRC = cksum(fidName, fidNameLen);

      /* Convert lower 12-bits of CRC to hex characters. */
      dosName[dosIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];
      dosName[dosIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];
      dosName[dosIndex++] = hexChar[(valueCRC & 0x000f)];
   }

   /* Add extension, if any. */
   if (extIndex != 0)
   {
      dosName[dosIndex++] = PERIOD;
      for (index = 0; index < extIndex; index++)
      {
         dosName[dosIndex++] = ext[index];
      }
   }

   return(dosIndex);
}

/***********************************************************************
 * Decides if a Unicode character matches one of a list
 * of ASCII characters.
 * Used by DOS  version of IsIllegal for readability, since all of the
 * illegal characters above 0x0020 are in the ASCII subset of Unicode.
 * Works very similarly to the standard C function strchr().
 *
 * RETURN VALUE
 *
 *    Non-zero if the Unicode character is in the given ASCII string.
 */
int UnicodeInString(
unsigned char *string,  /* (Input) String to search through.   */
unicode_t ch)  /* (Input) Unicode char to search for. */
{
   int found = FALSE;
   while (*string != '\0' && found == FALSE)
   {
      /* These types should compare, since both are unsigned numbers. */
      if (*string == ch)
      {
         found = TRUE;
      }
      string++;
   }



OSTA Universal Disk Format Revision 1.0282

   return(found);
}

/***********************************************************************
 * Decides whether character passed is an illegal character for a
 * DOS file name.
 *
 * RETURN VALUE
 *
 *    Non-zero if file character is illegal.
 */
int IsIllegal(
unicode_t ch)  /* (Input) character to test. */
{
   /* Genuine illegal char's for DOS . */
   if (ch < 0x20 || UnicodeInString("\\/:*?\"<>|", ch))
   {
      return(1);
   }
   else
   {
      return(0);
   }
}



OSTA Universal Disk Format Revision 1.0283

6.7.2 OS/2 , Macintosh and UNIX Algorithm
/***********************************************************************
 * OSTA UDF compliant file name translation routine for OS/2 ,
 * Macintosh  and UNIX.
 * Copyright 1995 Micro Design International, Inc.
 * Written by Jason M. Rinn.
 * Micro Design International gives permission for the free use of the
 * following source code.
 */

/***********************************************************************
 * To use these routines with different operating systems.
 *
 * OS/2
 *   Define OS2
 *   Define MAXLEN = 254
 *
 * Macintosh :
 *   Define MAC.
 *   Define MAXLEN = 31.
 *
 * UNIX
 *   Define UNIX.
 *   Define MAXLEN as specified by unix version.
 */

#define ILLEGAL_CHAR_MARK 0x005F
#define CRC_MARK          0x0023
#define EXT_SIZE           5
#define TRUE               1
#define FALSE              0
#define PERIOD            0x002E
#define SPACE             0x0020

/***********************************************************************
 * The following two typedef's are to remove compiler dependancies.
 * byte needs to be unsigned 8-bit, and unicode_t needs to
 * be unsigned 16-bit.
 */
typedef unsigned int unicode_t;
typedef unsigned char byte;

/*** PROTOTYPES ***/
int IsIllegal(unicode_t ch);
unsigned short cksum(unsigned char *s, int n);

/* Define a function or macro which determines if a Unicode character is
 * printable under your implementation.
 */
int UnicodeIsPrint(unicode_t);

/***********************************************************************
 * Translates a long file name to one using a MAXLEN and an illegal
 * char set in accord with the OSTA requirements.  Assumes the name has
 * already been translated to Unicode.
 *
 * RETURN VALUE
 *



OSTA Universal Disk Format Revision 1.0284

 *    Number of unicode characters in translated name.
 */
int UDFTransName(
unicode_t *newName,/*(Output)Translated name. Must be of length MAXLEN*/
unicode_t *udfName, /* (Input)  Name from UDF volume.*/
int udfLen,         /* (Input)  Length of UDF Name.  */
byte *fidName,      /* (Input)  Bytes as read from media. */
int fidNameLen)     /* (Input)  Number of bytes in fidName. */
{
   int index, newIndex = 0, needsCRC = FALSE;
   int extIndex, newExtIndex = 0, hasExt = FALSE;
#ifdef OS2
   int trailIndex = 0;
#endif
   unsigned short valueCRC;
   unicode_t current;
   const char hexChar[] = "0123456789ABCDEF";

   for (index = 0; index < udfLen; index++)
   {
      current = udfName[index];

      if (IsIllegal(current) || !UnicodeIsPrint(current))
      {
         needsCRC = TRUE;
        /* Replace Illegal and non-displayable chars with underscore. */
         current = ILLEGAL_CHAR_MARK;
         /* Skip any other illegal or non-displayable characters. */
         while(index+1 < udfLen && (IsIllegal(udfName[index+1])
                     || !UnicodeIsPrint(udfName[index+1])))
         {
            index++;
         }
      }

      /* Record position of extension, if one is found. */
      if (current == PERIOD && (udfLen - index -1) <= EXT_SIZE)
      {
         if (udfLen == index + 1)
         {
            /* A trailing period is NOT an extension. */
            hasExt = FALSE;
         }
         else
         {
            hasExt = TRUE;
            extIndex = index;
            newExtIndex = newIndex;
         }
      }

#ifdef OS2
      /* Record position of last char which is NOT period or space. */
      else if (current != PERIOD && current != SPACE)
      {
         trailIndex = newIndex;
      }
#endif

      if (newIndex < MAXLEN)



