_MAN\NCTA_
A\ A" R VA

OSTA Universal Disk Format Specification
Revision 1.50

Readme

The pages included in this distribution are as follows: @ Page#

UDF 150.PDF | Adobe Acrobat format of UDF Specification 2-119

HISTORY Revision history of UDF Specification 120
UNICODE.C Unicode sample source code 121-122
| DOSNAME.C | UDF DOS filename translation 123-127
[ UDFTRANS.C | UDF 0S/2, Macintosh and UNIX 128-131
filename translation
| FILE ID.DIZ |BBS Description file 132

*hkkikkkhkkikkhkkhk | M P O R T A N T N O T E *hkkikkhkkhkkhkk
Please fill out the OSTA UDF Developer Registration form located in
the UDF specification and return it to OSTA. This will make sure that
you are kept up to date with announcements in regards to UDF.

For additional information on OSTA and UDF visit the OSTA web site
at http://www.osta.org.

NOTE: Free Adobe Acrobat readers for several platforms are available
at http://www.adobe.com


Navigation
Click on the desired document in the list below to jump to that page.


ACTA

BRY4A 2 VAV OSTA-2
Optical Storage Revision 1.50
Technology Association 4 Feb 97

Universal Disk
Format ™

Specification

Revision 1.50

February 4, 1997
a Copyright 1994, 1995, 1996, 1997
Optical Storage Technology Association
ALL RIGHTSRESERVED



Revision History:

1.00 October 24, 1995 Original Release
1.01 November 3, 1995 DVD appendix added
1.02 August 30, 1996 Incorporates Document Change Notices
DCN 2-001 through DCN 2-024
1.50 February 4, 1997 Integrated support for CD-R and CD-RW media

(DCN 2-025 through DCN 2-032)

Optical Storage Technology Association
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853 Voice
(805) 962-1541 Fax
info@osta.org
http://www.osta.org

This document along with the sample source code is available in electronic format from OSTA.

Important Notices

This document is a specification adopted by Optical Storage Technology Association (OSTA). This document may be revised by OSTA. It isintended
solely as a guide for companies interested in devel oping products which can be compatible with other products developed using this document. OSTA
makes no representation or warranty regarding this document, and any company using this document shall do so at its sole risk, including specifically the
risks that a product developed will not be compatible with any other product or that any particular performance will not be achieved. OSTA shall not be
liable for any exemplary, incidental, proximate or consequential damages or expenses arising from the use of this document. This document defines only
one approach to compatibility, and other approaches may be available in the industry.

This document is an authorized and approved publication of OSTA. The underlying information and materials contained herein are the exclusive
property of OSTA but may be referred to and utilized by the general public for any legitimate purpose, particularly in the design and development of
writable optical systems and subsystems. This document may be copied in whole or in part provided that no revisions, alterations, or changes of any kind
are made to the materials contained herein. Only OSTA has the right and authority to revise or change the material contained in this document, and any
revisions by any party other than OSTA are totally unauthorized and specifically prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the subject of a patent,
patent application, copyright, mask work right or trade secret right). By publication of this document, no position is taken by OSTA with respect to the
validity or infringement of any patent or other proprietary right, whether owned by a Member or Associate of OSTA or otherwise. OSTA hereby
expressly disclaims any liability for infringement of intellectual property rights of others by virtue of the use of this document. OSTA has not and does
not investigate any notices or allegations of infringement prompted by publication of any OSTA document, nor does OSTA undertake a duty to advise
users or potential users of OSTA documents of such notices or allegations. OSTA hereby expressly advises all users or potential users of this document
to investigate and analyze any potential infringement situation, seek the advice of intellectual property counsel, and, if indicated, obtain a license under
any applicable intellectual property right or take the necessary steps to avoid infringement of any intellectual property right. OSTA expressly disclaims
any intent to promote infringement of any intellectual property right by virtue of the evolution, adoption, or publication of this OSTA document.

Universal Disk Format™ and UDF™ are trademarks of the Optical Storage Technology Association.



CONTENTS

L INTRODUCTION ...t eee ettt e e e e e e eare e e e s e nre e e e e ennseeasennneeeeanns 1
1.1 DOCUMENT LAY OUL....cceiieiieeeieiete ettt ettt ettt st st eae e be et et e e s b e saeesbeeebe e saeenbeemeeeaeesaeesneeneenes 2
D2 @0 a1 o] 1F= g 1= TS SRTRRR 3
1.3 GENEN Al REFEIBNCES......ccei ettt ettt et et s e s ae e s ae e e be e be e beeabesaeesbeesbe e beesseensesaeesaeesreenreenns 3

T I = = = 0= USROS 3
G2 B = ] o o LRSS 4
TR TR B I 1 1 01 PSP 5

2.BASIC RESTRICTIONS & REQUIREMENTS.....coiie e 6

P A T o1 - OSSPSR 8
P O = T o = S TP 8
B O S AN O O O = o o 9
0 I 1 1 S 9
N T 1= - 10 o NS 10
N R (Y o == SO 10

2.2 Part 3 - VOlIUME SEEUCTUN @ittt sttt et sttt sttt st st s ene 15
2.2 1 DESCIIPLON TBY «eeuvervevereesresresseeseeeetessessessessessesseessessessessessessesseasesssansesssssessessessesssesessessessessensenes 15
2.2.2 Primary VOIUME DESCIIPLON ......ccveieriesiesesesteseeteseesieste s e stesseeseeseessesaessesaessessesseeseessensessessessenes 15
2.2.3 Anchor Volume DESCIiPLOr POINLEY .........ccviiieeieeeiesiesesese e seeaesae e stesresresseeneeseessessessessenns 18
2.2.41.00iCal VOIUME DESCIIPLON ... .cueeeeiestesiesesiesteseeeeseesteste s e stesseeseeeesaesaestesaessessesseeneensensessessessens 18
2.2.5 Unallocated SPace DESCIIPLON .......ccueiieriesesiesteseeeeseeseste s e ste e ereeeeseesae s e saesressesseensesaesesseseensenns 20
2.2.6 Logical Volume INtegrity DESCIIPLON ......ceiveeieeeieeeriesestesie st eree e sae e stesre st eeneesae e sresresee e 20
2.2.7 Implemention Use VOlUME DESCIIPLON ........ccvveeeeeeiesiesesiesiesreeieeeesae e stesre e sseenaesae e ssessesseens 23
2.2.8Virtual Partition M@ .......cccieiuieeeieiese e stes e e ste st ese e esaesae e s aesresresneeneenaentessesrensens 25
2.2.9 Sparabl€ Partition M .......cceeueeeeieiese ettt e sttt sttt sr et ne e et naeerenne s 25
2.2.10 Virtual AHOCEEON TADIE ..ottt b e b et 26
N N R o I oSS 28

G o L T e L = o SRS 31
G 0 I TS o ] o (o G = SO 31
2.3. 2 Fil© SOt DESCIIPLON w.euveveitisteieeeeeeeetestes e s e steste et eseeeeseestestesbeaseese e s essesaestesaessessesseeneensensessessensenns 31
2.3.3 Partition HEadEr DESCIIPLON .......ccveiieiieriesesieetiseeieseesteste s e ste e s e esaesae e s aesresresneeneenaensessessessenns 34
2.3 4 File I dentifier DESCIIPION ... ..ciuiieeeeiestestesese st e ee et e e ste e stesreere e e esteseestestesresresseeneeeensessessennens 35
R RSN [0 T I o TR SRS 36
2.3 8 FIIE ENIIY .ottt ettt e e e s te st e be e aeeRe e e e st et et e aeeReereeneene e e e ntentenrenre e 38
G A Lo [ F o 1= o IS o= o=l 1 39
2.3.8 SPaCE BitMap DESCIIPLON ....eveeveeeeeiesiesiesesestee e eee e e ste st estesreere s e eseesaestesaesresresseeneeaeneessessessens 40
2.3.9 Partition INtEQIItY ENLIY ...cc.oieceeeeee et sttt st st st se e e e e snesrenne e 40
2.3.10 AllOCELION DESCIIPLOIS .....vvveeveeueetestestesiesteeteseeseeseetestessessesseesessessesaessesaesaessesseeseesensessessessenns 40
2.3.11 Al10CaLiON EXIENE DESCIIPLON ....uvevesiesiesiesiesteseeeeeseetestestestesseeseeeessesae e saesressesssessesaensessessessenns 41
PR B - 10147 10 1= OSSPSR 42
2.3.13 NON-All0Catabl € SPACE LISt ....ccveieieecieie ettt st e e e e sne e 42



A T S =< oo | o [ {0 ot (<Y 43

3. SYSTEM DEPENDENT REQUIREMENTS ... 44
I - T R 1= = o | SRS SRTURN 44
TNt I T 41 = 0 o TSP 44

3.2 PArt 3= VOIUME SEEUCLUN €.ttt ettt s ae e et e e e se e b e aeseesbeeneeneeseenseseesneas 45
3.2.1Logical Volume Header DESCIIPLON .......cc.iiueeiieeeeereeie ettt ettt se e e e e e 45

R - L A I e Lo = o SRRSO 46
S 1o T L= oL = g D= ot ] (o] SR 46

G I [ 01 T I o USRS 47

GG | 1o o1 SRS 49

3.3 4 EXTENAEA ALITDULES ...ttt et a e sb et e e e b e see e e 53

4, USER INTERFACE REQUIREMENTS ... .o 66
A.1Part 3 - VOIUME SEFUCEUI ...ttt sttt sttt b e et sae et et e ebenre e 66
A e T R e Lo YL = o TSNS 66
L= o TR 66
A S =N Lo (= g R = =S o ] o) o) RSP 67

B INFORMATIVE ettt et e e et e e s e ae e e e e eana e e e e e ennneeaas 74
DT o g o] o gl I = oo |1 1TSS 74
5.2UsiNg IMPIemMentation USE ATE8S ......cc.eeeiieiiieerierie et see et seseeseestesaesaesaesneeneeseensessesaens 74
I I = Y Ko =g (] = £ TSP 74

5.2.2 OFPREN SPBCE.......eoeeee ettt ettt b et h et et e se et e besbe b e ne et e e e teneeereenene 74

G = To oL B 1= | o] (o USRS 75
5.4 TEChNICAl CONLACES.....ceiieiitiieeie ettt be bt b e e e e s e e e e b e besbeebeeneaneeneensessesnens 75

6. APPENDICES...... oo ne e nanes 76
6.1 UDF Entity Identifier DefiNitioNS........ccciiiieieierise s st sa e nneas 76
6.2 UDF ENtity [dentifier ValUES.......cccocv ittt sttt st na e snenne s 77
6.3 0perating SysStem dENtifiEr S. ..ot na et renneas 78
6.4 OSTA Compressed Unicode AIGOrithim .........coooiiiii i 80
RS O O O LT | = Lo o ISR 82
6.6 Algorithm for Strategy TYPEA096.........cceeeeeiereieseeeeeee st es e sese e se e sseste e sresreeneesseseensessesnens 85
6.7 Identifier Trangation AlQOrithMS .......oceeieiece et sreas 86



L5 R 1@ S AN [ o 1o S 86

6.7.2 0S/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm.........cccceevvvvevevencnccnnnene, 90
6.8 Extended Attribute Checksum AlQOrithm ..o 95
6.9 RequirementSfor DVD-ROM ........cccciiiiiiiieiiiese e seseeae e ettt se e aesse e aesresresneensenaensessesnens 96

6.9.1 Constraints imposed by UDF fOr DVD-VIGEO.......cccccvviirerireceseee et s 96

6.9.2 HOW t0 r€80 @ UDF GiSC......ccueieeiiiiieierieseete ettt st sttt sttt b e b e st 97

6.9.3 ObtaiNiNg DV D DOCUMENES.......ccccieiieriesieiiesteseeeeseesestestessesseeseseessesaestessessessesssessesssssessessessenns 99
6.10 RecommendationSfor CD MEAIA ......ccoueiiirieiririeiee e 100

6.10.1 Use Of UDF 0N CD-R MEAIAL ....cveieierieieierieeeie ettt sttt st sttt st 100

6.10.2 Use Of UDF 0N CD-RW MEIA.......cciiiiririeieierieieees ettt st 102

6.10.3 Multisession and MiXed MOGE..........cocereiiiririieieees et 105
6.11 UDF Media Format REVISION HISLOrY ......ccviiiiiieiericse e 108
6.12 Developer REQIStI atioN FOIMMi.....c.ccicieiesice ettt e e e e aeseesrenns 109



This page |eft intentionally blank



1. Introduction

The OSTA Universal Disk Format (UDF™) specification defines a subset of the standard
|SO/IEC 13346. The primary goal of the OSTA UDF isto maximize data interchange and
minimize the cost and complexity of implementing |SO/IEC 13346.

To accomplish this task this document defines a Domain. A domain defines rules and
restrictions on the use of ISO/IEC 13346. The domain defined in this specification is
known as the “OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of |SO/IEC
13346 on a per operating system basis:

Given some |SO/IEC 13346 structure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading this field: If the operating system supports the data in
this field then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in
this field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the
data for thisfield then to what value should the field be set?

For some structures of ISO/IEC 13346 the answers to the above questions were self
explanatory and therefore those structures are not included in this document.

In some cases additional information is provided for each structure to help clarify the
standard.

This document should help make the task of implementing the ISO/IEC 13346 standard
easier.

To be informed of changes to this document please fill out and return the OSTA UDF
Devel opers Registration Form located in appendix 6.11.



1.1 Document L ayout

This document presents information on the treatment of structures defined under standard
I|SO/IEC 13346.

This document is separated into the following 4 basic sections:

Basic Restrictions and Requirements - defines the restrictions and
requirements which are operating system independent.

System Dependent Requirements - defines the restrictions and requirements
which are operating system dependent.

User Interface Requirements - defines the restrictions and requirements which
arerelated to the user interface.

Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard
ISO/IEC 13346. The following areas are covered :

& Interpretation of a structure/field upon reading from media.

&5 Contents of a structure/field upon writing to media. Unless specified otherwise
writing refers only to creating a new structure on the media. When it applies to
updating an existing structure on the media it will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with
respect to the categories listed above. In certain cases, one or more fields of a structure
are not described if the semantics associated with the field are obvious.

A word on terminology: in common with I1SO/IEC 13346, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optiona action or
requirement, and should to indicate a preferred but still optional, action or requirement.

Also, specia comments associated with fields and/or structures are prefaced by the
notification: " NOTE:"



1.2 Compliance

This document requires conformance to parts 1, 2, 3 and 4 of ISO/IEC 13346.
Compliance to part 5 of 1SO/IEC 13346 is not supported by this document. Part 5 may
be supported in alater revision of this document.

NOTE: Dueto the nature of CD media, Partitions may contain volume structures. This
violates SO 13346 (3/8.5). Effortsare under way to revise SO 13346 to alow
volume structures within write-once partitions.

For an implementation to claim compliance to this document the implementation shall
meet al the requirements (indicated by the word shall) specified in this document.

The following are afew points of clarification in regards to compliance:

Multi-Volume support isoptional. An implementation can claim compliance
and only support single volumes.

Multi-Partition support is optional. An implementation can claim compliance
without supporting the special multi-partition case on a single volume defined
in this specification.

Media support. Animplementation can claim compliance and support a
single mediatype or any combination. All implementations should be able to
read any mediathat is physically accessable.

File Name Trandation - Any time an implementation has the need to
transform a filename to meet operating system restrictions it shall use the
algorithms specified in this document.

Extended Attributes - All compliant implementations shall preserve existing
extended attributes encountered on the media. Implementations shall create
and maintain the extended attributes for the operating systems they support.
For example, an implementation that supports Macintosh shall preserve any
0S/2 extended attributes encountered on the media. An implementation that
supports Macintosh shall also create and maintain all Macintosh extended
attributes specified in this document.

The full definition of compliance to this document is defined in a separate OSTA
document.

1.3 General References
1.3.1 References

1S0O 9660: 1988 Information Processing - Volume and File Structure of CD-ROM for Information
Interchange
IEC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data Interchange on read-only 120mm optical data
discs (CD-ROM based on the Philips/Sony “Y ellow Book™)

Orange Book part-I1 Recordable Compact Disc System Part-11, N.V. Philips and Sony Corporation



Orange Book part-I11
I|SO/IEC 13346:1995

ECMA 167

1.3.2 Definitions

Audio session

Audio track

CD-R
CD-RW
Clean File System

Data track

Dirty File System
Fixed Packet

ICB
Logical Block Address
Media Block Address

Packet
Packet Sze
Physical Address

Random Access File System

Sequential File System
Session

Track

Recordable Compact Disc System Part-111, N.V. Philips and Sony Corporation

Volume and file structure of write-once and rewritable media using non-
sequential recording for information interchange. Referencesenclosedin[]in
this document are referencesto SO 13346. Thereferences arein the form
[x/a.b.c], where x is the section number and a.b.c is the paragraph or figure
number.

European Computer Manufactures Association (ECMA) standard number 167.
Revision 2 of this standard is equivalent to ISO/IEC 13346:1995, and is available
from http://www.ecma.ch.

Audio session contains one or more audio tracks, and no data track.

Audio tracks are tracks that are designated to contain audio sectors specified in
the | SO/IEC 908.

CD-Recordable. A write once CD defined in Orange Book, part-11.
CD-Rewritable. An overwritable CD defined in Orange Book, part-111.
The file system on the media conforms to this specification.

Data tracks are tracks that are designated to contain data sectors specified in the
ISO/IEC 10149.

A file system that is not a clean file system.

An incremental recording method in which all packetsin agiven track are of a
length specified in the Track Descriptor Block. Addresses presented to a CD
drive are translated according to the Method 2 addressing specified in Orange
Book parts-11 and -111.

A control node in SO 13346.
An address relative to the beginning of a partition, as defined in |SO 13346.

The address of a sector asit appears on the medium, before any mapping
performed by the device.

A recordable unit, which is an integer number of sectors.
The number of user data sectorsin a Packet.

An address used when accessing the medium, as it would appear at the interface
to the device.

A file system for randomly writable media, either write once or
rewritable

A file system for sequentially written media (e.g. CD-R)

The tracks of avolume shall be organized into one or more sessions as specified
by the Orange Book part-11. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending segquence.

The sectors of avolume shall be organized into one or more tracks. A track shall
be a sequence of sectors, the sector numbers of which form a contiguous
ascending segquence. No sector shall belong to more than one track.



UDF
Variable Packet

VAT ICB
Virtual Address
VAT

1.3.3 Terms
May

Optional

Shall

Should

Reserved

Note: There may be gaps between tracks; that is, the last sector of atrack need
not be adjacent to the first sector of the next track.

OSTA Universal Disk Format

An incremental recording method in which each packet in agiven track is of a
host determined length. Addresses presented to a CD drive are as specified in
Method 1 addressing in Orange Book parts 11 and I11.

A File Entry ICB that describes afile containing a Virtual Allocation Table.
An address described by a Virtual Allocation Table entry.

The Virtual Allocation Table (VAT) providesaLogical Block Address for each
Virtual Address. The Virtual Allocation Table is used with sequential write once
media

Indicates an action or feature that is optional.

Describes a feature that may or may not be implemented. If implemented, the
feature shall be implemented as described.

Indicates an action or feature that is mandatory and must be implemented to
claim compliance to this standard.

Indicates an action or feature that is optional, but itsimplementation is strongly
recommended.