OSTA Universal Disk Format Revision 1.0285

      {
         newName[newIndex++] = current;
      }
      else
      {
         needsCRC = TRUE;
      }
   }

#ifdef OS2
   /* For OS2, truncate any trailing periods and\or spaces. */
   if (trailIndex != newIndex - 1)
   {
      newIndex = trailIndex + 1;
      needsCRC = TRUE;
      hasExt = FALSE; /* Trailing period does not make an extension. */
   }
#endif

   if (needsCRC)
   {
      unicode_t ext[EXT_SIZE];
      int localExtIndex = 0;
      if (hasExt)
      {
         int maxFilenameLen;
         /* Translate extension, and store it in ext. */
         for(index = 0; index<EXT_SIZE && extIndex + index +1 < udfLen;
              index++ )
         {
            current = udfName[extIndex + index + 1];

            if (IsIllegal(current) || !isprint(current))
            {
               needsCRC = 1;
               /* Replace Illegal and non-displayable chars
                * with underscore.
                */
               current = ILLEGAL_CHAR_MARK;
               /* Skip any other illegal or non-displayable
                * characters.
                */
               while(index + 1 < EXT_SIZE
                           && (IsIllegal(udfName[extIndex + index + 2])
                           || !isprint(udfName[extIndex + index + 2])))
               {
                  index++;
               }
            }
            ext[localExtIndex++] = current;
         }

         /* Truncate filename to leave room for extension and CRC. */
         maxFilenameLen = ((MAXLEN - 4) - localExtIndex - 1);
         if (newIndex > maxFilenameLen)
         {
            newIndex = maxFilenameLen;
         }
         else
         {



OSTA Universal Disk Format Revision 1.0286

            newIndex = newExtIndex;
         }
      }
      else if (newIndex > MAXLEN - 4)
      {
         /*If no extension, make sure to leave room for CRC. */
         newIndex = MAXLEN - 4;
      }
      newName[newIndex++] = CRC_MARK; /* Add mark for CRC. */

      /*Calculate CRC from original filename from FileIdentifier. */
      valueCRC = cksum(fidName, fidNameLen);
      /* Convert lower 12-bits of CRC to hex characters. */
      newName[newIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];
      newName[newIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];
      newName[newIndex++] = hexChar[(valueCRC & 0x000f)];

      /* Place a translated extension at end, if found. */
      if (hasExt)
      {
         newName[newIndex++] = PERIOD;
         for (index = 0;index < localExtIndex ;index++ )
         {
            newName[newIndex++] = ext[index];
         }
      }
   }
   return(newIndex);
}

#ifdef OS2
/***********************************************************************
 * Decides if a Unicode character matches one of a list
 * of ASCII characters.
 * Used by OS2 version of IsIllegal for readability, since all of the
 * illegal characters above 0x0020 are in the ASCII subset of Unicode.
 * Works very similarly to the standard C function strchr().
 *
 * RETURN VALUE
 *
 *    Non-zero if the Unicode character is in the given ASCII string.
 */
int UnicodeInString(
unsigned char *string,  /* (Input) String to search through.   */
unicode_t ch)  /* (Input) Unicode char to search for. */
{
   int found = FALSE;
   while (*string != '\0' && found == FALSE)
   {
      /* These types should compare, since both are unsigned numbers. */
      if (*string == ch)
      {
         found = TRUE;
      }
      string++;
   }
   return(found);
}
#endif /* OS2 */



OSTA Universal Disk Format Revision 1.0287

/***********************************************************************
 * Decides whether the given character is illegal for a given OS.
 *
 * RETURN VALUE
 *
 *    Non-zero if char is illegal.
 */
int IsIllegal(unicode_t ch)
{
#ifdef MAC
   /* Only illegal character on the MAC is the colon. */
   if (ch == 0x003A)
   {
      return(1);
   }
   else
   {
      return(0);
   }

#elif defined UNIX
   /* Illegal UNIX characters are NULL and slash. */
   if (ch == 0x0000 || ch == 0x002F)
   {
      return(1);
   }
   else
   {
      return(0);
   }

#elif defined OS2
   /* Illegal char's for OS/2  according to WARP toolkit. */
   if (ch < 0x0020 || UnicodeInString("\\/:*?\"<>|", ch))
   {
      return(1);
   }
   else
   {
      return(0);
   }
#endif
}



OSTA Universal Disk Format Revision 1.0288

6.8  Extended Attribute Checksum Algorithm

/*
 * Calculates a 16-bit checksum of the Implementation Use
 * Extended Attribute header.  The fields AttributeType
 * through ImplementationIdentifier inclusively represent the
 * data covered by the checksum (48 bytes).
 *
 */

Uint16  ComputeEAChecksum(byte *data)
{

Uint16 checksum = 0;
Uint count;

for( count = 0; count < 48; count++)
{

checksum += *da ta++;
}

return(checksum );
}



OSTA Universal Disk Format Revision 1.0289

6.9 Requirements for DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DVD-
ROM discs.

• DVD-ROM discs shall be mastered with the UDF file system

• DVD-ROM discs shall consist of a single volume and a single partition.

NOTE:.  The disc may also include the ISO 9660 file system.  If the disc contains
both UDF and ISO 9660 file systems it shall be known as a UDF Bridge disc.
This UDF Bridge disc will allow playing DVD -ROM media in computers
immediately which may only support ISO 9660.  As UDF computer
implementations are provided, the need for ISO 9660 will disappear, and future
discs should contain only UDF.

If you intend to do any DVD  development with UDF , please make sure that you
fill out the OSTA UDF Developer Registration Form located in appendix 6.11.
For planned operating system check the Other box and write in DVD.

6.9.1 Constraints imposed by UDF for DVD-Video
This section describes the restrictions and requirements for UDF formatted DVD -
Video discs for dedicated DVD  content players. DVD-Video is one specific
application of DVD-ROM using  the UDF  format for the home consumer market.
Due to limited computing resources within a DVD player , restrictions and
requirements were created so that a DVD player would not have to support
every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified
by ISO 13346 and UDF.  This will allow playing of DVD -Video in computer
systems.  Examples of such data include the time, date, permission bits, and a
free space map (indicating no free space).  While DVD player implementations
may ignore these fields, a UDF computer system implementation will not. Both
entertainment-based and computer-based content can reside on the same disc.

In an attempt to reduce code size and improve performance, all division
described is integer arithmetic; all denominators shall be 2^n, such that all
divisions may be carried out via logical shift operations.

• A DVD player shall only support UDF and not ISO 9660.

• Originating systems shall constrain individual files to be less than than or
equal to  230 - Logical Block Size bytes in length.

• The data of each  file shall be recorded as a single extent. Each File Entry
shall be recorded using the ICB Strategy Type 4.



OSTA Universal Disk Format Revision 1.0290

• File and directory names shall be compressed as 8 bits per character using
OSTA Compressed Unicode format .

• A DVD player shall not be required to follow symbolic links to any files.

• The DVD-Video files shall be stored in a subdirectory named "VIDEO_TS"
directly under the root directory. Directory names are standardized in the
DVD Specifications for Read-Only Disc document.

 NOTE:  The DVD Specifications for Read-Only Disc is a document,
developed by the DVD Consortium, that describes the names of all DVD-
Video files and a DVD-Video directory which will be stored on the media, and
additionally describes the contents of the DVD -Video files.

• The file named "VIDEO_TS.IFO" in the VIDEO_TS subdirectory shall be read
first.

All the above constraints apply only to the directory and files which the DVD
player needs to access.  There may be other files and directories on the media
which are not intended for the DVD player and do not meet the above listed
constraints.  These other files and directories are ignored by the DVD player.
This is what enables the ability to have both entertainment-based and computer-
based content on the same disc.

6.9.2 How to read a UDF disc
This section describes the basic procedures that a DVD  player would go through
to read a UDF formatted DVD -Video disc.

6.9.2.1 PROCEDURE 1. Volume Recognition Sequence
Find a NSR Descriptor in a volume recognition area which shall start at
logical sector 16.

6.9.2.2 PROCEDURE 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer which is located at an anchor point
must be found.  Duplicate anchor points shall be recorded at logical sector
256 and logical sector n, where n is the highest numbered logical sector on
the disc.

A DVD player only needs to look at logical sector 256; the copy at logical
sector n is redundant and only needed for defect tolerance.  The Anchor
Volume Descriptor Pointer contains three things of interest:

1. Static structures that may be used to identify and verify integrity of the
disc.

2. Location of the Main Volume Descriptor Sequence (absolute logical
sector number)

3. Length of the Main Volume Descriptor Sequence (bytes)



OSTA Universal Disk Format Revision 1.0291

The data located in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer
may be used for format verification if desired.  Verifying the checksum in
byte 4 and CRC in bytes 8-11 are good additional verifications to perform.
MVDS_Location and MVDS_Length are read from this structure.

6.9.2.3 PROCEDURE 3. Volume Descriptor Sequence
Read logical sectors:

MVDS_Location through MVDS_Location + (MVDS_Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD  media.  If this sequence
can not be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor  shall be a descriptor with a tag identifier of 5.  The
partition number and partition location shall be recorded  in logical sector
number.

Partition_Location and Partition_Length are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with a tag identifier of 6.
The location and length of the File Set Descriptor shall be recorded in logical
block number.

FSD_Location, and FSD_Length are returned from this structure.

6.9.2.4 PROCEDURE 4. File Set Descriptor
The File Set Descriptor is located at logical sector numbers:

Partition_Location + FSD_Location through
Partition_Location + FSD_Location + (FSD_Length - 1) / BlockSize

RootDir_Location and RootDir_Length shall be read from the File Set
Descriptor in logical block number.

6.9.2.5 PROCEDURE 5. Root Directory File Entry
RootDir_Location and RootDir_Length define the location of a File Entry .
The File Entry describes the data space and permissions of the root
directory.

The location and length of  the Root Directory is returned.

6.9.2.6 PROCEDURE 6. Root Directory
Parse the data in the root directory extent to find the VIDEO_TS
subdirectory.



OSTA Universal Disk Format Revision 1.0292

Find the VIDEO_TS File Identifier Descriptor.  The name shall be in 8 bit
compressed UDF format. Verify that VIDEO_TS is a directory .

Read the File Identifier Descriptor and find the location and length of a File
Entry describing the VIDEO_TS directory .

6.9.2.7 PROCEDURE 7. File Entry of VIDEO_TS
The File Entry found in the step above describes the data space and
permissions of the VIDEO_TS directory.

The location and length of  the VIDEO_TS directory  is returned.

6.9.2.8 PROCEDURE 8. VIDEO_TS directory
The extent found in the step above contain s sets of File Identifier
Descriptors.  In this pass, verify that the entry points to a file and is named
VIDEO_TS.IFO.