A reserved field is reserved for future use and shall be set to zero. A reserved
valueisreserved for future use and shall not be used.



2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined
in this specification. These restrictions & requirements as well as additional ones are
described in detail in the following sections of this specification.

ltem

Restrictions & Requirements

Logical Sector Size

The Logical Sector Sze for a specific volume shall be the
same as the physical sector size of the specific volume.

Logical Block Size

The Logical Block Szefor aLogical Volume shall be set to
the logical sector size of the volume or volume set on which
the specific logical volume resides.

Volume Sets

All media within the same Volume Set shall have the same
physical sector size. Rewritable/Overwritable media and
WORM media shall not be mixed in/ be present in the same
volume set.

First 32K of Volume Space

Thefirst 32768 bytes of the VVolume space shall not be used
for the recording of 1SO 13346 structures. This area shall
not be referenced by the Unallocated Space Descriptor or
any other 1SO 13346 descriptor. Thisisintended for use by
the native operating system.

Volume Recognition Sequence

The Volume Recognition Sequence as described in part 2 of
I SO/IEC 13346 shall be recorded.

Timestamp

All timestamps shall be recorded in local time. Time zones
shall be recorded on operating systems that support the
concept of atime zone.

Entity Identifiers

Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain a value that uniquely
identifies the implementation.

Descriptor CRCs

CRCs shall be supported and calculated for all Descriptors,
except for the Space Bitmap Descriptor.

File Name Length

Maximum of 255 bytes

Maximum Pathsize

Maximum of 1023 bytes

Extent Length

Maximum Extent Length shall be 2* - Logical Block Size

Primary V olume Descriptor

There shall be exactly one prevailing Primary Volume
Descriptor recorded per volume.

Anchor Volume Descriptor Pointer

Shall be recorded in at least 2 of the following 3 locations:
256, N-256, or N, where N is the last addressable sector of a
volume.

Partition Descriptor

A Partition Access Type of Read-Only, Rewritable,
Overwritable and WORM shall be supported.

There shall be exactly one prevailing Partition Descriptor
recorded per volume, with one exception. For Volume Sets
that consist of single volume, the volume may contain 2
Partitions with 2 prevailing Partition Descriptors only if one
has an access type of read only and the other has an access
type of Rewritable or Overwritable. The Logical Volume
for this volume would consist of the contents of both
partitions.




Logica Volume Descriptor

There shall be exactly one prevailing Logical Volume
Descriptor recorded per Volume Set.

The LogicalVolumel dentifier field shall not be null and
should contain aidentifier that aids in the identification of
the logical volume. Specifically, software generating
volumes conforming to this specification shall not set this
field to afixed or trivial value. Duplicate disks which are
intended to be identical may contain the same value in this
field. Thisfield is extremely important in logical volume
identification when multiple media are present within a
jukebox. This nameistypically what is displayed to the
user.

Logica Volume Integrity Descriptor

Shall be recorded.

Unallocated Space Descriptor

A single prevailing Unallocated Space Descriptor shall be
recorded per volume.

File Set Descriptor

There shall be exactly one File Set Descriptor recorded per
Logica Volume on Rewritable/Overwritable media. For
WORM media multiple File Set Descriptors may be
recorded based upon certain restrictions defined in this
document.

ICB Tag

Only strategy types 4 or 4096 shall be recorded.

File Identifier Descriptor

Thetotal length of a File Identifier Descriptor shall not
exceed the size of one Logica Block.

File Entry

Thetotal length of a File Entry shall not exceed the size of
one Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shall be
recorded.

Allocation Extent Descriptors

The length of any single Allocation Extent Descriptor shall
not exceed the Logical Block Sze.

Unallocated Space Entry

Thetotal length of an Unallocated Space Entry shall not
exceed the size of one Logica Block.

Space Bitmap Descriptor

CRC not required.

Partition Integrity Entry

Shall not be recorded.

Volume Descriptor Sequence Extent

Both the main and reserve volume descriptor sequence
extents shall each have a minimum length of 16 logical
sectors.

Record Structure

Record structure files, as defined in part 5 of ISO/IEC
13346, shall not be created.




2.1 Part 1- General

2.1.1 Character Sets
The character set used by UDF for the structures defined in this document is the
CS0 character set. The OSTA CSO character set is defined as follows:

OSTA CS0 shall consist of the d-characters specified in the Unicode 1.1 standard
(excluding #FEFF and FFFE) stored in the OSTA Compressed Unicode format
which is defined as follows:

OSTA Compressed Unicode for mat

RBP | Length Name Contents
0 1 Compression ID Uint8
1 ? Compressed Bit Stream byte

The CompressionI D shall identify the compression algorithm used to compress
the CompressedBitStream field. The following algorithms are currently

supported:
Compression Algorithm
Value Description
0-7 Reserved
8 Valueindicates there are 8 bits per character

in the CompressedBitStream.
9-15 Reserved

16 Value indicates there are 16 bits per
character in the CompressedBitStream.
17-255 | Reserved

For a CompressionID of 8 or 16, the value of the CompressionID shall specify
the number of BitsPerCharacter for the d-characters defined in the
CharacterBitSrream field. Each sequence of CompressionlD bitsin the
CharacterBitStream field shall represent an OSTA Compressed Unicode d-
character. The bits of the character being encoded shall be added to the
CharacterBitStream from most- to least-significant-bit. The bits shall be added to
the CharacterBitStream starting from the most-significant-bit of the current byte
being encoded into.
NOTE: Thisencoding causes characterswritten with a CompressioniD of 16 to
be effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 1.1 standard.
Refer to appendix on OSTA Compressed Unicode for sample C source code to
convert between OSTA Compressed Unicode and standard Unicode 1.1.



The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

2.1.2 OSTA CS0 Charspec

struct Charspec {
Uint8 Character SetType;
byte Character SetInfo[63];

}

The Character SetType field shall have the value of 0 to indicate the CSO coded
character set.

The Character Setinfo field shall contain the following byte values with the
remainder of thefield set to avalue of 0.

HAF, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #13, #65,
#64, #20, #55, #OE, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode”

2.1.3 Dstrings

The 1SO 13346 standard, as well as this document, has normally defined byte positions
relativeto 0. Insection 7.2.12 of 1SO 13346, dstrings are defined in terms of being
relativeto 1. Since this offers an opportunity for confusion, the following shows what the
definition would be if described relative to O.

7.2.12 Fixed-length character fields

A dstring of length nisafield of n bytes where d-characters (1/7.2) are recorded. The number of
bytes used to record the characters shall be recorded asa Uint8 (1/7.1.1) in byten-1, whereniis
the length of the field. The characters shall be recorded starting with the first byte of the field, and
any remaining byte positions after the characters up until byte n-2 inclusive shall be set to #00.

If the number of d-charactersto be encoded is zero, the length of the dstring shall be zero.
NOTE: The length of adstring includes the compression code byte(2.1.1) except for the
case of azero length string. A zero length string shall be recorded by setting the entire
dstring field to all zeros.



2.1.4 Timestamp
struct timestamp{  /* SO 13346 1/7.3 */

Uint16 TypeAndTimezone,
Uint16 Y ear;

Uint8 Month;

Uint8 Day;

Uint8 Hour;

Uint8 Minute;

Uint8 Second;

Uint8 Centiseconds;

Uint8 HundredsofMicroseconds;
Uint8 Microseconds,

}

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this
field, and TimeZone refers to the least significant 12 bits of thisfield.

¢~ Thetime within the structure shall be interpreted as Local Time since Type
shall be equal to ONE for OSTA UDF compliant media.

&S Type shall be set to ONE to indicate Local Time.

s~ Shal beinterpreted as specifying the time zone for the location when this
field was last modified. If thisfield contains -2047 then the time zone has
not been specified.

&S For operating systems that support the concept of atime zone, the offset of
the time zone (in 1 minute increments), from Coordinated Universal Time,
shall beinserted in thisfield. Otherwise the time zone portion of thisfield
shall be set to -2047.

Note: Time zones West of Coordinated Universal Time have negative offsets.
For example, Eastern Standard Time is -300 minutes; Eastern Daylight
Timeis -240 minutes.

2.1.5 Entity Identifier
struct EntityID { [* 1SO 13346 1/7.4*/

uint8 Flags,
char Identifier[23];
char | dentifier Suffix[8];

10



UDF classifies Entity Identifiers into 3 separate types as follows:

Domain Entity Identifiers
UDF Entity Identifiers
Implementation Entity Identifiers

The following sections describes the format and use of Entity Identifiers based
upon the different types mentioned above.

2.1.5.1 Uint8 Flags
a  Sdf explanatory.

s Shall be set to ZERO.

2.1.5.2 char Identifier
Unless stated otherwise in this document thisfield shall be set to an identifier that
uniquely identifies the implementation. This methodology will allow for
identification of the implementation responsible for creating structures recorded
on media interchanged between different implementations.

If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the Identifier field to a
value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the 1SO
13346 standard and this document and shows to what values they shall be set.

Entity I dentifiers

Descriptor Field ID Value Suffix Type
Primary Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
Implementation Use | Implementation ID “*Developer ID” Implementation
V olume Descriptor Identifier Suffix
Implementation Use | Implementation ID “*UDF LV Info” UDF Identifier Suffix
V olume Descriptor
Partition Descriptor Implementation ID “*Developer ID” Implementation

Identifier Suffix
Logica Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
Logica Volume Domain ID "*OSTA UDF DOMAIN Identifier
Descriptor Compliant" Suffix
File Set Descriptor Domain ID "*OSTA UDF DOMAIN Identifier
Compliant" Suffix
File Identifier Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
(optional)

11




File Entry Implementation ID “*Developer ID” Implementation
Identifier Suffix

UDF Extended Implementation ID See Appendix UDF Identifier Suffix

Attribute

Non-UDF Extended Implementation ID “*Developer ID” Implementation

Attribute Identifier Suffix

Device Specification | Implementation ID “*Developer ID” Implementation

Extended Attribute Identifier Suffix

Logica Volume Implementation ID “*Developer ID” Implementation

Integrity Descriptor Identifier Suffix

Partition Integrity Implementation ID N/A N/A

Entry

Virtual Partition Map | Partition Type “*UDF Virtua UDF Identifier Suffix

Identifier Partition”

Sparable Partition Partition Type “*UDF Sparable UDF Identifier Suffix

Map Identifier Partition”

Virtual Allocation Entity ID “*UDF Virtua UDF Identifier Suffix

Table Alloc Thl”

Sparing Table Sparing ldentifier “*UDF Sparing UDF Identifier Suffix

Table”

NOTE: The value of the Entity Identifier field is interpreted as a sequence
of bytes, and not as a dstring specified in CS0. For ease of use the values
used by UDF for this field are specified in terms of ASCII character
strings. The actual sequence of bytes used for the Entity Identifiers
defined by UDF are specified in the appendix.

In the ID Value column in the above table “ *Developer ID” refersto a Entity Identifier
that uniquely identifies the current implementation. The value specified should be used
when anew descriptor is created. Also, the value specified should be used for an existing
descriptor when anything within the scope of the specified EntityID field is modified.

NOTE: The value chosen for a* * Developer ID” should contain enough
information to identify the company and product name for an implementation.
For example, a company called XYZ with a UDF product called DataOne might
choose “ * XYZ DataOne” astheir developer ID. Also in the suffix of their
developer ID they may choose to record the current version number of their
DataOne product. Thisinformation is extremely helpful when trying to
determine which implementation wrote a bad structure on a piece of mediawhen
multiple products from different companies have been recording on the media.

The Suffix Type column in the above table defines the format of the suffix to be used with

the corresponding Entity Identifier. These different suffix types are defined in the
following paragraphs.

12



NOTE: All Identifiers defined in this document (appendix 6.1) shall be registered
by OSTA as UDF Identifiers.

2.1.5.3 ldentifier Suffix
The format of the Identifier Suffix field is dependent on the type of the Identifier.

In regard to OSTA Domain Entity Identifiers specified in this document (appendix
6.1) the Identifier Suffix field shall be constructed as follows:

Domain | dentifier Suffix field format

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0150)
2 1 Domain Flags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #0150 to indicate revision 1.50 of this
document. Thisfield will allow an implementation to detect changes madein
newer revisions of this document. The OSTA Domain Identifiersare only used in
the Logical Volume Descriptor and the File Set Descriptor. The DomainFlags
field defines the following bit flags:

Domain Flags
Bit Description
0 Hard Write-Protect
1 Soft Write-Protect
2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or
file system structures within the scope of the descriptor in which it resides are
write protected. A SoftWriteProtect flag value of ONE shall indicate user write
protected structures. This flag may be set or reset by the user. The
HardWriteProtect flag is an implementation settable flag that indicates that the
scope of the descriptor in which it resides is permanently write protected. A
HardWriteProtect flag value of ONE shall indicate a permanently write protected
structure. Once set thisflag shall not bereset. The HardWriteProtect flag
overrides the SoftWriteProtect flag. These flags are only used in the Logical
Volume Descriptor and the File Set Descriptor. The flagsin the Logical Volume
descriptor have precedence over the flagsin the File Set Descriptors.

Implementation use Entity Identifiers defined by UDF (appendix 6.1) the
I dentifier Suffix field shall be constructed as follows:

UDF | dentifier Suffix

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0150)
2 1 OSClass uint8

13



3 1 OS I dentifier Uint8

4 4 Reserved bytes (= #00)

The contents of the OS Class and OS |ldentifier fields are described in the
Appendix on Operating System Identifiers.

For implementation use Entity Identifiers not defined by UDF the I dentifier Suffix
field shall be constructed as follows:

| mplementation | dentifier Suffix

RBP | Length Name Contents
0 1 OSClass Uint8
1 1 OS Identifier Uint8
2 6 Implementation Use Area bytes

NOTE: It isimportant to understand the intended use and importance of the OS Class and
OS I dentifier fields. The main purpose of these fieldsisto aid in debugging when
problems are found on a UDF volume. The fields also provide useful information which
could be provided to the end user. When set correctly these two fields provide an
implementation with information such as the following:
Identify under which operating system a particular structure was last modified.
[dentify under which operating system a specific file or directory was last
modified.
If adeveloper supports multiple operating systems with their implementation,
it helpsto determine under which operating system a problem may have
occurred.

14



2.2 Part 3-Volume Structure
2.2.1 Descriptor Tag

struct tag { [* 1SO 13346 3/7.2*/
Uint16 Tagldentifier;
uint16 DescriptorVersion;
Uint8 TagChecksum,
byte Reserved;
Uintl6 TagSerialNumber;
uint16 DescriptorCRC;
Uint16 Descriptor CRCL ength;
Uint32 TaglL ocation;

}

2.2.1.1 Uint16 TagSerialNumber
a~  Ignored. Intended for disaster recovery.

&5 Reset to a unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previously
recorded, upon volume re-initialization. It is suggested that: TagSerialNumber =
((TagSerialNumber of the Primary Volume Descriptor) + 1).

2.2.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor. The value of this
field shall be set to (Size of the Descriptor) - (Length of Descriptor Tag). When
reading a descriptor the CRC should be validated.

2.2.2 Primary Volume Descriptor
struct PrimaryVolumeDescriptor {  /* 1SO 13346 3/10.1 */

struct tag DescriptorTag;

Uint32 V olumeDescriptor SequenceNumber;
Uint32 PrimaryV olumeDescriptorNumber;
dstring Volumeldentifier[32];

Uintl6 V olumeSequenceNumber;

uint16 M aximumV olumeSequenceNumber;
Uintl6 Interchangel evel;

Uint16 Maximuml nter changel evel;
Uint32 Character SetList;

Uint32 MaximumChar acter SetList;
dstring VolumeSetl dentifier[128];

struct charspec Descriptor Char acter Set;

struct charspec ExplanatoryChar acter Set;

struct extent_ad VolumeAbstract;

struct extent_ad V olumeCopyrightNotice;

struct EntitylD Applicationldentifier;

15



struct timestamp RecordingDateandTime;

struct EntitylD I mplementationl dentifier;

byte ImplementationUseg[64];

Uint32 PredecessorV olumeDescriptor Sequencelocation;
uint16 Flags,

byte Reserved[22];

}

2.2.2.1 Uint16 Interchangel evel
a~  Interpreted as specifying the current interchange level (as specified in
ISO/IEC 13346 3/11), of the contents of the associated volume and the
restrictions implied by the specified level.

& If thisvolumeis part of a multi-volume Volume Set then the level shall be
set to 3, otherwise the level shall be set to 2.

SO 13346 requires an implementation to enforce the restrictions associated with
the specified current Interchange Level. The implementation may change the
value of thisfield aslong asit does not exceed the value of the Maximum
Interchange Level field.

2.2.2.2 Uintl6 Maximumlnterchangel evel
e Interpreted as specifying the maximum interchange level (as specified in
ISO/IEC 13346 3/11), of the contents of the associated volume.

&5 This field shal be set to level 3 (No Restrictions Apply), unless
specifically given a different value by the user.

NOTE: Thisfield is used to determine the intent of the originator of the volume.
If this field has been set to 2 then the originator does not wish the volume to be
included in a multi-volume set (interchange level 3). The receiver may override
thisfield and set it to a 3 but the implementation should give the receiver a strict
warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 Character SetList
e~ Interpreted as specifying the character set(s) in use by any of the structures
defined in Part 3 of 1SO/IEC 13346 (3/10.1.9).

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

16



2.2.2.4 Uint32 MaximumCharacter SetList
a~  Interpreted as specifying the maximum supported character sets (as
specified in ISO/IEC 13346) which may be specified in the
Character SetList field.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetldentifier
¢ Interpreted as specifying the identifier for the volume set .

& The first 16 characters of this field should be set to a unique value. The
remainder of the field may be set to any allowed value. Specificaly,
software generating volumes conforming to this specification shall not set
thisfield to afixed or trivial value. Duplicate disks which are intended to
be identical may contain the same value in thisfield.

NOTE: The intended purpose of this is to guarantee Volume Sets with
unique identifiers. The first 8 characters of the unique part should come
from a CSO hexadecima representation of a 32-bit time value. The
remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec Descriptor Character Set
a~  Interpreted as specifying the character sets allowed in the Volume
Identifier and Volume Set Identifier fields.
& Shall be set to indicate support for CS0 as defined in 2.1.2.
2.2.2.7 struct charspec ExplanatoryCharacter Set
a~  Interpreted as specifying the character sets used to interpret the contents of
the VolumeAbstract and VolumeCopyrightNotice extents.
& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.2.8 struct EntitylD Implementationl dentifier;
For more information on the proper handling of this field see section 2.1.5.

17



2.2.3 Anchor Volume Descriptor Pointer

struct AnchorV olumeDescriptorPointer { [* 1SO 13346 3/10.2 */
struct tag DescriptorTag;
struct extent_ad MainVolumeDescriptor SequenceExtent;
struct extent_ad ReserveVolumeDescriptor SequenceExtent;
byte Reserved[480];

}

NOTE: An AnchorVolumeDescriptorPointer structure shall be recorded in at
least 2 of the following 3 locations on the media :

Logical Sector 256.
Logical Sector (N - 256).
N

NOTE: Unclosed CD-R media may have an Anchor Volume Descriptor Pointer
recorded at only sector 512. Upon close, CD-R media will conform to the rules
above.

2.2.3.1 struct MainVolumeDescriptor SequenceExtent
The main VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

2.2.3.2 struct ReserveVolumeDescriptor SequenceExtent

The reserve VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

2.2.4 Logical Volume Descriptor

struct LogicaVVolumeDescriptor { /* 1S0 13346 3/10.6 */
struct tag DescriptorTag;
Uint32 V olumeDescriptorSequenceNumber;
struct charspec Descriptor Char acter Set;
dstring LogicalVolumeldentifier[128];
Uint32 L ogicalBlockSize,
struct EntitylD Domainldentifier;
byte L ogicalVolumeContentsUse[ 16];
Uint32 MapTablelL ength;
Uint32 Numberof PartitionM aps,
struct EntitylD I mplementationl dentifier;
byte ImplementationUse[ 128];
extent_ad I ntegritySequenceExtent,
byte PartitionM apg[?7?];

}

18



2.2.4.1 struct charspec Descriptor Character Set
a~  Interpreted as specifying the character set adlowed in the
Logical Volumel dentifier field.

& Shall be set to indicate support for CS0O asdefined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize
e~ Interpreted as specifying the Logical Block Sze for the logical volume
identified by this Logical VolumeDescriptor.

& This field shall be set to the largest logical sector size encountered
amongst all the partitions on media that constitute the logical volume
identified by this LogicalVolumeDescriptor. Since UDF requires that all
Volumes within a VolumeSet have the same logical sector size, the
Logical Block Sze will be the same as the logical sector size of the
Volume.

2.2.4.3 struct EntitylD Domainldentifier
a~  Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield isal zero then
it isignored, otherwise the Entity Identifier rules are followed. NOTE: If
the field does not contain “*OSTA UDF Compliant” then an
implementation may deny the user access to the logical volume.

&5 Thisfield shal indicate that the contents of thislogical volume conforms
to the domain defined in this document, therefore the Domainldentifier
shall be set to:

"*OSTA UDF Compliant”

As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see section 2.1.5.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.4.3.

2.2.4.4 struct EntitylD Implementationl dentifier;
For more information on the proper handling of this field see the section
on Entity Identifier.

2.2.4.5 struct extent_ad IntegritySequenceExtent

A valueinthisfield isrequired for the Logical Volume Integrity Descriptor. For
Rewriteable or Overwriteable mediathis shall be set to a minimum of 8K bytes.

19



WARNING: For WORM media this field should be set to an extent of some
substantial length. Once the WORM volume on which the Logical VVolume
Integrity Descriptor residesis full a new volume must be added to the volume set
since the Logical Volume Integrity Descriptor must reside on the same volume as
the prevailing Logical Volume Descriptor.

2.2.4.6 byte PartitionM aps

2.25

2.2.6

For the purpose of interchange partition maps shall be limited to Partition Map
type 1, except type 2 maps as described in this document (2.2.8 and 2.2.9).

Unallocated Space Descriptor
struct UnallocatedSpaceDesc { /* 1SO 13346 3/10.8 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber
Uint32 Numberof AllocationDescriptors,
extent_ad AllocationDescriptorg ?7);

}

This descriptor shall be recorded, even if there is no free volume space.

Logical Volume Integrity Descriptor

struct LogicalVolumelntegrityDesc { /* 1SO 13346 3/10.10 */
struct tag DescriptorTag,
Timestamp RecordingDateAndTime,
Uint32 Integrity Type,
struct extend_ad NextlntegrityExtent,
byte L ogicalVolumeContentsUse[32],
Uint32 NumberOfPartitions,
Uint32 L engthOfImplementationUse,
Uint32 FreeSpaceT able][ 77,
Uint32 SizeT able[ 77,
byte I mplementationUse[?7]

}
The Logical Volume Integrity Descriptor is a structure that shall be written any
time the contents of the associated Logical Volumeis modified. Through the

contents of the Logical Volume Integrity Descriptor an implementation can easily
answer the following useful questions:

1) Arethe contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
Volume was modified?

20



3) What isthe total Logical Volume free space in logical blocks?

4) What isthe total size of the Logical Volumein logica blocks?

5) What is the next available Uniquel D for use within the Logical
Volume?

6) Has some other implementation modified the contents of the logical
volume since the last time that the original implementation which created
the logical volume accessed it.

2.2.6.1 byte LogicalVolumeContentsUse
See the section on Logical Volume Header Descriptor for information on the
contents of thisfield.

2.2.6.2 Uint32 FreeSpaceTable
Since most operating systems require that an implementation provide the true free
space of aLogical Volume at mount time it isimportant that these values be
maintained. The optional value of #FFFFFFFF, which indicates that the amount
of available free space is not known, shall not be used.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable
Since most operating systems require that an implementation provide the total size
of aLogica Volume at mount time it isimportant that these values be maintained.
The optional value of #FFFFFFFF, which indicates that the partition size is not

known, shall not be used.

2.2.6.4 byte ImplementationUse
The ImplementationUse area for the Logical Volume Integrity Descriptor shall be
structured as follows:

I mplementationUse format

RBP | Length Name Contents

0 32 Implementationl D EntitylD

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uint16

42 2 Minimum UDF Write Revision Uint16

44 2 Maximum UDF Write Revision Uint16

46 7 Implementation Use byte

Implementation ID - The implementation identifier EntitylD of the
implementation which last modified anything within the scope of this

21




Entityl D. The scope of this EntitylD isthe Logical Volume Descriptor,
and the contents of the associated Logical Volume. Thisfield allows an
implementation to identify which implementation last modified the
contents of aLogica Volume.

Number of Files - The current number of files in the associated Logical
Volume. This information is needed by the Macintosh OS. All
implementations shall maintain this information. NOTE: This value does
not include Extended Attributes as part of the file count.

Number of Directories - The current number of directories in the
associated Logical Volume. This information is needed by the Macintosh
OS. All implementations shall maintain this information.

NOTE: Theroot directory shall be included in the directory count.

Minimum UDF Read Revision - Shall indicate the minimum recommended
revision of the UDF specification that an implementation is required to
support to successfully be able to read all potential structures on the
media. This number shall be stored in binary coded decimal format, for
example #0150 would indicate revision 1.50 of the UDF specification.

Minimum UDF Write Revision - Shall indicate the minimum revision of
the UDF specification that an implementation is required to support to
successfully be able to modify all structures on the media. This number
shall be stored in binary coded decimal format, for example #0150 would
indicate revision 1.50 of the UDF specification.

Maximum UDF Write Revision - Shall indicate the maximum revision of
the UDF specification that an implementation which has modified the
media has supported. An implementation shall update this field only if it
has modified the media and the level of the UDF specification it supports
is higher than the current value of this field. This number shall be stored
in binary coded decima format, for example #0150 would indicate
revision 1.50 of the UDF specification.

Implementation Use - Contains implementation specific information
unique to the implementation identified by the Implementation ID.

22



2.2.7 Implemention Use Volume Descriptor
struct ImpUseV olumeDescriptor {

struct tag DescriptorTag;

Uint32 V olumeDescriptorSequenceNumber;
struct EntitylD I mplementationl dentifier;

byte ImplementationUse[460];

}

This section defines an UDF Implementation Use Volume Descriptor. This
descriptor shall be recorded on every Volume of aVolume Set. The Volume may
also contain additional Implementation Use V olume Descriptors which are
implementation specific. The intended purpose of this descriptor isto aid in the
identification of aVVolume within aVolume Set that belongs to a specific Logical
Volume.

NOTE: Animplementation may still record an additional |mplementation Use
Volume Descriptor in its own format on the media. The UDF Implementation
Use Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 EntitylD Implementation Identifier
Thisfield shall specify “*UDF LV Info”.

2.2.7.2 bytesImplementation Use
The implementation use area shall contain the following structure:

struct LV Information {

struct charspec LVIChar set,

dstring L ogicalVolumel dentifier[128],
dstring LVInfol[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

struct EntitylD ImplementionlI D,

bytes ImplementationUse[128];

}

2.2.7.2.1 charspecLVICharset
a~  Interpreted as specifying the character sets alowed in the
LogicalVolumel dentifier and LVInfo fields.
& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.7.2.2 dstring LogicalVolumel dentifier
Identifies the Logical Volume referenced by this descriptor.

23



2.2.7.2.3 dstring LVInfol
ThefieldsLVInfol, LVInfo2 and LVInfo3 should contain additional information
to aid in the identification of the media. For example the LVInfo fields could

contain information such as Owner Name, Organization Name, and Contact
I nformation.

2.2.7.2.4 struct EntitylD ImplementionI D
Refer to the section on Entity Identifier.

2.2.7.2.5 bytesImplementationUseg[128]

This area may be used by the implementation to store any additional
implementation specific information.

24



2.2.8 Virtual Partition Map
Thisis an extension of 1SO 13346 to expand its scope to include sequentially written
media (eg. CD-R). Thisextension isfor a partition map entry to describe a virtual space.

The Logical Volume Descriptor contains alist of partitions that make up a given volume.
Asthe virtual partition cannot be described in the same manner as a physical partition, a
Type 2 partition map defined below shall be used.

If aVirtual Partition Map is recorded, then the Logical Volume Descriptor shall contain
at least two partition maps. One partition map, shall be recorded asa Type 1 partition
map. One partition map, shall be recorded as a Type 2 partition map. The format of this
Type 2 partition map shall be as specified in the following table.

L ayout of Type 2 partition map for virtual partition

RBP | Length Name Contents
0 1 Partition Map Type Uint8 =2

1 1 Partition Map Length Uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier Entityl D

36 2 V olume Sequence Number Uint16

38 2 Partition Number uintl6

40 24 Reserved #00 bytes

Partition Type Identifier:
Flags=0
Identifier =*UDF Virtual Partition
IdentifierSuffix is recorded asin section 2.1.5.3
Volume Sequence Number = volume upon which the VAT and Partition is recorded

Partition Number = an identification of a partition within the volume identified by the volume
sequence number

2.2.9 Sparable Partition Map

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems, a partition of type 2 isused. The
partition map defines the partition number, packet size (see section 1.3.2), and size and
locations of the sparing tables. Thistype 2 map isintended to replace the type 1 map
normally found on the media. This map identifies not only the partition number and the
volume sequence number, but also identifies the packet length and the sparing tables. A
Sparable Partition Map shall not be recorded on disk/drive systems that perform defect
management.

25



L ayout of Type 2 partition map for sparable partition

RBP Length Name Contents
0 1 Partition Map Type Uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 V olume Sequence Number Uint16
38 2 Partition Number Uintl6
40 2 Packet Length Uintl6 = 32
42 1 Number of Sparing Tables (=N_ST) Uint8
43 1 Reserved #00 byte
44 4 Size of each sparing table Uint32
48 4* N ST L ocations of sparing tables Uint32
48+4* N ST|16-4* N ST | Pad #00 bytes

Partition Type Identifier:
Flags=0
Identifier =*UDF Sparable Partition
IdentifierSuffix is recorded asin section 2.1.5.3.

Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition.

Packet Length = the number of user data blocks per fixed packet. Shall be set to 32.

Number of Sparing Tables = the number of redundant tables recorded. This shall be avalue
in the range of 1 to 4.

Size of each sparing table = Length, in bytes, allocated for each sparing table.

Locations of sparing tables = the start locations of each sparing table specified as amedia
block address. I|mplementations should align the start of each sparing table with the
beginning of a packet. |mplementations should record at least two sparing tables in
physically distant locations.

2.2.10 Virtual Allocation Table

The Virtual Allocation Table (VAT) isused on sequentialy written media(eg. CD-R) to
give the appearance of randomly writable mediato the system. The existence of this
partition isidentified in the partition maps. The VAT shall only be recorded on
sequentially written media (eg. CD-R).

The VAT isamap that trandlates Virtual Addressesto logical addresses. It shall be
recorded as afileidentified by aFile Entry ICB (VAT ICB) which allows great flexibility
in building thetable. The VAT ICB isthe last sector recorded in any transaction. The
VAT itself may be recorded at any location.

The VAT shall beidentified by aFile Entry ICB with afile type of 0. ThisICB shall be
the last valid data sector recorded. Error recovery schemes can find the last valid VAT by
finding ICBs with file type 0 and examining the contents for the EntityID at the end of
the table.

26



Thisfile, when small, can be embedded in the ICB that describesit. If itislarger, it can
be recorded in a sector or sectors preceding the ICB. The sectors do not have to be
contiguous, which alows writing only new parts of the tableif desired. This alows small
incremental updates, even on disks with many directories. Each sector can hold entries
that represent up to 512 directories.

When the VAT issmall (asmall number of directories on the disk), the VAT is updated
by writing anew file ICB with the VAT embedded. When the VAT becomestoo large to
fitin the ICB, writing a single sector with the VAT and a second sector with the ICB is
required. Beyond this point, more than one sector isrequired for the VAT. However, as
multiple extents are supported, updating the VAT may consist of writing only the sector
or sectors that need updating and writing the ICB with pointers to all of the pieces of the
VAT.

The Virtual Allocation Tableis used to redirect requests for certain information to the
proper logical location. The indirection provided by this table provides the appearance of
direct overwrite capability. For example, the sector describing the root directory could be
referenced as virtual sector 1. A virtual sector is contained in a partition identified by a
virtual partition map entry. Over the course of updating the disk, the root directory may
change. When it changes, a new sector describing the root directory iswritten, and its
Logical Block Addressisrecorded as the Logical Block Address corresponding to virtual
sector 1. Nothing that references virtual sector 1 needs to change, asit still pointsto the
most current virtual sector 1 that exists, even though it exists at anew Logica Block
Address.

The use of virtual addressing allows any desired structure to become effectively
rewritable. The structure is rewritable when every pointer that references it does so only
by its Virtual Address. When areplacement structure is written, the virtual reference
does not need to change. The proper entry in the VAT is changed to reflect the new
Logical Block Address of the corresponding Virtual Address and al virtual references
then point to the new structure. All structures that require updating, such as directory
ICBs, shall be referenced by aVirtual Address. As each structure is updated, its
corresponding entry in the VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entriesin afile. Each entry shall be
the offset, in sectors, into the physical partition in which the VAT islocated. Thefirst
entry shall be for the virtual partition sector O, the second entry for virtual partition sector
1, etc. The Uint32 entries shall be followed by a EntitylD and a Uint32 entry indicating
the location of the previous VAT ICB.

The entry for the previous VAT ICB alows for viewing the file system asit appeared in
an earlier state. If thisfield is #FFFFFFFF, then no such ICB is specified.

27



Virtual Allocation Tablestructure

Offset Name Contents

0 LBA of virtual sector O Uint32

4 LBA of virtual sector 1 Uint32

8 LBA of virtual sector 2 Uint32
Uint32

2048 LBA of virtual sector 512 Uint32
Uint32

N*4 Entity Identifier EntitylD

N*4+32 Previous VAT ICB location Uint32

An entry of #FFFFFFFF indicates that the virtual sector is currently unused.

The LBA specified islocated in the partition identified by the partition map.

The number of entriesin the table can 'be determined from the VAT filesizein the ICB:
Number of entries (N) = w

The EntityID shall contain:

Flags=0
Identifier =*UDF Virtual Alloc Tbl
IdentifierSuffix isrecorded asin UDF 2.1.5.3

2.2.11 Sparing Table

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems. Certain media can only be written in
groups of sectors (*“packets’), further complicating relocation: a whole packet must be
relocated rather than only the sectors being written. To address thisissue a sparable
partition isidentified in the partition map, which further identifies the location of the
sparing tables. The sparing table identifies relocated areas on the media. Sparing tables
areidentified by a sparable partition map. Sparing tables shall not be recorded on
disk/drive systems that perform defect management.

Sparing Tables point to space allocated for sparing and contains alist of mappings of
defective sectors to their replacements. Separate copies of the sparing tables shall be
recorded in separate packets. All instances of the sparing table shall be kept up to date.

Partitions map logical space to physical space. Normally, thisisalinear mapping where
an offset and alength is specified. A sparable partition is based on this mapping, where
the offset and length of a partition within physical space is specified by a partition
descriptor. The sparing table further specifies an exception list of logical to physical

28



mappings. All mappings are one packet in length. The packet size is specified in the
sparable partition map.

Available sparing areas may be anywhere on the media, either inside or outside of a
partition. If located inside a partition, sparable space shall be marked as alocated and
shall be included in the Non-Allocatable Space List. The mapped locations should be
filled in at format time; the original locations are assigned dynamically as errors occur.
Each sparing table shall be structured as shown below.

Sparing Tablelayout

BP | Length Name Contents
0 16 Descriptor Tag tag=0
16 32 Sparing Identifier EntitylD
48 2 Reallocation Table Length (=RT_L) Uint16
50 2 Reserved #00 bytes
52 4 Sequence Number Uint32
56 8*RT L Map Entry Map Entries

This structure may be larger than a single sector if necessary.
Descriptor Tag
Contains O, indicating that the contents are not specified by SO 13346.

Sparing Identifier:
Flags=0
Identifier =*UDF Sparing Tabl e
IdentifierSuffix is recorded asin UDF 2.1.5.3

Reallocation Table Length

Indicates the number of entriesin the Map Entry table.

Sequence Number

Contains a number that shall be incremented each time the sparing table is updated.

Map Entry
A map entry is described in the table below. Maps shall be sorted in ascending order by the
Original Location field.

Map Entry description

RBP | Length Name Contents
0 4 Original Location Uint32
4 4 Mapped Location Uint32

Original Location

Logical Block Address of the packet to be spared. The address of a packet is the address of
the first user data block of a packet. If thisfield is #FFFFFFFF, then thisentry is available for
sparing. If thisfield is #FFFFFFFO, then the corresponding mapped location is marked as

29



defective and should not be used for mapping. Original Locations of #FFFFFFF1 through
#FFFFFFFE are reserved.

Mapped Location

Physical Block Address of active data. Requests to the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFFO, #FFFFFFFF, or reserved. If the
mapped location overlaps a partition, that partition shall have that space marked as allocated
and that space shall be part of the Non-Allocatable Space list.

30



2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { [* 1SO 13346 4/7.2 */
Uint16 Tagldentifier;
uint16 DescriptorVersion;
Uint8 TagChecksum,
byte Reserved;
Uintl6 TagSerialNumber;
uint16 DescriptorCRC;
Uint16 Descriptor CRCL ength;
Uint32 TaglL ocation;

}

2.3.1.1 Uintl6 TagSerialNumber
a~  lgnored.

&5 Reset to a unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previously
recorded, upon volume re-initialization. The intended use of this field is for
disaster recovery. The TagSerialNumber for all descriptors in Part 4 should be
the same as the serial number used in the associated File Set Descriptor

2.3.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor, unless otherwise
noted. The value of thisfield shall be set to: (Size of the Descriptor) - (Length of
Descriptor Tag). When reading a descriptor the CRC should be validated.

2.3.2 File Set Descriptor
struct FileSetDescriptor { [* 1SO 13346 4/14.1 */

struct tag DescriptorTag;

struct timestamp RecordingDateandTime;
Uintl6 Interchangel evel;

uint16 Maximuml nter changel evel;
Uint32 Character SetList;

Uint32 MaximumChar acter SetList;
Uint32 FileSetNumber;

Uint32 FileSetDescriptorNumber;
struct charspec L ogicalVolumel dentifier Char acter Set;
dstring LogicalVolumeldentifier[128];
struct charspec FileSetChar acter Set;

dstring FileSetldentifer[32];

dstring CopyrightFileldentifier[32];
dstring AbstractFileldentifier[32];

31



struct long_ad RootDirectoryl CB;

struct EntitylD Domainldentifier;
struct long_ad NextExtent;
byte Reserved[48];

}

Only one FileSet descriptor shall be recorded. On WORM media, multiple
FileSets may be recorded.