6.9.2.9 PROCEDURE 9. File Entry of VIDEO_TS.IFO
The File Entry found in the step above describes the data space and
permissions of the VIDEO_TS.IFO file .

The location and length of  the VIDEO_TS.IFO file  is returned.

Further files can be found in the same manner as the VIDEO_TS.IFO file
when needed.

6.9.3 Obtaining DVD Documents
To obtain a copy of the DVD Specifications for Read-Only Disc document as well
as other DVD related material contact the following person:

Toshiba Corporation
Toshiba BLDG. 13D
DVD Division
1-1 Shibaura 1-Chome, Minato-ku, Tokyo 105-01, JAPAN
Mr. Y. Mizutani
E-mail: 000092030295@tg-mail.toshiba.co.jp



OSTA Universal Disk Format Revision 1.0293

6.10 UDF Media Format Revision History
The following table shows when changes to the UDF Specification have taken
place that affect the UDF format that can be recorded on a piece of media.  The
Document Change Notices (DCNs) which document a specific change are
referenced in the table.  The column Update in UDF Revision describes which
revision of the UDF specification that the  change was included.  The fields
Minimum UDF Read Revision and Minimum UDF Write Revision relate to the
Revision Access Control fields described in DCN 96-015.

Description DCN Updated
in UDF

Revision

Minimum
UDF Read
Revision

Minimum
UDF Write
Revision

Allocation Extent Descriptor 96-002 1.02 1.02 1.02
Path Component File Version Number 96-003 1.02 1.02 1.02
Parent Directory Entries 96-004 1.02 1.02 1.02
Device Specification Extended Attribute 96-005 1.02 1.01 1.02
Maximum Logical Extent Length 96-006 1.02 1.02 1.02
Unallocated Space Entry 96-008 1.02 1.01 1.02
DVD Copyright Management Information 96-009 1.02 1.02 1.02
Logical Volume Identifier 96-010 1.02 1.01 1.02
Extent Length Field of an Allocation Descriptor 96-012 1.02 1.01 1.02
Non-relocatable & Contiguous Flags 96-013 1.02 1.01 1.02
Revision of Requirements for DVD-ROM 96-014 1.02 1.02 1.02
Revision Access Control 96-015 1.02 1.01 1.02
Volume Set Identifier 96-017 1.02 1.01 1.02
UniqueIDs for Extended Attributes 96-018 1.02 1.02 1.02
Clarification of Dstrings 96-019 1.02 1.01 1.02
Application FreeEASpace Extended Attribute 96-020 1.02 1.02 1.02
Update of Identifier Suffix to 1.02 96-021 1.02 1.02 1.02



OSTA Universal Disk Format Revision 1.0294

6.11 Developer Registration Form
Any  developer that plans on implementing ISO/IEC 13346 according to this
document should complete the developer registration form on the following
page.  By becoming a registered OSTA developer you receive the following
benefits:

• You will receive a list of the current OSTA registered developers and
their associated Implementation Identifiers.  The developers on this list
are willing to interchange media with you to verify data interchange
between your implementation and their implementation.

• Notification of OSTA Technical Committee meetings.  You may attend
a limited number of this meetings without becoming an official OSTA
member.

• You can be added to the OSTA Technical Committee email reflector.
This reflector provides you the opportunity to post technical questions
on the OSTA Universal Disk Format Specification.

• You will receive an invitation to participate in the development of the
next revision of this document.

For the latest information on OSTA and UDF visit the OSTA web site at the
following address:

http://www.osta.org



OSTA Universal Disk Format Revision 1.0295

OSTA Universal Disk Format Specification
Developer Registration Form

Name: ________________________________ __________________________

Company: ________________________________ _______________________

Address:  ________________________________ ________________________

________________________________ ________________________________

________________________________ ________________________________

City: ________________________________ ____________________________

State/Province: ________________________________ ___________________

 Zip/Postal Code: ________________________________ _________________

Country: ________________________________ ________________________

Phone: _________________________  FAX: ___________________________

Email: ________________________________ __________________________

Planned Operating Systems Support
Please indicate on which operating systems you plan to support ISO/IEC 13346:

� DOS � OS/2 � Macintosh
� UNIX/POSIX � Windows NT � Windows 95
� Other  ________________________________ ________________________________ ______

               ________________________________ ________________________________ ______

Implementation Identifier
Please indicate what value you plan to use in the Implementation Identifier field
of the Entity Identifier descriptor to identify your implementation:
            ________________________________ __________________________

Miscellaneous
� Please add my email address to the OSTA Technical Committee email reflector.

� Please send an OSTA Membership kit .

FAX Completed form to OSTA at 1-805-962-1541, or mail to:
                 OSTA,  311 E. Carrillo Street,  Santa Barbara, CA  93101



OSTA Universal Disk Format Revision 1.0296

A
Allocation Descriptor, 5, 28, 32, 33
Allocation Extent Descriptor, 34
Anchor Volume Descriptor Pointer, 4, 15

C
Charspec, 7
Checksum, 48, 49, 50, 51, 53, 57, 87
CRC, 13, 23, 32, 73, 75
CS0, 6, 7, 10, 14, 15, 16, 21, 25, 58, 60, 62

D
Descriptor Tag, 13, 23, 32
Domain, 1, 8, 9, 10, 11
DOS, 37, 38, 42, 43, 49, 61, 69, 77, 78, 79, 80, 81,

94
Dstrings, 7
DVD, 2, 48, 49, 68, 88, 89, 90, 91, 92
DVD Copyright Management Information, 48, 49, 68,

92
DVD-Video, 88, 89

E
Entity Identifier, 4, 8, 9, 13, 14, 15, 16, 17, 19, 20,

24, 25, 26, 27, 30, 31, 32, 40, 47, 56, 68
Extended Attributes, 3, 20, 44, 45, 47, 48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 68
Extent Length, 4, 53, 54, 92

F
File Entry, 5, 9, 30, 40, 46, 53, 68
File Identifier Descriptor, 9, 27, 37, 59
File Set Descriptor, 5, 9, 23, 25
FreeSpaceTable, 18, 19

H
HardWriteProtect, 11, 17, 24, 26

I
ICB, 5, 27, 28, 37, 38, 44, 58, 59
ICB Tag, 5, 28, 38, 58
Implementation Use Volume Descriptor, 9, 21, 66
ImplementationIdentifier, 14, 15, 16, 17, 20, 25, 30,

31, 32, 40, 47, 48, 49, 50, 51, 53, 55, 56
ISO/IEC 13346, 1

L
Logical Block Size, 4, 5, 17
Logical Sector Size, 4

Logical Volume Descriptor, 5, 9, 16, 18, 19
Logical Volume Header Descriptor, 19, 36
Logical Volume Integrity Descriptor, 10, 17, 18, 32
LogicalVolumeIdentifier, 5

M
Macintosh, 3, 20, 31, 36, 37, 39, 43, 44, 46, 48, 50,

51, 52, 53, 54, 55, 56, 61, 63, 68, 69, 82, 94

N
NetWare, 69

O
Orphan Space, 66
OS/2, 3, 37, 38, 42, 43, 48, 49, 50, 56, 59, 61, 62, 68,

69, 82, 86, 94
Overwritable, 3, 4

P
Partition Descriptor, 4, 9, 66, 90
Partition Header Descriptor, 26
Partition Integrity Entry, 5, 10, 32
Pathname, 34
Primary Volume Descriptor, 4, 9, 13

R
Read-Only, 3, 4
Records, 5, 34
Rewritable, 3, 4, 26, 33

S
SizeTable, 18, 19
SoftWriteProtect, 11, 17, 26
strategy, 5, 24, 28
SymbolicLink, 58

T
TagSerialNumber, 13, 23
Timestamp, 4, 8, 18, 35

U
Unallocated Space Descriptor, 5, 18
Unicode, 6, 7, 59, 60, 70
UniqueID, 18, 30, 31, 36, 40, 44, 53, 54, 68, 92
UNIX, 37, 39, 55, 64

W
Windows, 37, 38, 49, 61
Windows 95, 69



OSTA Universal Disk Format Revision 1.0297

Windows NT, 69 WORM, 3, 4, 17, 24



OSTA Universal Disk Format Specification
            Revision History
========================================
1.02  10/30/96  Incorporates Document Change Notices (DCN)
                DCN2-001 through 2-024.
1.01  11/03/95  Added DVD Apendix and made a few
                minor editoral changes.
1.00  10/24/95  Original Release

- 1 -



/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * OSTA compliant Unicode compression, uncompression routines.
 * Copyright 1995 Micro Design International, Inc.
 * Written by Jason M. Rinn.
 * Micro Design International gives permission for the free use of the
 * following source code.
 */
#include <stddef.h>

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * The following two typedef's are to remove compiler dependancies.
 * byte needs to be unsigned 8-bit, and unicode_t needs to be unsigned 16-bit.
 */
typedef unsigned short unicode_t;
typedef unsigned char byte;

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * Takes an OSTA CS0 compressed unicode name, and converts it to Unicode.
 * The Unicode output will be in the byte order
 * that the local compiler uses for 16-bit values.
 * NOTE: This routine only performs error checking on the compID.
 * It is up to the user to ensure that the unicode buffer is large enough,
 * and that the compressed unicode name is correct.
 *
 * RETURN VALUE
 *
 *    The number of unicode characters which were uncompressed.
 *    A -1 is returned if the compression ID is invalid.
 */
int UncompressUnicode(
int numberOfBytes,   /* (Input) number of bytes read from media.  */
byte *UDFCompressed, /* (Input) bytes read from media.            */
unicode_t *unicode)    /* (Output) uncompressed unicode characters. */
{
   unsigned int compID;
   int returnValue, unicodeIndex, byteIndex;

   /* Use UDFCompressed to store current byte being read. */
   compID = UDFCompressed[0];

- 1 -



   /* First check for valid compID. */
   if (compID != 8 && compID != 16)
   {
      returnValue = -1;
   }
   else
   {
      unicodeIndex = 0;
      byteIndex = 1;

      /* Loop through all the bytes. */
      while (byteIndex < numberOfBytes)
      {
         if (compID == 16)
         {
            /*Move the first byte to the high bits of the unicode char. */
            unicode[unicodeIndex] = UDFCompressed[byteIndex++] << 8;
         } else unicode[unicodeIndex]=0;
         if (byteIndex < numberOfBytes)
         {
            /*Then the next byte to the low bits. */
            unicode[unicodeIndex] |= UDFCompressed[byteIndex++];
         }
         unicodeIndex++;
      }
      returnValue = unicodeIndex;
   }
   return(returnValue);
}

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * DESCRIPTION:
 * Takes a string of unicode wide characters and returns an OSTA CS0
 * compressed unicode string. The unicode MUST be in the byte order of
 * the compiler in order to obtain correct results.  Returns an error
 * if the compression ID is invalid.
 *
 * NOTE: This routine assumes the implementation already knows, by
 * the local environment, how many bits are appropriate and therefore does
 * no checking to test if the input characters fit into that number of
 * bits or not.