The UDF provision for multiple File Setsis as follows:

Multiple FileSets are only allowed on WORM media.

The default FileSet shall be the one with the highest FileSetNumber .
Only the default FileSet may be flagged as writable. All other FileSets
in the sequence shall be flagged HardWriteProtect (see EntitylD
definition).

No writable FileSet shall reference any metadata structures which are
referenced (directly or indirectly) by any other FileSet. Writable
FileSets may, however, reference the actua file data extents.

Within aFileSet on WORM, if all files and directories have been recorded with
ICB strategy type 4, then the DomainID of the corresponding FileSet Descriptor
shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM is to support the ability to
have multiple archive images on the media. For example one FileSet could
represent a backup of a certain set of information made at a specific point in time.
The next FileSet could represent another backup of the same set of information
made at alater point in time.

2.3.2.1 Uint16 Interchangel evel
a~  Interpreted as specifying the current interchange level (as specified in

ISO/IEC 13346 4/15), of the contents of the associated file set and the
restrictions implied by the specified level.
&5 Shall be set to alevel of 3.

An implementation shall enforce the restrictions associated with the specified
current Interchange Level.

32



2.3.2.2 Uintl6 Maximumlnterchangel evel
a~  Interpreted as specifying the maximum interchange level of the contents of
the associated file set. This value restricts to what the current Interchange
Level field may be set.

e Shall be set to level 3.

2.3.2.3 Uint32 Character SetList
a~  Interpreted as specifying the character set(s) specified by any field, whose
contents are specified to be a charspec, of any descriptor specified in Part
4 of ISO/IEC 13346 and recorded in the file set described by this
descriptor.

&5 Shall be set to indicate support for CSO only as defined in 2.1.2.

2.3.2.4 Uint32 MaximumCharacter SetList
¢ Interpreted as specifying the maximum supported character set in the
associated file set and the restrictions implied by the specified level.

& Shall be set to indicate support for CSO only as defined in 2.1.2.

2.3.2.5 struct charspec LogicalVolumel dentifier Character Set
a~  Interpreted as specifying the d-characters allowed in the Logical Volume
Identifier field.

& Shall be set to indicate support for CS0 asdefined in 2.1.2.

2.3.2.6 struct charspec FileSetCharacter Set
a~  Interpreted as specifying the d-characters allowed in dstring fields defined
in Part 4 of 1SO 13346 that are within the scope of the FileSetDescriptor.

& Shall be set to indicate support for CS0 asdefined in 2.1.2.

2.3.2.7 struct EntitylD Domainldentifier
e Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield is NULL then
itisignored, otherwise the Entity Identifier rules are followed.

& Thisfield shal indicate that the scope of this File Set Descriptor conforms
to the domain defined in this document, therefore the
Implementationldentifier shall be set to:

"*QSTA UDF Compliant”

33



As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see the section on Entity Identifier.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags.

2.3.3 Partition Header Descriptor
struct PartitionHeaderDescriptor {  /* 1SO 13346 4/14.3 */

struct short_ad UnallocatedSpaceT able;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionlntegrityTable;
struct short_ad FreedSpaceTable;

struct short_ad FreedSpaceBitmap;

byte Reserved[88];

}

Asapoint of clarification the logical blocks represented as Unallocated are blocks
that are ready to be written without any preprocessing. In the case of Rewritable
media this would be a write without an erase pass. The logical blocks
represented as Freed are blocks that are not ready to be written, and require some
form of preprocessing. In the case of Rewritable media this would be a write
with an erase pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a

Logical Volume. Space Tables and Space Bitmaps shall not both be used at the
same time within aLogical Volume.

2.3.3.1 struct short_ad PartitionlntegrityTable
Shall be set to all zeros since Partitionl ntegrityEntrys are not used.

34



2.3.4 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* 1SO 13346 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersonNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileldentifier;
struct long_ad ICB;
uint16 L engthOfl mplementationUse;
byte I mplementationUse[?77];
char Fileldentifier[?7];
byte Padding[77];

}

The File Identifier Descriptor shall be restricted to the length of one Logical

Block.

2.3.4.1 Uintl6 FileVersonNumber

=4

&

There shall be only one version of afile as specified below with the value
being set to 1.

Shall be set to 1.

2.3.4.2 Uint1l6 Lengthof ImplementationUse

&

&5

Shall specifiy the length of the ImplementationUse field.

Shall specifiy the length of the ImplementationUse field. This field may
be ZERO, indicating that the I|mplementationUse field has not been used.

2.3.4.3 byte ImplementationUse

&

If the LengthoflmplementationUse field is non ZERO then the first 32
bytes of this field shall be interpreted as specifying the implementation
identifier EntitylD of the implementation which last modified the File
Identifier Descriptor.

If the Lengthofl mplementationUse field is non ZERO then the first 32
bytes of thisfield shall be set to the implementation identifier EntitylD of
the current implementation.

NOTE: For additional information on the proper handling of thisfield refer to
the section on Entity Identifier.

Thisfield allows an implementation to identify which implementation last created
and/or modified a specific File Identifier Descriptor .

35



235 ICB Tag
struct icbtag { /* 1SO 13346 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries,
uint16 Strategy Type;

byte StrategyParameter[2];

uint16 Numberof Entries,

byte Reserved;

Uint8 FileType;

Lb_addr Parent| CBL ocation;

uint16 Flags,

2.3.5.1 Uintl6 StrategyType
¢~ The contents of this field specifies the ICB strategy type used. For the
purposes of read access an implementation shall support strategy types 4
and 4096.

& Shall be set to 4 or 4096.

NOTE: Strategy type 4096, which is defined in the appendix, is intended for
primary use on WORM media, but may also be used on rewritable and
overwritable media.

2.3.5.2 Uint8 FileType
As a point of clarification a value of 5 shall be used for a standard byte
addressablefile, not 0.

2.3.5.3 ParentlCBL ocation
The use of thisfield by is optional.
NOTE: In SO 13346-4/14.6.7 it states that “If thisfield contains O, then no such
ICB is specified.” Thisisaflaw inthe SO standard in that an implementation
could store an ICB at logical block address 0. Therefore, if you decide to use this
field, do not store an ICB at logical block address 0.

2.3.5.4 Uint16 Flags
Bits 0-2: These bits specify the type of allocation descriptors used. Refer to the
section on Allocation Descriptors for the guidelines on choosing which type of
allocation descriptor to use.

36



Bit 3 (Sorted):
¢~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
directories may be unsorted.

& Shall be set to ZERO.

Bit 4 (Non-relocatable):

e~ For OSTA UDF compliant mediathis bit may indicate (ONE) that the file
IS non-relocatable. An implementation may reset this bit to ZERO to
indicate that the file is relocatable if the implementation can not assure
that the file will not be relocated.

& Should be set to ZERO.

Bit 9 (Contiguous):

e~ For OSTA UDF compliant mediathis bit may indicate (ONE) that the file
Is contiguous. An implementation may reset this bit to ZERO to indicate
that the file may be non-contiguous if the implementation can not assure
that the file is contiguous.

& Should be set to ZERO.

Bit 11 (Transformed):

a  For OSTA UDF compliant mediathis bit shall indicate (ZERO) that no
transformation has taken place.

&5 Shall be set to ZERO.

The methods used for data compression and other forms of data transformation
might be addressed in afuture OSTA document.

Bit 12 (Multi-versions):
¢ For OSTA UDF compliant mediathis bit shall indicate (ZERO) that multi-
versioned files are not present.

e Shall be set to ZERO.

37



2.3.6 FileEntry
struct FileEntry {

struct tag

struct icbtag
Uint32

Uint32

Uint32

uintl6

Uint8

uint8

Uint32

Uint64

Uint64

struct timestamp
struct timestamp
struct timestamp
Uint32

struct long_ad
struct EntitylD
uint64

[* 1SO 13346 4/14.9 */
DescriptorTag;

ICBTag;

uid;

Gid;

Permissions;
FileLinkCount;

Recor dFor mat;

Recor dDisplayAttributes;
RecordL ength;
InformationL ength;

L ogical BlocksRecorded;
AccessTime,
ModificationTime;
AttributeTime;

Checkpoint;
ExtendedAttributel CB;

I mplementationl dentifier;
Uniquel D,

Uint32 L engthof ExtendedAttributes;

Uint32 Lengthof AllocationDescriptors;

byte ExtendedAttributes[?77];

byte AllocationDescriptors ?7);
}
NOTE: The tota length of a FileEntry shall not exceed the size of one logical
block.

2.3.6.1 Uint8 RecordFormat;
¢ For OSTA UDF compliant media this bit shall indicate (ZERO) that the
structure of the information recorded in the file is not specified by this
field.

& Shall be set to ZERO.
2.3.6.2 Uint8 RecordDisplayAttributes;
e For OSTA UDF compliant media this bit shall indicate (ZERO) that the
structure of the information recorded in the file is not specified by this
field.

e Shall be set to ZERO.

38



2.3.6.3 Uint8 RecordLength;
e~ For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by this
field.

e Shall be set to ZERO.

2.3.6.4 struct EntitylD Implementationl dentifier;
Refer to the section on Entity Identifier.

2.3.6.5 Uint64 UniquelD
For the root directory of afile set thisvalue shall be set to ZERO.

It isrequired that this value be maintained and unique for every file and directory
in the LogicalVVolume. Thisincludes FileEntry descriptors defined for Extended
Attribute spaces. The FileEntry for the Extended Attribute space shall contain the
same Uniquel D asthefileto which it is attached.

NOTE: The UniquelD values 1-15 shall be reserved for the use of Macintosh
implementations.

2.3.7 Unallocated Space Entry
struct UnallocatedSpaceEntry { [* 1SO 13346 4/14.11 */
struct tag DescriptorTag;
structichtag ICBTag;

Uint32 Lengthof AllocationDescriptors;

byte AllocationDescriptor §[?77];
}
NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical
Block.

2.3.7.1 byte AllocationDescriptors
Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in alocation descriptors specify
an extent type (1SO 13346 4/14.14.1.1). For the alocation descriptors specified
for the UnallocatedSpaceEntry the type shall be set to a value of 1 to indicate
extent allocated but not recorded, or shall be set to a value of 3 to indicate the
extent is the next extent of allocation descriptors. This next extent of allocation
descriptors shall be limited to the length of one Logical Block.

AllocationDescriptors shall be ordered sequentially in ascending location order.
No overlapping AllocationDescriptors shall exist in the table. For example,

39



ad.location = 2, ad.length = 2048 (logical block size = 1024) then

nextad.location = 3 is not allowed. Adjacent AllocationDescriptors shall not be
contiguous. For example ad.location = 2, ad.length = 1024 (logical block size =
1024), nextad.location = 3 is not allowed and would instead be asingle
AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where
adjacent AllocationDescriptors may be contiguous is when the ad.length of one of
the adjacent AllocationDescriptorsis equal to the maximum
AllocationDescriptors length.

2.3.8 Space Bitmap Descriptor

struct SpaceBitmap { [* 1S0O 13346 4/14.11 */
struct Tag Descriptor Tag;
Uint32 NumberOfBits;
Uint32 NumberOfBytes;
byte Bitmap[ ?7;
}

2.3.8.1 struct Tag Descriptor Tag
The calculation and maintenance of the DescriptorCRC field of the Descriptor
Tag for the SpaceBitmap descriptor isoptional. 1f the CRC is not maintained then
both the Descriptor CRC and Descriptor CRCLength fields shall be ZERO.

2.3.9 Partition Integrity Entry

struct PartitionlntegrityEntry { [* 1SO 13346 4/14.13 */
struct tag DescriptorTag;
struct icbtag ICBTag;
struct timestamp RecordingTime;
Uint8 Integrity Type;
byte Reserved[175];
struct EntitylD Implementationl dentifier;
byte I mplementationUse[256];
}

With the functionality of the Logical Volume Integrity Descriptor this descriptor
is not needed, therefore this descriptor shall not be recorded.

2.3.10 Allocation Descriptors

When constructing the data area of afile an implementation has severa types of
allocation descriptors from which to choose. The following guidelines shall be followed
in choosing the proper allocation descriptor to be used:

40



Short Allocation Descriptor - For aLogical Volume that resides on asingle
Volume with no intent to expand the Logical Volume beyond the single volume
Short Allocation Descriptors should be used. For example aLogica Volume
created for a stand alone drive.

NOTE: Refer to section 2.2.2.2 on the MaximuminterchangelLevel.

Long Allocation Descriptor - For aLogical Volume that resides on asingle
Logical Volume with intent to later expand the Logical Volume beyond the single
volume, or aLogical Volume that resides on multiple Volumes Long Allocation
Descriptors should be used. For example aLogical Volume created for a
jukebox.

NOTE: Thereisabenefit of using Long Allocation Descriptors even on asingle
volume, which is the support of tracking erased extents on rewritable media. See
section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of the
ExtentLength field is O, then the 2 most significant bits shall be 0.

2.3.10.1 Long Allocation Descriptor

struct long_ad { [* 1SO 13346 4/14.14.2 */
Uint32 ExtentLength;
Lb addr ExtentL ocation;
byte I mplementationUse[6];

}

To dlow use of the ImplementationUse field by UDF and aso by
implementations the following structure shall be recorded within the 6 byte
Implementation Use field.

struct ADI npUse

{
Uint 16 fl ags;

byte inpUse[4];
}

/*

* ADI npUse Flags (NOTE: bits 1-15 reserved for future use by UDF)
*/

#defi ne EXTENTEr ased (0x01)

In the interests of efficiency on Rewritable media that benefits from
preprocessing, the EXTENTErased flag shall be set to ONE to indicate an erased
extent. This applies only to extents of type not recorded but allocated.

2.3.11 Allocation Extent Descriptor
struct AllocationExtentDescriptor { /* 1SO 13346 4/14.5 */

41



struct tag DescriptorTag;

Uint32 PreviousAllocationExtentL ocation;

Uint32 LengthOfAllocationDescriptors,
}
NOTE:. AllocationDescriptor extents shall be a maximum of one logical block in
length.

2.3.11.1 Uint12 PreviousAllocationExtentL ocation
¢~ The previous alocation extent location shall not be used as specified
below.

e Shall be set to 0.

2.3.12 Pathname
2.3.12.1 Path Component

struct PathComponent { [* 1SO 13346 4/14.16.1 */
uint8 ComponentType;
Uint8 L engthof Componentldentifier;
uint16 ComponentFileVersionNumber;
char Componentldentifier| ];
}

2.3.12.1.1 Uintl6 ComponentFileVersionNumber
&~ Thereshall be only one version of afile as specified below with the value
being set to ZERO.

& Shall be set to ZERO.

2.3.13 Non-Allocatable Space List

I SO 13346 does not provide for a mechanism to describe defective areas on media or
areas not usable due to allocation outside of the file system. The Non-Allocatable Space
List provides a method to describe space not usable by the file system. The Non-
Allocatable Space List shall be recorded only on media systems that do not do defect
management (eg. CD-RW).

The Non-Allocatable Space List shall be generated at format time. All space indicated by
the Non-Allocatable Space List shall also be marked as allocated in the free space map.
The Non-Allocatable Space List shall be recorded as afile of the root directory. Thefile
name “Non-Allocatable Space” (#4E, #6F, #6E, #2D, #41, #6C,

#6C HOF #61,#74,#61 #62 #6C,#65, #20, #70, #61, #63, #65) shall be used. The file shall

42



be marked with the attributes Hidden (bit O of file characteristics set to ONE) and System
(bit 10 of ICB flagsfield set to ONE). The name may be recorded in any legal word size.
The information length of thisfile shall be zero. Thisfile shall have al Non-Allocatable
sectors identified by its allocation extents. The alocation extents shall indicate that each
extent is allocated but not recorded. Thislist shall include both defective sectors found at
format time and space allocated for sparing at format time.

2.4 Part 5- Record Structure

Record structure files shall not be created. If they are encountered on the media and they
are not supported by the implementation they shall be treated as an uninterpreted stream
of bytes.



3. System Dependent Requirements
3.1 Part 1- General

3.1.1 Timestamp

struct timestamp{  /* 1SO 13346 1/7.3*/

Uint16
uintl6
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

}

3.1.1.1 Uint8
&

3.1.1.2 Uint8
G

3.1.1.3 Uint8
G

TypeAndTimezone;

Y ear,

Month;

Day;

Hour;

Minute;

Second;

Centiseconds;
HundredsofMicr oseconds,
Micr oseconds;

Centiseconds;
For operating systems that do not support the concept of
centiseconds the implementation shall ignore thisfield.

For operating systems that do not support the concept of
centiseconds the implementation shall set thisfield to ZERO.

HundredsofM icr oseconds,
For operating systems that do not support the concept of hundreds
of Microseconds the implementation shall ignore thisfield.

For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set thisfield to
ZERO.

Microseconds,
For operating systems that do not support the concept of
microseconds the implementation shall ignore this field.

For operating systems that do not support the concept of
microseconds the implementation shall set thisfield to ZERO.



3.2 Part 3-Volume Structure

3.2.1 Logical Volume Header Descriptor
struct LogicalVolumeHeaderDesc { /* 1SO 13346 4/14.15 */
Uint64 Uniquel D,
bytes reserved[24]

}

3.2.1.1 Uint64 Uniquel D
Thisfield contains the next Uniquel D value which should be used.

NOTE: For compatibility with Macintosh systems implementations should keep
this value less than the maximum value of alnt32 (2= - 1).

45



3.3 Part 4 - File System
3.3.1 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* 1SO 13346 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics,
Uint8 LengthofFileldentifier;
struct long_ad ICB;
uint16 L engthofI mplementationUse;
byte ImplementationUse] ?77);
char Fileldentifier[?7];
byte Padding[?7];

}

NOTE: All UDF directories shall include a File Identifier Descriptor that
indicates the location of the parent directory.  The File Identifier Descriptor
describing the parent directory shall be the first File Identifier Descriptor recorded
in the directory. The parent directory of the Root directory shall be Root, as
stated in 1SO 13346-4, section 8.6

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics under
various operating systems.

3.3.1.1.1 MSDOS, 052, Windows 95, Windows NT, Macintosh
e If Bit Oisset to ONE, thefile shall be considered a"hidden" file.
If Bit 1isset to ONE, thefile shall be considered a "directory."
If Bit 2 isset to ONE, thefile shall be considered "deleted.”
If Bit 3isset to ONE, the ICB field within the associated Fileldentifier
structure shall be considered as identifying the "parent" directory of
the directory that this descriptor is recorded in

&5 If thefileis designated as a"hidden” file, Bit O shall be set to ONE.
If thefileis designated as a"directory," Bit 1 shall be set to ONE.
If thefileisdesignated as "deleted,” Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX
Under UNIX these bits shall be processed the same as specified in
3.3.1.1.1., except for hidden files which will be processed as normal non-
hidden files.

46



3.32 ICB Tag
struct icbtag { /* 1SO 13346 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries,
uint16 Strategy Type;

byte StrategyParameter[2];

uint16 Numberof Entries,

byte Reserved;

Uint8 FileType;

Lb_addr Parentl CBL ocation;

uint16 Flags,

3.3.2.1 Uint16 Flags
3.3.21.1 MSDOS, 052, Windows 95, Windows NT

Bits6 & 7 (Setuid & Setgid):

& lgnored.