- 2 -



 *
 * RETURN VALUE
 *
 *    The total number of bytes in the compressed OSTA CS0 string,
 *    including the compression ID.
 *    A -1 is returned if the compression ID is invalid.
 */
int CompressUnicode(
int numberOfChars,   /* (Input) number of unicode characters.   */
int compID,          /* (Input) compression ID to be used.      */
unicode_t *unicode,    /* (Input) unicode characters to compress. */
byte *UDFCompressed) /* (Output) compressed string, as bytes.   */
{
   int byteIndex, unicodeIndex;

   if (compID != 8 && compID != 16)
   {
      byteIndex = -1;  /* Unsupported compression ID ! */
   }
   else
   {
      /* Place compression code in first byte. */
      UDFCompressed[0] = compID;

      byteIndex = 1;
      unicodeIndex = 0;
      while (unicodeIndex < numberOfChars)
      {
         if (compID == 16)
         {
            /*First, place the high bits of the char into the byte stream. */
            UDFCompressed[byteIndex++] = (unicode[unicodeIndex] & 0xFF00) >> 8;
         }
         /*Then place the low bits into the stream. */
         UDFCompressed[byteIndex++] = unicode[unicodeIndex] & 0x00FF;
         unicodeIndex++;
      }
   }

   return(byteIndex);
}

- 3 -



/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * OSTA UDF compliant file name translation routine for DOS.
 * Copyright 1995 Micro Design International, Inc.
 * Written by Jason M. Rinn.
 * Micro Design International gives permission for the free use of the
 * following source code.
 */

#include <stddef.h>

#define DOS_NAME_LEN    8
#define DOS_EXT_LEN     3
#define ILLEGAL_CHAR_MARK 0x005F
#define CRC_MARK          0x0023
#define TRUE               1
#define FALSE              0
#define PERIOD            0x002E
#define SPACE             0x0020

/** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * The following two typedef's are to remove compiler dependancies.
 * byte needs to be unsigned 8-bit, and unicode_t needs to be unsigned 16-bit.
 */
typedef unsigned short unicode_t;
typedef unsigned char byte;

/*** PROTOTYPES ***/
unsigned short cksum(register unsigned char *s, register int n);
int IsIllegal(unicode_t current);

/* Define functions or macros to both determine if a character is printable
 * and compute the uppercase version of a character under your implementation.
 */
int UnicodeIsPrint(unicode_t);
unicode_t UnicodeToUpper(unicode_t);

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * Translate udfName to dosName using OSTA compliant.
 * dosName must be a unicode string with min length of 12.
 *

- 1 -



 * RETURN VALUE
 *    Number of unicode characters in dosName.
 */
int UDFDOSName(
unicode_t *dosName,   /* (Output) DOS compatible name.   */
unicode_t *udfName,   /* (Input)  Name from UDF volume.  */
int        udfLen,    /* (Input)  Length of UDF Name.    */
byte      *fidName,   /* (Input)  Bytes as read from media.                  */
int        fidNameLen)/* (Input)  Number of bytes in fidName.                */
{
   int index, dosIndex = 0, extIndex = 0, lastPeriodIndex;
   int needsCRC = FALSE, hasExt = FALSE, writingExt = FALSE;
   unsigned short valueCRC;
   unicode_t ext[DOS_EXT_LEN], current;

   /*Used to convert hex digits. Used ASCII for readability. */
   const char hexChar[] = "0123456789ABCDEF";

   for (index = 0 ; index < udfLen ; index++)
   {
      current = udfName[index];
      current = UnicodeToUpper(current);

      if (current == PERIOD)
      {
         if (dosIndex==0 || hasExt)
         {
            /* Ignore leading periods or any other than used for extension. */
            needsCRC = TRUE;
         }
         else
         {
            /* First, find last character which is NOT a period or space. */
            lastPeriodIndex = udfLen - 1;
            while (lastPeriodIndex >= 0 && (udfName[lastPeriodIndex] == PERIOD
                                         || udfName[lastPeriodIndex] == SPACE))
            {
               lastPeriodIndex--;
            }

            /* Now search for last remaining period. */
            while (lastPeriodIndex >= 0 && udfName[lastPeriodIndex] != PERIOD)
            {

- 2 -



               lastPeriodIndex--;
            }

            /* See if the period we found was the last or not. */
            if (lastPeriodIndex != index)
            {
               needsCRC = TRUE; /* If not, name needs translation. */
            }

            /* As long as the period was not trailing,
             * the file name has an extension.
             */
            if (lastPeriodIndex >= 0)
            {
               hasExt = TRUE;
            }
         }
      }
      else
      {

         if ((!hasExt && dosIndex == DOS_NAME_LEN) || extIndex == DOS_EXT_LEN)
         {
            /* File name or extension is too long for DOS. */
            needsCRC = TRUE;
         }
         else
         {
            if (current == SPACE)   /* Ignore spaces. */
            {
               needsCRC = TRUE;
            }
            else
            {
               /* Look for illegal or unprintable characters. */
               if (IsIllegal(current) || !UnicodeIsPrint(current))
               {
                  needsCRC = TRUE;
                  current = ILLEGAL_CHAR_MARK;
                  /* Skip Illegal characters(even spaces), but not periods. */
                  while(index+1 < udfLen
                        && (IsIllegal(udfName[index+1])
                              || !UnicodeIsPrint(udfName[index+1]))