& In the interests of maintaining security under environments which do
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true :

A fileiscreated.

The attributes/permissions associated with afile, are modified .

A fileis written to ( the contents of the data associated with a file
are modified).

Bit 8 (Sticky):
&~ lgnored.

&S Shall be set to ZERO.
Bit 10 (System):
s~ Mappedtothe MS-DOS/ OS2 system hit.

& Mapped from the MS-DOS/ OS/2 system hit.

47



3.3.2.1.2 Macintosh

Bits6 & 7 (Setuid & Setgid):

& lgnored.

& In the interests of maintaining security under environments which do
support these hits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true :

A fileiscreated.
The attributes/permissions associated with afile, are modified .

A fileis written to ( the contents of the data associated with a file
are modified ).

Bit 8 (Sticky):
&~ lgnored.

&5 Shall be set to ZERO.

Bit 10 (System):
a~  lgnored.

& Shall be set to ZERO.
3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system bits.

Bit 10 (System):
& lgnored.

&S Shall be set to ZERO upon file creation only, otherwise maintai ned.

48



3.3.3 FileEntry
struct FileEntry {

struct tag

struct icbtag
Uint32

Uint32

Uint32

Uint16

Uint8

uint8

Uint32

Uint64

Uint64

struct timestamp
struct timestamp
struct timestamp
Uint32

struct long_ad
struct EntitylD
Uint64

[* 1SO 13346 4/14.9 */
DescriptorTag;

ICBTag;

vid;

Gid;

Permissions,
FileLinkCount;
RecordFormat;
RecordDisplayAttributes;
RecordL ength;
InformationL ength;

L ogical BlocksRecorded;
AccessTime;
ModificationTime;
AttributeTime;
Checkpoint;
ExtendedAttributel CB;
Implementationl dentifier;
Uniquel D,

Uint32 L engthof ExtendedArttributes,

Uint32 L engthof AllocationDescriptors;

byte ExtendedAttributes ?7|;

byte AllocationDescriptorg ?7;
}
NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

3.3.3.1 Uint32 Uid
a~  For operating systems that do not support the concept of a user identifier
the implementation shall ignore thisfield. For operating systems that do
support thisfield avalue of 2= - 1 shall indicate an invalid UID, otherwise
the field contains avalid user identifier.

& For operating systems that do not support the concept of a user identifier
the implementation shall set thisfield to 2= - 1 to indicate an invalid UID,
unless otherwise specified by the user.

3.3.3.2 Uint32 Gid
¢~ For operating systems that do not support the concept of a group identifier
the implementation shall ignore thisfield. For operating systems that do
support thisfield avalue of 2= - 1 shall indicate an invalid GID, otherwise
the field contains avalid group identifier.

49



&

For operating systems that do not support the concept of a group identifier

the implementation shall set thisfieldto 2=- 1 toindicate aninvalid GID,
unless otherwise specified by the user.

3.3.3.3 Uint32 Permissions;

* Defin
Bit

*

*  Exec
* Wit
*  Read
*  ChAt
* Dele

#defi ne
#def i ne
#defi ne
#def i ne
#defi ne

#defi ne
#def i ne
#defi ne
#def i ne
#defi ne

#defi ne
#def i ne
#defi ne
#def i ne
#defi ne

itions: */
for a File for a Directory */
___________________________________________________________ * [
ute May execute file May search directory */
e May change file contents May create and delete files */
May exanmine file contents May list files in directory */
tr My change file attributes May change dir attributes */
te My delete file May del ete directory */
OTHER_Execut e 0x00000001
OTHER Wite 0x00000002
OTHER_Read 0x00000004
OTHER _ChAttr 0x00000008
OTHER Del ete 0x00000010
GROUP_Execut e 0x00000020
GROUP_Wite 0x00000040
GROUP_Read 0x00000080
GROUP_ChAttr 0x00000100
GROUP_Del ete 0x00000200
OMNER_Execut e 0x00000400
OMER Wite 0x00000800
OMER_Read 0x00001000
OMER_ChAttr 0x00002000
OMER _Del ete 0x00004000

The concept of permissions which deals with security is not completely portable between
operating systems. This document attempts to maintain consistency among
implementations in processing the permission bits by addressing the following basic

issues;

1. How should an implementation handle Owner, Group and Other permissions
when the operating system has no concept of User and Group 1ds?

2.

How should an implementation process permission bits when encountered,

specifically permission bits that do not directly map to an operating system
supported permission bit?

What default values should be used for permission bits that do not directly

map to an operating system supported permission bit when creating a new

file?

User, Group and Other
In general, for operating systems that do not support User and Group Ids the following
algorithm should be used when processing permission bits:

When reading a specific permission, thelogical OR of all three (owner, group,
other) permissions should be the value checked. For example afile would be

50



considered writableif the logical OR of OWNER_Write, GROUP_Write and
OTHER_Write was equal to one.

When setting a specific permission the implementation should set all three
(owner, group, other) sets of permission bits. For example to mark afile as
writable the OWNER_Write, GROUP_Write and OTHER_Write should all be set
to one.

Processing Permissions

Implementation shall process the permission bits according to the following table which
describes how to process the permission bits under the operating systems covered by this
document. The table addresses the issues associated with permission bits that do not
directly map to an operating system supported permission bit.

Permission File/Directory Description DOS | OS2 | Win | Win | Mac | UNIX
95 NT 0S

Read file The file may be read E E E E E E

Read directory The directory may be read E E E E E E

Write file Thefile's contents may be modified E E E E E E

Write directory Files or subdirectories may be created, E E E E E E
deleted or renamed

Execute file Thefile by be executed. | | | | [ E

Execute directory The directory may be searched for a E E E E E E
specific file or subdirectory.

Attribute file Thefile's permissions may be changed. E E E E E E

Attribute directory The directory’ s permissions may be E E E E E E
changed.

Delete file The file may be deleted. E E E E E E

Delete directory The directory may be deleted. E E E E E E

E - Enforce, | - Ignore

The Execute bit for a directory, sometimes referred to as the search bit, has special
meaning. This bit enables a directory to be searched, but not have its contents listed. For
example assume adirectory called PRIVATE exists which only has the Execute
permission and does not have the Read permission bit set. The contents of the directory
PRIVATE can not be listed. Assume thereisafilewithinthe PRIVATE directory caled
README. The user can get access to the README file since the PRIVATE directory is
searchable.

To be ableto list the contents of a directory both the Read and Execute permission bits
must be set for the directory. To be able to create, delete and rename afile or
subdirectory both the Write and Execute permission bits must be set for the directory.

To get a better understanding of the Execute bit for a directory reference any UNIX book
that coversfile and directory permissions. The rules defined by the Execute bit for a
directory shall be enforced by al implementations.

NOTE: To be ableto delete afile or subdirectory the Delete permission bit for the file or

subdirectory must be set, and both the Write and Execute permission bits must be set for
the directory it occupies.

51




Default Permission Values
For the operating systems covered by this document the following table describes what
default values should be used for permission bits that do not directly map to an operating

system supported permission bit when creating anew file.

Permission File/Directory Description DOS 0S2 | Win Win Mac UNIX
95 NT 0S
Read file Thefile may be read 1 1 1 1 1 U
Read directory The directory may be read, only if the 1 1 1 1 1 U
directory is also marked as Execute.
Write file Thefile's contents may be modified U U U U U U
Write directory Files or subdirectories may be U U U U U U
renamed, added, or deleted, only if the
directory is also marked as Execute.
Execute file Thefile by be executed. 0 0 0 0 0 U
Execute directory The directory may be searched for a 1 1 1 1 1 U
specific file or subdirectory.
Attribute file Thefile's permissions may be changed. 1 1 1 1 1 Note 1
Attribute directory The directory’s permissions may be 1 1 1 1 1 Note 1
changed.
Delete file Thefile may be deleted. Note2 | Note2 [ Note | Note2 | Note2 | Note2
2
Delete directory The directory may be deleted. Note2 | Note2 [ Note | Note2 | Note2 | Note2
2

U - User Specified, 1 - Set, 0 - Clear

NOTE 1: Under UNIX only the owner of afile/directory may change its attributes.

NOTE 2: The Delete permission bit should be set based upon the status of the Write

permission bit. Under DOS, OS/2 and Macintosh, if afile or directory is marked as
writable (Write permission set) then the file is considered del etable and the Delete

permission bit should be set. If afileisread only then the Delete permission bit should
not be set. This appliesto file create as well as changing attributes of afile.

3.3.34 Uint64 UniquelD
NOTE: For some operating systems (i.e. Macintosh) this value needsto be less
than the max value of aInt32 (2= - 1). Under the Macintosh operating system this

valueis used to represent the Macintosh directory/file ID. Therefore an
implementation should attempt to keep this value less than the max value of a

Int32 (2* - 1). The values 1-15 shall be reserved for the use of Macintosh

implementations.

3.3.3.5 byte Extended Attributes

Certain extended attributes should be recorded in thisfield of the FileEntry for
performance reasons. Other extended attributes should be recorded in an ICB

pointed to by the field ExtendedAttributel CB. In the section on Extended
Attributes it will be specified which extended attributes should be recorded in this

field.

52




3.3.4 Extended Attributes

In order to handle some of the longer Extended Attributes (EAS) which may vary in
length, the following rules apply to the EA space.

1. All EAswith an attribute length greater than or equal to alogical block shall
be block aligned by starting and ending on alogical block boundary.

2. Smaller EAs shall be constrained to an attribute length which is a multiple of
4 bytes.

3. The Extended Attribute space shall appear as a single contiguous logical space
constructed as follows:

ISO/IEC 13346 EAs

Non block aligned Implementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { /* 1SO 13346 4/14.10.1 */
struct tag DescriptorTag;
Uint32 I mplementationAttributesL ocation;
Uint32 ApplicationAttributesL ocation;
}

If the attributes associated with the location fields highlighted above do not exist,
then the value of the location field shall point to the byte after the extended
attribute space.

3.3.4.2 Alternate Permissions
struct AlternatePermissionsExtendedAttribute { [* 1S0 13346 4/14.10.4 */

Uint32 AttributeType;
uint8 AttributeSubtype;
byte Reserved[3];

Uint32 Attributel ength;
uint16 Ownerldentification;
Uint16 Groupldentification;
uint16 Permission;

}

This structure shall not be recorded.

53



3.3.4.3 FileTimes Extended Attribute
struct FileTimesExtendedAttribute { /* 1SO 13346 4/14.10.5*/

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];

Uint32 Attributel ength;
Uint32 Datal ength;

Uint32 FileTimeExistence;
byte FileTimes;

}

3.3.4.3.1 Uint32 FileTimeExistance
3.3.4.3.1.1 Macintosh OS

Thisfield shall be set to indicate that only the file creation time has been
recorded.

3.3.4.3.1.2 Other OS
This structure need not be recorded.

3.3.4.3.2 byte FileTimes
3.3.4.3.2.1 Macintosh OS
a~  Shall beinterpreted as the creation time of the associated file.

1 Shall be set to creation time of the associated file.

If the File Times Extended Attribute does not exist then a Macintosh
implementation shall use the ModificationTime field of the File Entry to
represent the file creation time.

3.3.4.3.2.2 Other OS
This structure need not be recorded.

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute { [* 1SO 13346 4/14.10.7 */

Uint32 AttributeType;

uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ImplementationUselength; /* (=IU_L) */
Uint32 M aj or Devicel dentification;

Uint32 Minor Devicel dentification;

byte ImplementationUse[IU_L];

54



The following paradigm shall be followed by an implementation that creates a
Device Specification Extended Attribute associated with afile :

If and only if afile has a DeviceSpecificationExtendedAttribute associated
with it, the contents of the FileType field in the icbtag structure be set to 6
(indicating a block specia devicefile), OR 7 (indicating a character
specia devicefile).

If the contents of the FileType field in the icbtag structure do not equal 6
or 7, the DeviceSpecificationExtendedAttribute associated with afile shall
be ignored.

In the event that the contents of the FileType field in the icbtag structure
equal 6 or 7, and the file does not have a
DeviceSpecificationExtendedAttribute associated with it, access to the file
shall be denied.

For operating system environments that do not provide for the semantics
associated with ablock special devicefile, requests to
open/read/write/close afile that has the
DeviceSpecificationExtendedAttribute associated with it shall be denied.

All implementations shall record a developer ID in the ImplementationUse
field that uniquely identifies the current implementation.

3.3.4.5 Implementation Use Extended Attribute
struct |mplementationUseExtendedAttribute { [* 1SO 13346 4/14.10.8 */

}

Uint32 AttributeType;

uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributelL ength;

Uint32 ImplementationUseL ength; /* (=IU_L) */
struct EntitylD Implementationldentifier;

byte ImplementationUse[IU_L];

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Implementation Use
Extended Attribute the Attribute Length field should be large enough to leave
padding space between the end of the Implementation Use field and the end of the
Implementation Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attribute
is used under various operating systems to store operating system specific
extended attributes.

55



The structures defined in the following sections contain a header checksum field.
Thisfield represents a 16-bit checksum of the Implementation Use Extended
Attribute header. The fields AttributeType through Implementationldentifier
inclusively represent the data covered by the checksum. The header checksum
field isused to aid in disaster recovery of the extended attribute space. C source
code for the header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, a

M acintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support al Macintosh extended
attributes specified in this document.

3.34.5.1 All Operating Systems
3.3.4.5.1.1 FreeEASpace
This extended attribute shall be used to indicate unused space within the
extended attribute space. This extended attributes shall be stored as an
Implementation Use Extended Attribute whose I mplementationl dentifier
shall be set to:
"*UDF FreeEASpace"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
FreeEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 U L-1 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete extended
attribute space. The FreeEASpace extended attribute may be overwritten
and the space re-used by any implementation who sees a need to overwrite
it.

3.3.4.5.1.2 DVD Copyright Management I nformation
This extended attribute shall be used to store DVD Copyright
Management Information. This extended attribute shall be stored as an
Implementation Use Extended Attribute whose I mplementationl dentifier
shall be set to:
"*UDF DVD CGM S Info"

56



The ImplementationUse area for this extended attribute shall be structured

asfollows:
DVD CGMS Info format
RBP Length Name Contents
0 2 Header Checksum Uint16
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended attribute allows DV D Copyright Management Information
to be stored. The interpretation of this format shall be defined in the DVD
specification published by the DVD Consortium (see 6.9.3). Support for
this extended attribute is optional.

3.3.45.2 MS-DOS, Windows 95, Windows NT
a~  lgnored.

& Not supported. Extended attributes for existing files on the media shall be
preserved.

33453 0S/2
0S/2 supports an unlimited number of extended attributes which shall be
supported through the use of the following two Implementation Use Extended
Attributes.

3.34.5.31 OS2EA
This extended attribute contains all OS/2 definable extended attributes
which shall be stored as an Implementation Use Extended Attribute whose
I mplementationldentifier shall be set to:

"*UDF OS/2 EA"
The ImplementationUse area for this extended attribute shall be structured
asfollows:
OS2EA format
RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 IU L-2 | OS/2 Extended Attributes FEA

57



The OS2ExtendedAttributes field contains atable of OS/2 Full EAs (FEA)
as shown below.

FEA format
RBP | Length Name Contents
0 1 Flags Uint8
1 1 Length of Name (=L_N) Uint8
2 2 Length of Value (=L V) Uintl6
4 L N Name bytes
4+L N LV Value bytes

For a complete description of Full EAs (FEA) please reference the
following IBM document:

"Installable File System for OS2 Version 2.0"
0S/2 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

3.3.45.32 OS2EALength

This attribute specifies the OS2 Extended Attribute information length.
Since this value needs to be reported back to OS/2 under certain directory
operations, for performance reasons it should be recorded in the
ExtendedAttributes field of the FileEntry. This extended attribute shall be
stored as an |mplementation Use Extended Attribute whose
Implementationldentifier shall be set to:

"*UDF OS/2 EALength"

The ImplementationUse area for this extended attribute shall be structured
asfollows:

OS2EAL ength format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 4 0S/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall be
equal to the ImplementationUselLength field of the OS2EA extended
attribute - 2.

3.3.45.4 Macintosh OS

The Macintosh OS requires the use of the following four extended
attributes.

58




3.3.4.5.4.1 MacVolumelnfo
This extended attribute contains M acintosh volume information which
shall be stored as an |mplementation Use Extended Attribute whose
I mplementationldentifier shall be set to:
"*UDF Mac Volumel nfo"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
MacVolumel nfo format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 12 Last Modification Date timestamp
14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

The MacVolumel nfo extended attribute shall be recorded as an extended
attribute of the root directory FileEntry.

3.3.4.5.4.2 MacFinderinfo
This extended attribute contains Macintosh Finder information for the
associated file or directory. Sincethisinformation is accessed frequently,
for performance reasons it should be recorded in the ExtendedAttributes
field of the FileEntry.

The MacFinderInfo extended attribute shall be stored as an
Implementation Use Extended Attribute whose I mplementationl dentifier
shall be set to:

"* UDF Mac FinderInfo"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
MacFinderInfo format for a directory
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 2 Reserved for padding (=0) Uint16
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo
24 16 Directory Extended Information UDFDXInfo

59



MacFinderInfo format for afile

RBP | Length Name Contents

0 2 Header Checksum Uintl6

2 2 Reserved for padding (=0) Uintl6

4 4 Parent Directory ID Uint32

8 16 File Information UDFFInfo

24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data Length Uint32

44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended
attribute of every file and directory within the Logical Volume.

The following structures used within the MacFinder Info structure are
listed below for clarity. For complete information on these structures refer
to the Macintosh books called "Inside Macintosh". The volume and page
number listed with each structure correspond to a specific "Inside
Macintosh" volume and page.

UDFPoint format (Volume |, page 139)

RBP | Length Name Contents
0 2 v Int16
2 2 h Int16

UDFRect format (Volume |, page 141)

RBP | Length Name Contents
0 2 top Int16
2 2 left Int16
4 2 bottom Int16
6 2 right Int16

UDFDInfo format (Volume IV, page 105)

RBP | Length Name Contents
0 8 frRect UDFRect
8 2 frFlags Int16
10 4 frLocation UDFPoint
14 2 frView Int16

UDFDXInfo format (Volume 1V, page 106)

RBP | Length Name Contents
0 4 frScroll UDFPoint
4 4 frOpenChain Int32
8 1 frScript Uint8
9 1 frXflags Uint8
10 2 frComment Int16
12 4 frPutAway Int32

60




UDFFInfo format (Volume ll, page 84)

RBP | Length Name Contents
0 4 fdType Uint32
4 4 fdCreator Uint32
8 2 fdFlags Uintl6
10 4 fdLocation UDFPoint
14 2 fdFldr Int16
UDFF Xl nfo format (Volume IV, page 105)
RBP | Length Name Contents
0 2 fdlconlD Int16
2 6 fdUnused bytes
8 1 fdScript Int8
9 1 fdXFlags Int8
10 2 fdComment Int16
12 4 fdPutAway Int32

NOTE: The above mentioned structures have there origina Macintosh
names preceded by "UDF" to indicate that they are actually different from
the original Macintosh structures. On the media the UDF structures are
stored little endian as opposed to the original Macintosh structures which
arein big endian format.

3.3.45.4.3 MacUniquelDTable
This extended attribute contains atable used to look up the FileEntry for a
specified UniquelD. Thistable shall be stored as an Implementation Use
Extended Attribute whose Implementationldentifier shall be set to:
"*UDF Mac Uniquel DT able"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
MacUniquel DTable format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 2 Reserved for padding (=0) Uintl6
4 4 Number of Unique ID Maps (=N_DID) Uint32
8 N DID x 8 | Unigue ID Maps UniguelDMap
Uniquel DMap format
RBP | Length Name Contents
0 8 File Entry Location small ad

61




small ad format

RBP | Length Name Contents
0 2 Extent Length Uintl6
2 6 Extent Location Ib addr (4/7.1)

This UniquelDTable is used to look up the corresponding FileEntry for a
specified Macintosh directory/file ID (Uniquel D). For example, given
some Macintosh directory/file ID i the corresponding FileEntry location
may be found in the (i-2) UniquelDMap in the UniquelDTable. The
correspondence of directory/file ID to UniquelD is (Directory/file ID -2)
because Macintosh directory/file IDs start at 2 while Uniquel Ds start at O.
In the Macintosh the root directory always has adirectory 1D of 2, which
corresponds to the requirement of having the Uniquel D of the root
FileEntry have the value of 0.

If the value of the Extent Length field of the File Entry Location is O then
the corresponding Uniquel D isfree.

The MacUniquel DTable extended attribute shall be recorded as an
extended attribute of the root directory.

The MacUniquelDTable is created and updated only by implementations
that support the Macintosh. When the Logical VVolume is modified by
implementations that do not support the MacUniquel DTable can become
out of date in the following ways:
Files can exist on the media which are not referenced in the
MacUniquelDTable. This can result from a non-Macintosh
implementation creating a new file on the media.
Filesin the Uniquel D table may no longer exist on the media. This
can result from a non-Macintosh implementation deleting afile on
the media

The Macintosh uses the Uniquel D to directly address afile on the media
without reference to itsfile name. Thiswill only happen if the file was
originally created by an implementation that supports the Macintosh.
Therefore any new files added to the logical volume by non-Macintosh
implementations will aways be referenced by file name first, never by
UniquelD. At the first access of the file by file name, the Macintosh
implementation can detect that this Uniquel D is not in the

MacUniquel DTable and update the table appropriately.

The second problem is alittle more difficult to address. The problem
occurs when a Macintosh implementation gets a reference to afile on the
media given aUniquelD. The Macintosh implementation needs to make
sure that the file the Uniquel D references still exists. The following things
can be done:

62




Verify that the File Entry (FE) pointed to by the UniquelD contains
the same UniquelD.

AND Verify that the block that contains the FE is not on the free
list. Thiscould occur when thefileis deleted by a non-Macintosh
implementation, and the FE has not been overwritten.

The only case that these two tests do not catch is when afile has been
deleted by a non-Macintosh implementation, and the logical block
associated with the FE has been reassigned to a new file, and the new file
has used the block in an extent of Allocated but not recorded.

3.345.4.4 MacResourceFork
This extended attribute contains the M acintosh resource fork datafor the
associated file. Theresource fork data shall be stored as an

Implementation Use Extended Attribute whose I mplementationl dentifier
shall be set to:

"*UDF M ac Resour ceFork"

The ImplementationUse area for this extended attribute shall be structured

as follows:
MacResourceFork format
RBP | Length Name Contents
0 2 HeaderChecksum Uintl6
2 IU L-2 Resource Fork Data bytes

The MacResourceFork extended attribute shall be recorded as an extended

attribute of al files, with > 0 bytes in the resource fork, within the Logical
Volume.

The two fields of the MacFinderInfo extended attribute the reference the
MacResourceFork extended attributes are defined as follows;

Resource Fork Data Length - Shall be set to the length of the
actual data considered to be part of the resource fork.

Resource Fork Allocated Length - Shall be set to the total amount
of space in bytes allocated to the resource fork.

3.3.455 UNIX
¢ Ilgnored.

& Not supported. Extended attributes for existing files on the media
shall be preserved.

63



3.3.4.6 Application Use Extended Attribute
struct ApplicationUseExtendedAttribute{ /* 1SO 13346 4/14.10.9 */

uint32 AttributeType;,  /* = 65536 */

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ApplicationUseL ength; /* (=AU_L) */
struct EntitylD Applicationl dentifier;

byte ApplicationUse[AU_L]J;

}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Application Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the ApplicationUse field and the end of the Application Use
Extended Attribute.

The structures defined in the following section contains a header checksum field.
Thisfield represents a 16-bit checksum of the Application Use Extended Attribute
header. The fields AttributeType through Applicationldentifier inclusively
represent the data covered by the checksum. The header checksumfield isused to
aid in disaster recovery of the extended attribute space. C source code for the
header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, a

M acintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support al Macintosh extended
attributes specified in this document.

3.3.4.6.1 All Operating Systems
This extended attribute shall be used to indicate unused space within the extended
attribute space reserved for Application Use Extended Attributes. This extended
attribute shall be stored as an Application Use Extended Attribute whose
Applicationldentifier shall be set to:
"*UDF FreeAppEASpace"

64



The ApplicationUse areafor this extended attribute shall be structured as follows:

FreeAppEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-1 | Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total size of
other extended attributes without rewriting the complete extended attribute space.
The FreeAppEASpace extended attribute may be overwritten and the space re-
used by any implementation who sees a need to overwrite it.

65



4. User Interface Requirements
4.1 Part 3- Volume Structure

Part 3 of ISO/IEC 13346 contains various | dentifiers which, depending upon the
implementation, may have to be presented to the user.

Volumel dentifier

VolumeSetidentifier

LogicalVolumel D

These identifiers, which are stored in CS0, may have to go through some form of
tranglation to be displayable to the user. Therefore when an implementation must
perform an OS specific trandation on the above listed identifiers the
implementation shall use the algorithms described in section 4.1.2.1.

C source code for the trandation algorithms may be found in the appendices of
this document.

4.2 Part 4 - File System

421 ICB Tag

struct icbtag { /* 1SO 13346 4/14.6 */
Uint32 PriorRecordedNumberof DirectEntries;
Uintl6 Strategy Type;
byte StrategyParameter[2];
Uint16 Numberof Entries,
byte Reserved; /* == #00 */
Uint8 FileType;
Lb_addr Parentl CBL ocation;
Uint16 Flags,

}

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the following
values in this field shall result in an Access Denied error condition under non-
UNIX operating system environments :

FileType values - 0 (Unknown), 6 (block device), 7 (character device), 9
(FIFO), and 10 (C_ISSOCK).

Any open/close/read/write requests to a file of type 12 (SymbolicLink) shall
access the file/directory to which the symbolic link is pointing.

66



4.2.2 Fileldentifier Descriptor
struct FileldentifierDescriptor { [* 1SO 13346 4/14.4 */
struct tag DescriptorTag;

}

Uint16
Uint8
Uint8

FileVersionNumber;
FileCharacteristics;
LengthofFileldentifier;

struct long_ad ICB;

uint16
byte
char
byte

L engthof I mplementationUse;
ImplementationUse] ?77);
Fileldentifier[?7];
Padding[?7];

4.2.2.1 char Fileldentifier
Since most operating systems have their own specifications as to characteristics of
alegal Fileldentifier, thisbecomes a problem with interchange. Therefore since
all implementations must perform some form of Fileldentifier translation it would
be to the users advantage if al implementations used the same a gorithm.

The problems with Fileldentifier trandations fall within one or more of the
following categories:

Name Length -Most operating systems have some fixed limit for
the length of afile identifier.

Invalid Characters - Most operating systems have certain
characters considered as being illegal within afileidentifier name.

Displayable Characters - Since UDF supports the Unicode
character set standard characters within afile identifier may be
encountered which are not displayable on the receiving system.

Case Insensitive - Some operating systems are case insensitive in
regardsto fileidentifiers. For example OS/2 preserves the original
case of thefile identifier when thefileis created, but uses a case
Insensitive operations when accessing the file identifier. In OS/2
“Abc” and “ABC” would be the same file name.

Reserved Names - Some operating systems have certain names that
cannot be used for afileidentifier name.

The following sections outline the Fileldentifier transation algorithm for each
specific operating system covered by this document. This algorithm shall be used
by all OSTA UDF compliant implementations. The algorithm only applies when

67



reading an illegal Fileldentifier. The original Fileldentifier name on the media
should not be modified. This algorithm shall be applied by any implementation
which performs some form of Fileldentifier translation to meet operating system
fileidentifier restrictions.

All OSTA UDF compliant implementations shall support the UDF transation
algorithms, but may support additional algorithms. If multiple algorithms are
supported the user of the implementation shall be provided with a method to
select the UDF tranglation algorithms. It is recommended that the default
displayable algorithm be the UDF defined algorithm.

The primary goal of these algorithmsisto produce a unique file name that meets
the specific operating system restrictions without having to scan the entire
directory in which the file resides.

C source code for the following algorithms may be found in the appendices of this
document.

NOTE: Inthe definition of the following algorithms anytime a d-character is
specified in quotes, the Unicode hexadecimal value will also be specified. In
addition the following algorithms reference “ CSO Hex representation”, which
corresponds to using the Unicode values #0030 - #0039, and #0041 - #0046 to
represent avalue in hex.

The following algorithms could still result in name-collisions being reported to
the user of an implementation. However, the rational e includes the need for
efficient access to the contents of a directory and consistent name translations
across logical volume mounts and file system driver implementations, while
allowing the user to obtain access to any file within the directory (through
possibly renaming afile).

Definitions:
A Fileldentifier shall be considered as being composed of two parts, a file name
and file extension.

The character '." (#002E) shall be considered as the separator for the Fileldentifier
of afile; characters appearing subsequent to the last *.' (#002E) shall be considered
as constituting the file extension if and only if it islessthan or equal to 5
charactersin length, otherwise the file extension shall not exist. Characters
appearing prior to the file extension, excluding the last "." (#002E), shall be
considered as congtituting the file name.

NOTE: Even though OS/2, Macintosh, and UNIX do not have an official
concept of afilename extension it is common file naming conventions to

end afilewith “.” followed by a 1 to 5 character extension. Therefore the

68



following algorithms attempt to preserve the file extension up to a
maximum of 5 characters.

42211 MSDOS
Due to the restrictions imposed by the MS DOS operating system environments
on the Fileldentifier associated with afile the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating system
environments :

Restrictions: The file name component of the Fileldentifier shall not exceed 8
characters. The file extension component of the Fileldentifier shall not exceed 3

characters.

1

2.

Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-insensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid MS-DOSfile
identifier then do not apply the following steps.

Remove Spaces: All embedded spaces within the identifier shall be
removed.

Invalid Characters: A Fileldentifier that contains characters considered
invalid within afile name or file extension (as defined above), or not
displayable in the current environment, shall have them translated into
" " (#OO5F). (thefileidentifier on the mediais NOT modified).
Multiple sequential invalid or non-displayable characters shall be
trandated into asingle“ " (#005F) character. Reference the appendix
on invalid characters for acomplete list.

L eading Periods. In the event that there do not exist any characters
prior to thefirst "." (#002E) character, leading "." (#002E) characters
shall be disregarded up to the first non “.” (#002E) character, in the
application of this heuristic.

Multiple Periods: In the event that the Fileldentifier contains multiple
"." (#002E) characters, all characters appearing subsequent to the last
"' (#002E) shall be considered as constituting the file extension if and
only if it islessthan or equal to 5 charactersin length, otherwise the
file extension shall not exist. Characters appearing prior to the file
extension, excluding the last *.' (#002E), shall be considered as
constituting the file name. All embedded "." (#002E) characters within
the file name shall be removed.

Long Extension: In the event that the number of characters constituting
the file extension at this step in the processis greater than 3, the file
extension shall be regarded as having been composed of the first 3
characters amongst the characters constituting the file extension at this
step in the process.

Long Filename: In the event that the number of characters constituting
the file name at this step in the processis greater than 8, the file name
shall be truncated to 4 characters.

69



0.

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the original Fileldentifier.
The file name shall be composed of the first 4 characters constituting
the file name at this step in the process; followed by a4 digit CSO Hex
representation of the 16-bit CRC of the original CSO Fileldentifier.
NOTE: All other algorithms except DOS precede the CRC by a
separator ‘# (#0023). Due to the limited number of charactersin a
DOS file name a separator for the CRC is not used.

10. The new fileidentifier shall be translated to all upper case.

42212 OS2

Due to the restrictions imposed by the OS/2 operating system environment, on the
Fileldentifier associated with afile the following methodology shall be employed
to handle Fileldentifier(s) under the above-mentioned operating system
environment:

1

2.

3.

Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-insensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid OS/2 file
identifier then do not apply the following steps.

Invalid Characters: A Fileldentifier that contains characters considered
invalid within an OS/2 file name, or not displayable in the current
environment shall have them trandated into " " (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into
a single “_” (#005F) character. Reference the appendix on invalid
characters for acomplete list.

Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having aduplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to thefirst (254 - (length of (new file extension) + 1
(for the'.")) - 5 (for the #CRC)) characters constituting the file name at
this step in the process, followed by the separator '# (#0023); followed
by a4 digit CSO Hex representation of the 16-hit CRC of the original
CS0 Fileldentifier, followed by '." (#002E) and the file extension at this
step in the process.

70



Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to thefirst (254 - 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘# (#0023); followed by a4 digit CS0 Hex representation of
the 16-bit CRC of the original CS0 Fileldentifier.

4.2.2.1.3 Macintosh
Due to the restrictions imposed by the Macintosh operating system environment,
on the Fileldentifier associated with afile the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating system
environment :

1

2.

3.

Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-insensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid Macintosh file
identifier then do not apply the following steps.

Invalid Characters: A Fileldentifier that contains characters considered
invalid within a Macintosh file name, or not displayable in the current
environment, shall have them trandated into " " (#005F). Multiple
sequential invalid or non-displayable characters shall be trandated into
a single “ 7 (#005F) character. Reference the appendix on invalid
characters for acomplete list

Long Fileldentifier - In the event that the number of characters
constituting the Fileldentifier at this step in the process is greater than
31 (maximum name length for the Macintosh operating system), the
new Fileldentifier will consist of the first 26 characters of the
Fileldentifier at this step in the process.

Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having aduplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to thefirst (31 - (Iength of (new file extension) + 1 (for
the.")) - 5 (for the #CRC)) characters congtituting the file name at this
step in the process, followed by the separator '# (#0023); followed by
a4 digit CS0 Hex representation of the 16-bit CRC of the original CSO
Fileldentifier, followed by "' (#002E) and the file extension at this step
in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to thefirst (31 - 5(for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator '# (#0023); followed by a4 digit CS0 Hex representation of
the 16-bit CRC of the original CSO Fileldentifier.

71



4.2.2.1.4 Windows 95 & WindowsNT
Due to the restrictions imposed by the Windows 95 and Windows NT operating
system environments, on the Fileldentifier associated with afile the following
methodology shall be employed to handle Fileldentifier(s) under the above-
mentioned operating system environment:

1

2.

3.

4.2.2.1.5 UNIX

Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-insensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid file identifier for
Windows 95 or Windows NT then do not apply the following steps.
Invalid Characters. A Fileldentifier that contains characters considered
invalid within a file name of the supported operating system, or not
displayable in the current environment shall have them translated into
" " (#005F). Multiple sequential invalid or non-displayable characters
shall be trandated into a single “_" (#005F) character. Reference the
appendix on invalid characters for acomplete list.

Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having aduplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to thefirst (255 - (length of (new file extension) + 1
(for the'.")) - 5 (for the #CRC)) characters constituting the file name at
this step in the process, followed by the separator '# (#0023); followed
by a4 digit CSO Hex representation of the 16-bhit CRC of the original
CS0 Fileldentifier, followed by '.' (#002E) and the file extension at this
step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to thefirst (255 - 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator '# (#0023); followed by a4 digit CS0 Hex representation of
the 16-bit CRC of the original CS0 Fileldentifier.

Due to the restrictions imposed by UNIX operating system environments, on the
Fileldentifier associated with afile the following methodology shall be employed
to handle Fileldentifier(s) under the above-mentioned operating system
environment:

72



. Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-sensitive comparison shall be performed.

. Vdlidate Fileldentifer: If the Fileldentifier isavalid UNIX file

identifier for the current system environment then do not apply the
following steps.

. Invalid Characters: A Fileldentifier that contains characters considered

invalid within aUNIX file name for the current system environment,
or not displayable in the current environment shall have them
trandated into"_" (#005E). Multiple sequential invalid or non-
displayable characters shall be trandated into asingle “ " (#005E)
character. Reference the appendix on invalid characters for a complete
list

. Long Fileldentifier - In the event that the number of characters

constituting the Fileldentifier at this step in the processis greater than
MAXNameLength (maximum name length for the specific UNIX
operating system), the new Fileldentifier will consist of the first
MAXNameLength-5 characters of the Fileldentifier at this step in the
process.

. Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the original Fileldentifier.

If thereis afile extension then the new Fileldentifier shall be
composed of up to the first (MAXNameLength - (length of (new file
extension) + 1 (for the ")) - 5 (for the #CRC)) characters constituting
the file name at this step in the process, followed by the separator '#
(#0023); followed by a4 digit CSO Hex representation of the 16-bit
CRC of the original CS0 Fileldentifier, followed by "' (#002E) and the
file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (MAXNameLength - 5 (for the #CRC))
characters constituting the file name at this step in the process.
Followed by the separator # (#0023); followed by a4 digit CSO Hex
representation of of the 16-bit CRC of the original CS0 Fileldentifier.

73



5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors
described in SO 13346.

Descriptor Length
Anchor Volume Descriptor Pointer 512
V olume Descriptor Pointer 512
Implementation Use Volume Descriptor 512
Partition Descriptor 512
Logical Volume Descriptor Nno max
Unallocated Space Descriptor Nno max
Terminating Descriptor 512
Logical Volume Integrity Descriptor Nno max
File Set Descriptor 512
File Identifier Descriptor Maximum of a
Logical Block Size
Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36
File Entry Maximum of a
Logical Block Size
Unallocated Space Entry Maximum of a
Logical Block Size
Space Bit Map Descriptor Nno max
Partition Integrity Entry N/A

5.2 Using Implementation Use Areas
5.2.1 Entity Identifiers
Refer to the section on Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space
Orphan space may exist within alogical volume, but it is not recommended since
it may be reallocated by some type of logical volume repair facility. Orphan
space is defined as space that isnot directly or indirectly referenced by any of the
non-implementation use descriptors defined in 1SO 13346.

NOTE: Any allocated extent for which the only reference resides within an
implementation use field is considered orphan space.

74



5.3 Boot Descriptor
Please refer to the "OSTA Native Implementation Specification” document for
information on the Boot Descriptor.

5.4 Technical Contacts
Technical questions regarding this document may be emailed to the OSTA
Technical Committee at info@osta.org. Also technical questions may be faxed to
the attention of the OSTA Technical Committee at 1-805-962-1542.

OSTA may aso be contacted through the following address:
Technica Committee Chairman
OSTA
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853

Also monitor the OSTA web site at www.osta.or g for additional information.

75



6. Appendices

6.1 UDF Entity Identifier Definitions

Entity | dentifier

Description

"*OSTA UDF Compliant"

Indicates the contents of the specified logical volume or file set
is complaint with domain defined by this document.

“*UDF LV Info” Contains additional Logical Volume identification information.

"* UDF FreeEA Space’ Contains free unused space within the implementation extended
attribute space.

“* UDF FreeAppEA Space” Contains free unused space within the application extended

attribute space.