- 3 -



                        && udfName[index+1] != PERIOD)
                  {
                     index++;
                  }
               }

               /* Add current char to either file name or ext. */
               if (writingExt)
               {
                  ext[extIndex++] = current;
               }
               else
               {
                  dosName[dosIndex++] = current;
               }
            }
         }
      }
      /* See if we are done with file name, either because we reached
       * the end of the file name length, or the final period.
       */
      if (!writingExt && hasExt && (dosIndex == DOS_NAME_LEN ||
                     index == lastPeriodIndex))
      {
         /* If so, and the name has an extension, start reading it. */
         writingExt = TRUE;
         /* Extension starts after last period. */
         index = lastPeriodIndex;
      }
   }

   /*Now handle CRC if needed. */
   if (needsCRC)
   {
      /* Add CRC to end of file name or at position 4. */
      if (dosIndex >4)
      {
         dosIndex = 4;
      }

      dosName[dosIndex++] = CRC_MARK;
      valueCRC = cksum(fidName, fidNameLen);

- 4 -



      /* Convert lower 12-bits of CRC to hex characters. */
      dosName[dosIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];
      dosName[dosIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];
      dosName[dosIndex++] = hexChar[(valueCRC & 0x000f)];
   }

   /* Add extension, if any. */
   if (extIndex != 0)
   {
      dosName[dosIndex++] = PERIOD;
      for (index = 0; index < extIndex; index++)
      {
         dosName[dosIndex++] = ext[index];
      }
   }

   return(dosIndex);
}

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * Decides if a Unicode character matches one of a list of ASCII characters.
 * Used by DOS version of IsIllegal for readability, since all of the
 * illegal characters above 0x0020 are in the ASCII subset of Unicode.
 * Works very similarly to the standard C function strchr().
 *
 * RETURN VALUE
 *
 *    Non-zero if the Unicode character is in the given ASCII string.
 */
int UnicodeInString(
unsigned char *string,  /* (Input) String to search through.   */
unicode_t ch)  /* (Input) Unicode char to search for. */
{
   int found = FALSE;
   while (*string != '\0' && found == FALSE)
   {
      /* These types should compare, since both are unsigned numbers. */
      if (*string == ch)
      {
         found = TRUE;
      }
      string++;

- 5 -



   }
   return(found);
}

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * Decides whether character passed is an illegal character for a
 * DOS file name.
 *
 * RETURN VALUE
 *
 *    Non-zero if file character is illegal.
 */
int IsI l legal(
unicode_t ch)  /* (Input) character to test. */
{
   /* Genuine illegal char's for DOS. */
   if (ch < 0x20 || UnicodeInString("\\/:*?\"<>|", ch))
   {
      return(1);
   }
   else
   {
      return(0);
   }
}

- 6 -



/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * OSTA UDF compliant file name translation routine for OS/2, 
 * Macintosh and UNIX.
 * Copyright 1995 Micro Design International, Inc.
 * Written by Jason M. Rinn.
 * Micro Design International gives permission for the free use of the
 * following source code.
 */

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * To use these routines with different operating systems.
 *
 * OS/2
 *   Define OS2
 *   Define MAXLEN = 254
 *
 * Macintosh:
 *   Define MAC.
 *   Define MAXLEN = 31.
 *
 * UNIX
 *   Define UNIX.
 *   Define MAXLEN as specified by unix version.
 */

#define ILLEGAL_CHAR_MARK 0x005F
#define CRC_MARK          0x0023
#define EXT_SIZE           5
#define TRUE               1
#define FALSE              0
#define PERIOD            0x002E
#define SPACE             0x0020

/** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * The following two typedef's are to remove compiler dependancies.
 * byte needs to be unsigned 8-bit, and unicode_t needs to be unsigned 16-bit.
 */
typedef unsigned int unicode_t;
typedef unsigned char byte;

- 1 -



/*** PROTOTYPES ***/
int IsIllegal(unicode_t ch);
unsigned short cksum(unsigned char *s, int n);

/* Define a function or macro which determines if a Unicode character is
 * printable under your implementation.
 */
int UnicodeIsPrint(unicode_t);

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * Translates a long file name to one using a MAXLEN and an illegal
 * char set in accord with the OSTA requirements.  Assumes the name has
 * already been translated to Unicode.
 *
 * RETURN VALUE
 *
 *    Number of unicode characters in translated name.
 */
int UDFTransName(
unicode_t *newName, /* (Output) Translated name. Must be of length MAXLEN. */
unicode_t *udfName, /* (Input)  Name from UDF volume.                      */
int udfLen,         /* (Input)  Length of UDF Name.                        */
byte *fidName,      /* (Input)  Bytes as read from media.                  */
int fidNameLen)     /* (Input)  Number of bytes in fidName.                */
{
   int index, newIndex = 0, needsCRC = FALSE;
   int extIndex, newExtIndex = 0, hasExt = FALSE;
#ifdef OS2
   int trailIndex = 0;
#endif
   unsigned short valueCRC;
   unicode_t current;
   const char hexChar[] = "0123456789ABCDEF"; /*Used to convert hex digits. */

   for (index = 0; index < udfLen; index++)
   {
      current = udfName[index];

      if (IsIllegal(current) || !UnicodeIsPrint(current))
      {
         needsCRC = TRUE;