“*UDF DVD CGMS Info”

Contains DVD Copyright Management Information

"*UDF OS/2 EA" Contains OS/2 extended attribute data.
"*UDF OS/2 EALength" Contains OS/2 extended attribute length.
"*UDF Mac Volumelnfo" Contains M acintosh volume information.

"*UDF Mac FinderInfo"

Contains Macintosh finder information.

"*UDF Mac UniquelDTable"

Contains Macintosh Uniquel D Table which isused to map a
Unigue ID to aFile Entry.

"*UDF Mac ResourceFork" Contains Macintosh resource fork information.
“*UDF Virtual Partition” Describes UDF Virtual Partition
“*UDF Sparable Partition” Describes UDF Sparable Partition

“*UDF Virtua Alloc Thl”

Containsinformation for handling rewriting to sequentially
written media.

“*UDF Sparing Table

Contains information for handling defective areas on the media

76




6.2 UDF Entity Identifier Values

Entity | dentifier

Byte Value

"*OSTA UDF Compliant"

#2A, #AF, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,
#6D, #70, #6C, #69, #61, #6E, #74

“*UDF LV Info” H#2A, #55, #44, #46, #20, #AC, #56, #20, #49, #6E, #66, #6F

"* UDF FreeEA Space'" HOA\, #55, #44, #46, #20, #46, #72, #65, #65, #45, #41, #53,
#70, #61, #63, #65

"* UDF FreeAppEA Space” HOA\, #55, #44, #46, #20,

#A6, #12, #65, #65, #41, #70, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info”

#2A, #55, #44, #46, #20, #44, #56, #44, #20,
#43, #4717, #4D, #53, #20, #49, #6E, #66, #6F

"*UDF OS/2 EA"

#2A, #55, #44, #46, #41, #20, #45, #41

"*UDF OS/2 EALength"

#2A, #55, #44, #46, #20, #45, #41, #4C, #65, #OE, #67, #74,
#68

"* UDF Mac Volumelnfo"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,
#75, #6D, #65, #49, #6E, #66, #6F

"* UDF Mac FinderInfo"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69, #6E,
#64, #65, #172, #49, #HOE, #66, #6F

"*UDF Mac Uniquel DTable"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #55, #6E, #69,
#71, #75, #65, #49, #44, #54, #61, #62, #6C, #65

"* UDF Mac ResourceFork"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #52, #65, #73,
H#OF, #75, #72, #63, #65, #46, #6F, #72, #6B

“*UDF Virtual Partition”

#2A, #55, #44, #46, #20, #56, #69, #72, #14, #75, #61, #6C,
#20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparable Partition”

#2A, #55, #44, #46, #20, #53, #70, #61, #72, #61, #62, #6C,
#65, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Virtual Alloc Thl”

#2A, #55, #44, #46, #20, #56, #69, #72, #14, #75, #61, #6C,
#20, #41, #6C, #6C, #6F, #63, #20, #54, #62, #6C

“*UDF Sparing Table

#2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #6E, #67,
#20, #54, #61, #62, #6C, #65

77




6.3 Operating System |dentifiers
The following tables define the current allowable values for the OS Class and OS
Identifier fieldsin the Identifier Suffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the
specified descriptor was recorded. The valid valuesfor thisfield are as follows:

Value Operating System Class
0 Undefined

1 DOS

2 0S/2

3 Macintosh OS
4 UNIX
5

6

Windows 9x
Windows NT
7-255 | Reserved

The OSIdentifier field will identify under which operating system the specified
descriptor was recorded. The valid valuesfor thisfield are asfollows:

oS OS Operating System Identified
Class | Identifier

Anyvaue | Undefined

o

DOS/Windows 3.x

0S/2

Macintosh OS System 7

UNIX - Generic

UNIX - IBM AIX

UNIX - SUN OS/ Solaris

UNIX - HP/UX

UNIX - Silicon Graphics Irix

UNIX - Linux

UNIX - MKLinux

UNIX - FreeBSD

Windows 95

OO~~~ IR|IRA|IR|IRA|IPR|IWIN|IFL|O
OoOlo|INo|O|A|W|IN(FLR|O(O|O

Windows NT

For the most update list of values for OS Class and OS Identifier please contact OSTA
and request a copy of the UDF Entity Identifier Directory. This directory will also
contain Implementation Identifiers of ISVswho have provided the necessary information
to OSTA.

NOTE: If you wish to add to this list please contact the OSTA Technical Committee
Chairman at the OSTA address listed in section 5.3 Technical Contacts. Currently not all

78



features of Windows NT and NetWare are fully supported by this specification, but
OSTA has started the work on these operating systems.

79



6.4 OSTA Compressed Unicode Algorithm

/***********************************************************************

* OSTA conpliant Uni code conpression, unconpression routines.
* Copyright 1995 Mcro Design International, Inc.
* Witten by Jason M R nn.
* Mcro Design International gives pernmission for the free use of the
* foll owi ng source code.
*/
#i ncl ude <stddef. h>

/***********************************************************************

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to be

* unsigned 16-bit.

*/

typedef unsigned short unicode_t;

typedef unsigned char byte;

/***********************************************************************

* Takes an OSTA CSO conpressed uni code nane, and converts

* it to Unicode.

* The Unicode output will be in the byte order

* that the local conpiler uses for 16-bit val ues.

* NOTE: This routine only perforns error checking on the conplD.
* It is up to the user to ensure that the unicode buffer is |arge
* enough, and that the conpressed uni code nanme is correct.

*

* RETURN VALUE

*

* The nunber of unicode characters whi ch were unconpressed.

* A -1is returned if the conpression IDis invalid.

*/

nt UnconpressUni code(

nt nunber O Byt es, /*
byte *UDFConpressed, /*
uni code_t *uni code) /

{

(I'nput) nunber of bytes read fromnedia. */
(I'nput) bytes read from nedi a. */
* (Qutput) unconpressed uni code characters. */

unsi gned int conpl D
int returnVal ue, unicodel ndex, bytel ndex;

/* Use UDFConpressed to store current byte being read. */
conpl D = UDFConpr essed[ 0] ;

/* First check for valid conplD. */
if (conpID!= 8 && conplD != 16)
{

returnVal ue = -1;
}
el se
{

uni codel ndex = O;
byt el ndex = 1;

/* Loop through all the bytes. */
whi l e (bytel ndex < nunber O Byt es)
{

if (conplD == 16)

/*Move the first byte to the high bits of the unicode char. */
uni code[ uni codel ndex] = UDFConpr essed[ byt el ndex++] << 8;
}

el se
uni code[ uni codel ndex] = O;

i f (bytelndex < nunber O Byt es)
{

80



/*Then the next byte to the low bits. */
uni code[ uni codel ndex] | = UDFConpressed[ byt el ndex++] ;

uni codel ndex++;

ret urnVal ue = uni codel ndex;

}

return(returnVal ue);

}

/***********************************************************************

* DESCRI PTI ON:

* Takes a string of unicode wide characters and returns an OSTA CSO
* conpressed uni code string. The unicode MJST be in the byte order of
* the conpiler in order to obtain correct results. Returns an error
* if the conpression IDis invalid.

*

* NOTE: This routine assunes the inplenentation al ready knows, by

* the local environnent, how many bits are appropriate and

* therefore does no checking to test if the input characters fit

* into that nunmber of bits or not.

*

* RETURN VALUE

*

* The total nunber of bytes in the conpressed OSTA CSO string,

* i ncluding the conpression ID.

* A -1is returned if the conpression IDis invalid.

*/

i nt ConpressUni code(

i nt nunber O Chars, /* (Input) nunber of unicode characters. */

i nt conpl D, /* (Input) conpression ID to be used. */
uni code_t *uni code, /* (Input) unicode characters to conpress. */

byte *UDFConpressed) /* (Qutput) conpressed string, as bytes. */
{

i nt bytel ndex, unicodel ndex;

if (conpID!= 8 && conplD != 16)

bytelndex = -1; [/* Unsupported conpression ID! */
}
el se
{ . N
/* Place conpression code in first byte. */
UDFConpr essed[ 0] = conpl D,
byt el ndex = 1;
uni codel ndex = O;
whi | e (uni codel ndex < nunber O Chars)
if (conplD == 16)
/* First, place the high bits of the char
* into the byte stream
*/
UDFConpr essed[ byt el ndex++] =
(uni code[ uni codel ndex] & O0xFF00) >> 8;
/*Then place the low bits into the stream */
UDFConpr essed[ byt el ndex++] = uni code[ uni codel ndex] & O0xO0O0FF;
uni codel ndex++;
}
}

r et ur n( byt el ndex) ;

81



6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum
used in the TAG descriptors of 1SO/IEC 13346.

/*
* CRC 010041
*/
static unsigned short crc_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, O0x70E7
0x8108, 0x9129, O0xAl14A, 0xB16B, 0xCl18C, 0xD1AD, OxE1CE, OxF1EF
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, O0x72F7, 0x62D6
0x9339, 0x8318, 0xB37B, O0xA35A, 0xD3BD, 0xC39C, OxF3FF, OxE3DE
0x2462, 0x3443, 0x0420, 0x1401, Ox64E6, 0x74C7, O0x44A4, 0x5485
OxA56A, 0xB54B, 0x8528, 0x9509, OxE5EE, OxF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, O0x66F6, 0x5695, 0x46B4,
0xB75B, OxA77A, 0x9719, 0x8738, OxF7DF, OxE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, O0x78A7, 0x0840, 0x1861, 0x2802, 0x3823
OxC9CC, OxD9ED, OxE98E, OxF9AF, 0x8948, 0x9969, O0xA90A, 0xB92B
Ox5AF5, 0x4AD4, Ox7AB7, Ox6A96, 0x1A71, Ox0A50, O0x3A33, O0x2Al12,
OxDBFD, 0xCBDC, OxFBBF, OxEB9E, 0x9B79, 0x8B58, 0xBB3B, O0xABlA,
0x6CA6, 0x7C87, 0x4CE4, O0x5CCh, 0x2C22, 0x3C03, 0x0C60, 0x1C4Al
OXEDAE, OxFD8F, OxCDEC, O0xDDCD, 0xAD2A, 0xBDOB, 0x8D68, 0x9D49
Ox7E97, Ox6EB6, Ox5ED5, Ox4EF4, 0x3E13, O0x2E32, O0x1E51, O0xO0OE7O,
OxFF9F, OxEFBE, O0xDFDD, OxCFFC, O0xBF1B, OxAF3A, O0x9F59, O0x8F78,
0x9188, 0x81A9, O0xB1CA, OxAlEB, 0xD10C, 0xCi2D, OxF14E, OxE1l6F
0x1080, OxO00Al, 0x30C2, Ox20E3, 0x5004, 0x4025, 0x7046, 0x6067
0x83B9, 0x9398, O0xA3FB, O0xB3DA, 0xC33D, 0xD31C, O0xE37F, OxF35E
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256
OxB5EA, OxA5CB, 0x95A8, 0x8589, OxF56E, OxE54F, 0xD52C, 0xC50D
O0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405
OxA7DB, O0xB7FA, 0x8799, 0x97B8, O0xE75F, OxF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634
0xDO4C, 0xC96D, OxF90E, OxE92F, 0x99C8, O0x89E9, 0xB98A, O0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, Ox08E1l, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, OxEB3F, OxFB1E, 0x8BF9, 0x9BD8, O0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, Ox7A16, OxOAF1l, Ox1ADO, Ox2AB3, 0x3A92,
OxFD2E, OxEDOF, OxDD6C, 0xCD4D, OxBDAA, 0xAD8B, O0x9DE8, 0x8DC9
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, O0x1CEO, 0x0CCl
OXEF1F, OxFF3E, OxCF5D, OxDF7C, OxAF9B, OxBFBA, O0x8FD9, O0x9FF8,
Ox6E17, Ox7E36, 0x4E55, Ox5E74, 0x2E93, 0x3EB2, OxOED1, O0x1EFO

s

unsi gned short

cksum(s, n)
regi ster unsigned char *s;
register int n;
regi ster unsigned short crc=0;

while (n-- > 0)
crc = crc_table[(crc>>8 N *s++) & Oxff] ~ (crc<<8);

return crc;

}

#i f def MAIN
unsi gned char bytes[] = { 0x70, Ox6A, O0x77 };

mai n()
unsi gned short x;

x = cksun{bytes, sizeof bytes);
printf("checksum cal cul ated=%. 4x, correct=%l.4x\en", x, 0x3299);

82



L
#endi f

exit(0);

83



The CRC table in the previous listing was generated by the following program:

#i ncl ude <stdi o. h>

/*
* a.out 010041 for CRC-CCITT
*/

mai n(argc, argv)
int argc; char *argv[];

{
unsi gned long crc, poly;
int n, i;
sscanf (argv[1], "% o", &poly);
i f(poly & Oxffff0000){
fprintf(stderr, "polynomal is too |large\en");
exit(1);
}
printf("/*\en * CRC 0%\ en */\en", poly);
printf("static unsigned short crc_table[256] = {\en");
for(n = 0; n < 256; n++){
if(n %8 == 0)
printf(" ");
crc = n << §;
for(i =0; i <8; i++){
if(crc & 0x8000)
crc = (crc << 1) ~ poly;
el se
crc <<= 1;
crc & OxFFFF
}
i f(n == 255)
printf("0x¥04X ", crc);
el se
printf("0x¥4X, ", crc);
if(n %8 ==7)
printf("\en");
}
printf("};\en");
exit(0);
}

All the above CRC code was devised by Don P. Mitchell of AT& T Bell Laboratories and
Ned W. Rhodes of Software Systems Group.

It has been published in "Design and Validation of Computer Protocols,"

Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.
Copyrightisheld by AT&T.

AT&T gives permission for the free use of the above source code.

84



6.6 Algorithm for Strategy Type 4096

This section describes a strategy for constructing an ICB hierarchy. For strategy type
4096 the root ICB hierarchy shall contain 1 direct entry and 1 indirect entry. To indicate
that thereis 1 direct entry a 1 shall be recorded as a Uint16 in the StrategyParameter field
of the ICB Tag field. A value of 2 shall be recorded in the MaximumNumber OfEntries
field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also contain 1
direct entry and 1 indirect entry, where the indirect entry specifies the address of another
ICB of the same type. See the figure below:

DE
IE

DE
IE

DE
IE N

NOTE: Thisstrategy builds an ICB hierarchy that isasimple linked list of direct entries.

85



6.7 |dentifier Trandlation Algorithms
The following sample source code examples implement the file identifier trandation
algorithms described in this document.

The following basic algorithms may also be used to handle OS specific tranglations of the
Volumel dentifier, VolumeSetldentifier, Logical Volumel D and FileSetID.

6.7.1 DOSAlgorithm

/***********************************************************************

* OSTA UDF conpliant file name translation routine for DOCS.

* Copyright 1995 Mcro Design International, Inc.

* Witten by Jason M R nn.

M cro Design International gives permssion for the free use of the
foll ow ng source code.

*

*/
#i ncl ude <stddef. h>

#defi ne DOS_NAME_LEN 8

#defi ne DOS_EXT_LEN 3
#define | LLEGAL_CHAR MARK 0x005F
#defi ne TRUE 1
#defi ne FALSE 0
#defi ne PERI OD 0x002E
#def i ne SPACE 0x0020

/*************'k**************************'k******************************

* The following two typedef's are to renmove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to

* be unsigned 16-bit.

*/

typedef unsigned short unicode_t;

typedef unsigned char byte;

[ *** PROTOTYPES ***/
unsi gned short cksum(regi ster unsigned char *s, register int n);
int Islllegal (unicode_t current);

/* Define functions or macros to both determne if a character

* is printable and conpute the uppercase version of a character
* under your inplenentation.

*/

i nt Uni codel sPrint(unicode_t);

uni code_t Uni codeToUpper (uni code_t);

/***********************************************************************

* Transl ate udf Name to dosName usi ng OSTA conpliant.
* dosNanme nmust be a unicode string with min length of 12.
*
* RETURN VALUE
* Nunmber of uni code characters in dosNane.
*/
nt UDFDOSNane(
uni code_t *dosNane, /* (Qutput)DOS conpatibl e nane. */
uni code_t *udf Nane, /* (Input) Nane from UDF vol une. */
i nt udf Len, /* (Input) Length of UDF Nane. */
/*
/*

byte *fi dName, (I'nput) Bytes as read fromnedia */
i nt fi dNaneLen) (I'nput) Nunber of bytes in fidNane.*/
{

int index, doslndex = 0, extlndex = 0, |astPeriodlndex;

86



int needsCRC = FALSE, hasExt = FALSE, writingExt = FALSE;
unsi gned short val ueCRC;
uni code_t ext[ DOS_EXT_LEN], current;

/*Used to convert hex digits. Used ASCII for readability. */
const char hexChar[] = "0123456789ABCDEF";

0 ; index < udfLen ; index++)

for (index

{

current
current

udf Nare[ i ndex] ;
Uni codeToUpper (current);

if (current == PERI QD)
if (doslndex==0 || hasExt)

/* Ignore | eading periods or any other than
* used for extension.
*/
needsCRC = TRUE;
}

el se
{ . . L .
/* First, find last character which is NOT a period
* or space.
*/
| ast Peri odl ndex = udflLen - 1;
whi | e(l ast Peri odl ndex >=0 &&
(udf Nane[ | ast Peri odl ndex] == PERI CD | |
udf Narre[ | ast Peri odl ndex] == SPACE))

| ast Peri odl ndex- - ;

}

/* Now search for |ast renmining period. */
whi | e(l ast Peri odl ndex >= 0 &&
udf Nane[ | ast Peri odl ndex] != PERI OD)

| ast Peri odl ndex- -;

}

/* See if the period we found was the last or not. */
if (lastPeriodlndex != index)

needsCRC = TRUE; /* If not, nane needs transl ation.

}

/* As long as the period was not trailing,
* the file name has an extension.

*/

if (lastPeriodlndex >= 0)

hasExt = TRUE;

}
}

el se

{

if ((!hasExt && doslndex == DOS_NAME_LEN) ||
extl ndex == DOS_EXT_LEN)

/* File nanme or extension is too long for DOS. */
needsCRC = TRUE;
}

el se

if (current == SPACE) /* lgnore spaces. */

87

*/



}

needsCRC = TRUE

}
el se
{ . _
/* Look for illegal or unprintable characters. */
if (Islllegal (current) || !UnicodelsPrint(current))
{
needsCRC = TRUE;
current = | LLEGAL_CHAR_ MARK;
/* Skip Illegal characters(even spaces),
* pbut not peri ods.
*/
whi | e(i ndex+1 < udfLen
&& (Islllegal (udf Nane[i ndex+1])
|| !Unicodel sPrint(udf Name[i ndex+1]))
&& udf Nane[i ndex+1] != PERI OD)
{
i ndex++;
}
}
/* Add current char to either file nanme or ext.
if (witingExt)
{
ext [ ext | ndex++] = current;
}
el se
dosNane[ dosl ndex++] = current;
}
}

}

/* See if we are done with file nanme, either because we reached

* the end of the file nanme length, or the final period.
*/
if ('witingExt &% hasExt && (doslndex == DOS_NAME_LEN | |

i ndex == | ast Peri odl ndex))
{
/* If so, and the nanme has an extension, start reading it.
writingExt = TRUE;
/* Extension starts after last period. */
i ndex = | ast Peri odl ndex;
}

/*Now handl e CRC if needed. */

if
{

(needsCRQ)

/* Add CRC to end of file nane or at position 4. */
i f (doslndex >4)

dosl ndex = 4;

}
val ueCRC = cksun{fi dNarme, fidNaneLen);

/* Convert 16-bit CRC to hex characters. */

dosNane[ dosl ndex++] hexChar [ (val ueCRC & 0xf000) >> 12]
dosNane[ dosl ndex++] hexChar [ (val ueCRC & 0x0f00) >> 8];
dosNane[ dosl ndex++] hexChar [ (val ueCRC & 0x00f0) >> 4];
dosNane[ dosl ndex++] hexChar [ (val ueCRC & 0x000f)];

Add extension, if any. */
(extlndex !'= 0)

88



dosNane[ dosl ndex++] = PERI OD;
for (index = 0; index < extlndex; index++)

dosNane[ dosl ndex++] = ext[index];

}

return(dosl ndex) ;

/*************'k*********************************************************

* Decides if a Unicode character natches one of a |ist

* of ASCI| characters.