- 2 -



         /* Replace Illegal and non-displayable chars with underscore. */
         current = ILLEGAL_CHAR_MARK;
         /* Skip any other illegal or non-displayable characters. */
         while(index+1 < udfLen && (IsIllegal(udfName[index+1])
                     || !UnicodeIsPrint(udfName[index+1])))
         {
            index++;
         }
      }

      /* Record position of extension, if one is found. */
      if (current == PERIOD && (udfLen - index -1) <= EXT_SIZE)
      {
         if (udfLen == index + 1)
         {
            /* A trailing period is NOT an extension. */
            hasExt = FALSE;
         }
         else
         {
            hasExt = TRUE;
            extIndex = index;
            newExtIndex = newIndex;
         }
      }

#ifdef OS2
      /* Record position of last char which is NOT period or space. */
      else if (current != PERIOD && current != SPACE)
      {
         trailIndex = newIndex;
      }
#endif

      if (newIndex < MAXLEN)
      {
         newName[newIndex++] = current;
      }
      else
      {
         needsCRC = TRUE;
      }
   }

- 3 -



#ifdef OS2
   /* For OS2, truncate any trailing periods and\or spaces. */
   if (trailIndex != newIndex - 1)
   {
      newIndex = trailIndex + 1;
      needsCRC = TRUE;
      hasExt = FALSE; /* Trailing period does not make an extension. */
   }
#endif

   if (needsCRC)
   {
      unicode_t ext[EXT_SIZE];
      int localExtIndex = 0;
      if (hasExt)
      {
         int maxFilenameLen;
         /* Translate extension, and store it in ext. */
         for (index = 0; index < EXT_SIZE && extIndex + index +1 < udfLen;
              index++ )
         {
            current = udfName[extIndex + index + 1];

            if (IsIllegal(current) || !isprint(current))
            {
               needsCRC = 1;
               /* Replace Illegal and non-displayable chars with underscore. */
               current = ILLEGAL_CHAR_MARK;
               /* Skip any other illegal or non-displayable characters. */
               while(index + 1 < EXT_SIZE
                           && (IsIllegal(udfName[extIndex + index + 2])
                           || !isprint(udfName[extIndex + index + 2])))
               {
                  index++;
               }
            }
            ext[localExtIndex++] = current;
         }

         /* Truncate filename to leave room for extension and CRC. */
         maxFilenameLen = ((MAXLEN - 4) - localExtIndex - 1);
         if (newIndex > maxFilenameLen)

- 4 -



         {
            newIndex = maxFilenameLen;
         }
         else
         {
            newIndex = newExtIndex;
         }
      }
      else if (newIndex > MAXLEN - 4)
      {
         /*If no extension, make sure to leave room for CRC. */
         newIndex = MAXLEN - 4;
      }
      newName[newIndex++] = CRC_MARK; /* Add mark for CRC. */

      /*Calculate CRC from original filename from FileIdentifier. */
      valueCRC = cksum(fidName, fidNameLen);
      /* Convert lower 12-bits of CRC to hex characters. */
      newName[newIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];
      newName[newIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];
      newName[newIndex++] = hexChar[(valueCRC & 0x000f)];

      /* Place a translated extension at end, if found. */
      if (hasExt)
      {
         newName[newIndex++] = PERIOD;
         for (index = 0;index < localExtIndex ;index++ )
         {
            newName[newIndex++] = ext[index];
         }
      }
   }
   return(newIndex);
}

#ifdef OS2
/** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * Decides if a Unicode character matches one of a list of ASCII characters.
 * Used by OS2 version of IsIllegal for readability, since all of the
 * illegal characters above 0x0020 are in the ASCII subset of Unicode.
 * Works very similarly to the standard C function strchr().
 *

- 5 -



 * RETURN VALUE
 *
 *    Non-zero if the Unicode character is in the given ASCII string.
 */
int UnicodeInString(
unsigned char *string,  /* (Input) String to search through.   */
unicode_t ch)  /* (Input) Unicode char to search for. */
{
   int found = FALSE;
   while (*string != '\0' && found == FALSE)
   {
      /* These types should compare, since both are unsigned numbers. */
      if (*string == ch)
      {
         found = TRUE;
      }
      string++;
   }
   return(found);
}
#endif /* OS2 */

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * *
 * Decides whether the given character is illegal for a given OS.
 *
 * RETURN VALUE
 *
 *    Non-zero if char is illegal.
 */
int IsIllegal(unicode_t ch)
{
#ifdef MAC
   /* Only illegal character on the MAC is the colon. */
   if (ch == 0x003A)
   {
      return(1);
   }
   else
   {
      return(0);
   }

- 6 -



#elif defined UNIX
   /* Illegal UNIX characters are NULL and slash. */
   if (ch == 0x0000 || ch == 0x002F)
   {
      return(1);
   }
   else
   {
      return(0);
   }

#elif defined OS2
   /* Illegal char's for OS/2 according to WARP toolkit. */
   if (ch < 0x0020 || UnicodeInString("\\/:*?\"<>|", ch))
   {
      return(1);
   }
   else
   {
      return(0);
   }
#endif
}

- 7 -



UDF Specification v1.02 - A specification
describing the Universal Disk Format
developed by the Optical Storage Technology
Association (OSTA).  This specification is
for developers who plan to implement UDF
which is based upon the ISO 13346 standard.
UDF is a file system format standard that
enables file interchange among different
operating systems.

- 1 -