* Used by DOS version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCI| subset of Unicode.
* Works very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCII string.
*/

i nt Uni codel nString(

unsi gned char *string, /* (Input) String to search through. */

uni code_t ch) /* (lnput) Unicode char to search for. */

{
int found = FALSE;

while (*string '= '"\0" && found == FALSE)

{
/* These types should conmpare, since both are unsigned nunbers. */
if (*string == ch)
{

found = TRUE;
}

string++;

return(found);

}

/***********************************************************************

Deci des whet her character passed is an illegal character for a
DCs file nane.

*
*
* RETURN VALUE

*

* Non-zero if file character is illegal.

*/

nt Islllegal(

uni code_t ch) /* (lnput) character to test. */

{ /* Genuine illegal char's for DOS. */
if (ch < 0x20 || UnicodelnString("\\/:*2\"<>|", ch))
return(l);
el se
return(0);
}

89



6.7.2 OS2, Macintosh,Windows 95, Windows NT and UNIX Algorithm

/***********************************************************************

* OSTA UDF conpliant file nanme translation routine for OS/ 2,

* W ndows 95, Wndows NT, Macintosh and UNI X.

* Copyright 1995 Mcro Design International, Inc.
Witten by Jason M Rinn.
M cro Design International gives permssion for the free use of the
foll ow ng source code.

/

E G I

/*************'k*********************************************************

* To use these routines with different operating systens.
*
os/ 2

Def i ne OS2

Def i ne MAXLEN = 254

W ndows 95
Define WN_95
Def i ne MAXLEN = 255

W ndows NT
Define W N_NT

Define MAXLEN = 255

Maci nt osh:
Def i ne MAC.
Defi ne MAXLEN = 31.

UNI X
Def i ne UNI X.
Defi ne MAXLEN as specified by unix version.

d 0% %k X F X X F X X X X X X F X F Ok F

/

#define | LLEGAL_CHAR MARK 0x005F
#defi ne CRC_MARK 0x0023
#defi ne EXT_SI ZE 5
#defi ne TRUE 1
#defi ne FALSE 0
#defi ne PERI OD 0x002E
#def i ne SPACE 0x0020

/***********************************************************************

* The following two typedef's are to renmove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to

* be unsigned 16-bit.

*/

typedef unsigned int unicode_t;

typedef unsigned char byte;

[ *** PROTOTYPES ***/
int Islllegal (unicode_t ch);
unsi gned short cksum(unsigned char *s, int n);

/* Define a function or macro which determnes if a Unicode character is
* printable under your inplenentation.
*/

i nt Uni codel sPrint(unicode_t);

/***********************************************************************

* Translates a long file nane to one using a MAXLEN and an il l egal
char set in accord with the OSTA requirenents. Assunes the nane has
al ready been translated to Uni code.

RETURN VALUE

* 0% X X X

90



* Nunber of unicode characters in transl ated nane.
*/

i nt UDFTr ansNane(
uni code_t *newNane, /
uni code_t *udf Nane,

*(Qutput) Transl ated nanme. Miust be of |ength MAXLEN+/
/*

i nt udf Len, | *
/*
/*

Input) Nane from UDF vol une. */

Input) Length of UDF Nanme. */

Input) Bytes as read fromnedia. */
Input) Nunber of bytes in fidNane. */

byte *fi dNane,
int fidNamelLen)
{

~—~——P

int index, new ndex = 0, needsCRC = FALSE;

int extlndex, newkxtlndex = 0, hasExt = FALSE;
#ifdef (OS2 | WN_95 | WN_NT)

int traillndex = 0;
#endi f

unsi gned short val ueCRC;

uni code_t current;

const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udflLen; index++)

{
current = udf Nane[i ndex];
if (Islllegal(current) || !UnicodelsPrint(current))
{
needsCRC = TRUE;
/* Replace Illegal and non-displ ayabl e chars with underscore. */
current = | LLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable characters. */
whi | e(i ndex+1 < udfLen && (Isll1egal (udf Name[i ndex+1])
| | !Unicodel sPrint(udf Nanme[i ndex+1])))
{
i ndex++;
}
}

/* Record position of extension, if one is found. */
if (current == PERIOD && (udflLen - index -1) <= EXT_SI ZE)

{
if (udfLen == index + 1)
/* Atrailing period is NOT an extension. */
hasExt = FALSE;
}
el se
hasExt = TRUE;
ext I ndex = index;
newExt | ndex = new ndex;
}
}

#ifdef (OS2 | WN_95 | WN_NT)
/* Record position of last char which is NOT period or space. */
else if (current !'= PERIOD && current != SPACE)
{
traill ndex = newl ndex;
}
#endi f
i f (newl ndex < MAXLEN)
{

newName[ newl ndex++] = current;

}
el se

needsCRC = TRUE;
}

91



#ifdef (OS2 | WN_ 95 | W N_NT)
/* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */

if (traillndex !'= newl ndex - 1)
{
newl ndex = traillndex + 1;
needsCRC = TRUE;
hasExt = FALSE; /* Trailing period does not make an extension. */
}
#endi f

if (needsCRC)
{

uni code_t ext[ EXT_SI ZF] ;
int |ocal Extl ndex = O;

i f (hasExt)

{

int maxFi | enanelLen;
/* Transl ate extension, and store it in ext. */
for(index = 0; index<EXT_SIZE && extlndex + index +1 < udfLen;

i ndex++ )
{
current = udf Nane[ extlndex + index + 1];
if (Islllegal (current) || !'isprint(current))
needsCRC = 1;
/* Replace Illegal and non-displayable chars
* with underscore.
*/
current = | LLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable
* characters.
*/
whil e(index + 1 < EXT_SIZE
&& (Islllegal (udf Name[ ext | ndex + index + 2])
|| 'isprint(udf Name[extlndex + index + 2])))
i ndex++;
}
ext [l ocal Ext | ndex++] = current;
}

/* Truncate filename to | eave room for extension and CRC. */
maxFi | enanmeLen = ((MAXLEN - 4) - |ocal Extlndex - 1);
if (newl ndex > nmaxFil enanelLen)

newl ndex = maxFi | enanelLen;
el se

new ndex = newExt | ndex;
}

}
else if (new ndex > MAXLEN - 5)

/*1f no extension, nmake sure to | eave room for CRC */
newl ndex = MAXLEN - 5;

}
newNane[ newl ndex++] = CRC_MARK; /* Add mark for CRC */

/*Calculate CRC fromoriginal filename fromFileldentifier. */
val ueCRC = cksun{fi dNarme, fidNaneLen);

/* Convert 16-bits of CRC to hex characters. */

newNare[ newl ndex++] = hexChar[ (val ueCRC & 0xf000) >> 12];
newNane[ newl ndex++] hexChar [ (val ueCRC & 0x0f00) >> 8];
newName[ newl ndex++] hexChar [ (val ueCRC & 0x00f0) >> 4];

92



newNare[ newl ndex++] = hexChar[ (val ueCRC & 0x000f)];

/* Place a translated extension at end, if found. */
i f (hasExt)
{

newName[ newl ndex++] = PERI OD;
for (index = 0;index < |ocal Extlndex ;index++ )

newNane[ newl ndex++] = ext[i ndex];

}

r et ur n( new ndex) ;

}
#ifdef (OS2 | WN 95 | WN_NT)

/*************'k***********;*********************************************

* Decides if a Unicode character natches one of a |ist

* of ASCI| characters.

* Used by OS2 version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCI| subset of Unicode.
* Works very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCII string.
*/

i nt Uni codel nString(

unsi gned char *string, /* (Input) String to search through. */

uni code_t ch) /* (lInput) Unicode char to search for. */
{
int found = FALSE;
while (*string '= '"\0" && found == FALSE)
{
/* These types should compare, since both are unsigned nunbers. */
if (*string == ch)

found = TRUE;
}

string++;
return(found);
}
#endi f /* OS2 */

/**'k********************************************************************

* Deci des whether the given character is illegal for a given GCS.

*

* RETURN VALUE

*

* Non-zero if char is illegal.
*/
int Islllegal (unicode_t ch)
{
#i f def MAC
/* Only illegal character on the MAC is the colon. */
if (ch == 0x003A)
return(l);
el se
return(0);

#elif defined UNI X
/* Illegal UNI X characters are NULL and slash. */
if (ch == 0x0000 || ch == 0x002F)

93



return(l);
el se
return(0);
#elif defined (OS2 | WN_95 | WN_NT)
/* Illegal char's for OS/2 according to WARP tool kit. */
if (ch < 0x0020 || UnicodelnString("\\/:*2\"<>|", ch))
{ return(l);
el se
return(0);

3
#endi f
}

94



6.8 Extended Attribute Checksum Algorithm

/
Cal cul ates a 16-bit checksum of the Inplenentation Use
Extended Attribute header. The fields AttributeType
through I nplenentationldentifier inclusively represent the
data covered by the checksum (48 bytes).

* % X X X X F

~

U nt16 Conput eEAChecksun{byte *dat a)

{
Ui nt 16 checksum = O;
Ui nt count;

for( count = 0; count < 48; count++)

{
}

return(checksum);

checksum += *dat a++;

95



6.9 Requirementsfor DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DV D-ROM
discs.

DVD-ROM discs shall be mastered with the UDF file system
DVD-ROM discs shall consist of a single volume and a single partition.

NOTE:. Thedisc may aso include the SO 9660 file system. If the disc contains both
UDF and ISO 9660 file systems it shall be known as a UDF Bridge disc. This UDF
Bridge disc will allow playing DVD-ROM mediain computers which may only support
SO 9660. As UDF computer implementations are provided, the need for 1SO 9660 will
disappear, and future discs should contain only UDF.

If you intend to do any DV D development with UDF, please make sure that you fill out
the OSTA UDF Developer Registration Form located in appendix 6.11. For planned
operating system, check the Other box and write in DVD.

6.9.1 Constraintsimposed by UDF for DVD-Video

This section describes the restrictions and requirements for UDF formatted DVD-Video
discs for dedicated DVD content players. DVD-Video is one specific application of
DVD-ROM using the UDF format for the home consumer market. Due to limited
computing resources within aDVD player, restrictions and requirements were created so
that aDVD player would not have to support every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified by 1SO
13346 and UDF. Thiswill ease playing of DVD-Video in computer systems. Examples
of such datainclude the time, date, permission bits, and a free space map (indicating no
free space). While DVD player implementations may ignore these fields, a UDF
computer system implementation will not. Both entertainment-based and computer-based
content can reside on the same disc.

In an attempt to reduce code size and improve performance, all division described is
integer arithmetic; al denominators shall be 2*n, such that al divisions may be carried
out vialogical shift operations.

A DVD player shall only support UDF and not I SO 9660.

Originating systems shall constrain individual files to be less than than or equal to 2%
- Logical Block Sze bytesin length.

The data of each file shall be recorded as a single extent. Each File Entry shall be
recorded using the ICB Strategy Type 4.

File and directory names shall be compressed as 8 bits per character using OSTA
Compressed Unicode format .

96



A DVD player shall not be required to follow symbolic links to any files.

The DVD-Video files shall be stored in a subdirectory named "VIDEO_TS" directly
under the root directory. Directory names are standardized in the DVD Specifications
for Read-Only Disc document.

NOTE: The DVD Specifications for Read-Only Disc is a document, developed by
the DV D Consortium, that describes the names of all DVD-Video filesand a DVD-
Video directory which will be stored on the media, and additionally describes the
contents of the DVD-Video files.

Thefilenamed "VIDEO_TS.IFO" inthe VIDEO_TS subdirectory shall be read first.

All the above constraints apply only to the directory and files which the DVD player
needs to access. There may be other files and directories on the media which are not
intended for the DV D player and do not meet the above listed constraints. These other
filesand directories are ignored by the DVD player. Thisiswhat enables the ability to
have both entertainment-based and computer-based content on the same disc.

6.9.2 How toread a UDF disc
This section describes the basic procedures that a DV D player would go through to read a
UDF formatted DV D-Video disc.

6.9.2.1 Step 1. Volume Recognition Sequence
Find alSO 13346 Descriptor in avolume recognition area which shall start at logical
sector 16.

6.9.2.2 Step 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer which islocated at an anchor point must be
found. Duplicate anchor points shall be recorded at logical sector 256 and logical
sector n, where n is the highest numbered logical sector on the disc.

A DVD player only needsto look at logical sector 256; the copy at logical sector nis
redundant and only needed for defect tolerance. The Anchor Volume Descriptor
Pointer contains three things of interest:
1. Static structures that may be used to identify and verify integrity of the disc.
2. Location of the Main Volume Descriptor Sequence (absolute logical sector
number)
3. Length of the Main Volume Descriptor Sequence (bytes)

The data located in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer may be
used for format verification if desired. Verifying the checksum in byte 4 and CRC in
bytes 8-11 are good additional verifications to perform. MVDS_L ocation and
MVDS Length are read from this structure.

97



6.9.2.3 Step 3. Volume Descriptor Sequence
Read logical sectors:

MVDS Location through MVDS Location + (MVDS_Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence can not
be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with atag identifier of 5. The partition
number and partition location shall be recorded in logical sector number.

Partition_L ocation and Partition_L ength are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with atag identifier of 6. The
location and length of the File Set Descriptor shall be recorded in logical block
number.

FSD_Location, and FSD_L ength are returned from this structure.

6.9.2.4 Step 4. File Set Descriptor
The File Set Descriptor islocated at logical sector numbers:

Partition_Location + FSD_L ocation through
Partition_Location + FSD_Location + (FSD_Length - 1) / BlockSize

RootDir_Location and RootDir_L ength shall be read from the File Set Descriptor in
logical block number.

6.9.2.5 Step 5. Root Directory File Entry
RootDir_Location and RootDir_L ength define the location of a File Entry. The File
Entry describes the data space and permissions of the root directory.

The location and length of the Root Directory is returned.

6.9.2.6 Step 6. Root Directory
Parse the data in the root directory extent to find the VIDEO_TS subdirectory.

Find the VIDEO_TS File Identifier Descriptor. The name shall be in 8 bit
compressed UDF format. Verify that VIDEO_TSisadirectory.

Read the File Identifier Descriptor and find the location and length of a File Entry
describing the VIDEO_TS directory.

6.9.2.7 Step 7. FileEntry of VIDEO_TS

The File Entry found in the step above describes the data space and permissions of
the VIDEO_TSdirectory.

98



The location and length of the VIDEO_TS directory is returned.

6.9.2.8 Step 8. VIDEO_TSdirectory
The extent found in the step above contains sets of File Identifier Descriptors. Inthis
pass, verify that the entry pointsto afile and isnamed VIDEO_TS.IFO.

6.9.2.9 Step 9. File Entry of VIDEO_TS.IFO

The File Entry found in the step above describes the data space and permissions of
the VIDEO_TS.IFO file.

The location and length of the VIDEO_TS.IFO fileis returned.

Further files can be found in the same manner asthe VIDEO_TS.IFO file when
needed.

6.9.3 Obtaining DVD Documents

To obtain a copy of the DVD Specifications for Read-Only Disc document as well as
other DVD related material, contact:

Toshiba Corporation

ToshibaBLDG. 13D

DVD Division

1-1 Shibaura 1-Chome, Minato-ku, Tokyo 105-01, JAPAN
Mr. Y. Mizutani

E-mail: 000092030295@tg-mail.toshiba.co.jp

99



6.10 Recommendationsfor CD Media

CD Media (CD-R and CD-RW) requires special consideration dueto its nature. CD was
originally designed for read-only applications which affects the way in which it is written.
The following guidelines are established to ensure interchange.

The VAT may be located by using READ TRACK INFORMATION (for unfinished
media) or READ TOC or READ CD RECORDED CAPACITY for finished media. See
X3T10-1048D (SCSI-3 Multi Media Commands).

Each file and directory shall be described by asingle direct ICB. The ICB should be
written after the file data to allow for data underruns during writing, which will cause
logical gapsin thefiledata. The ICB can be written afterward which will correctly
identify all extents of thefile data. The ICB shall be written in the data track, thefile
system track (if it exists), or both.

6.10.1 Useof UDF on CD-R media

SO 13346 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and
either N or (N - 256), where n is the last recorded Physical Address on the media. UDF
requires that the AV DP be recorded at both sector 256 and sector (N - 256) when each
sessionisclosed. Thefile system may be in an intermediate state before closing and still
be interchangeable, but not strictly in compliance with ISO 13346. In the intermediate
state, only one AVDP exists. It should exist at sector 256, but if thisis not possible due
to atrack reservation, it shall exist at sector 512.

Implementations should place file system control structures into virtual space and file
datainto real space. Reader implementations may cache the entire VAT; the size of the
VAT should be considered by any UDF originating software. Computer based
implemenations are expected to handle VAT sizes of at least 64K bytes; dedicated player
implementations may handle only smaller sizes.

6.10.1.1 Requirements
Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or
Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on
one disc is not allowed.

If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
filesand by the UDF structures shall have the following value:

Filenumber =0
Channel number =0
Submode = 08h
Coding information =0

100



An intermediate state is allowed on CD-R mediain which only one AVDPis
recorded; thissingle AVDP shall be at sector 256 or sector 512 and according to the
multisession rules below.

Sequential file system writing shall be performed with variable packet writing. This
allows maximum space efficiency for large and small updates. Variable packet
writing is more compatible with CD-ROM drives as current models do not support
method 2 addressing required by fixed packets.

The Logical Volume Integrity descriptor shall be recorded and the volume marked as
open. Logica volumeintegrity can be verified by finding the VAT ICB at the last
recorded Physical Address. If the VAT ICB is present, the volume is clean; otherwise
itisdirty.

The Partition Header descriptor, if recorded, shall specify no Unallocated Space
Table, no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space
Table, and no Freed Space Bitmap. The driveis capable of reporting free space
directly, eliminating the need for a separate descriptor.

Each surface shall contain O or 1 read only partitions, O or 1 write once partitions, and
0 or 1 virtual partitions. CD media should contain 1 write once partition and 1 virtual
partition.

6.10.1.2 “Bridge” formats

SO 9660 requires aPrimary Volume Descriptor (PVD) at sector 16. If an 1SO 9660 file
system isdesired, it may contain references to the same files as those referenced by 1SO
13346 structures, or reference a different set of files, or acombination of the two.

It is assumed that early implementations will record some 1SO 9660 structures but that as
implementations of UDF become available, the need for 1SO 9660 structures will
decrease.

If an 1SO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA
extensions of 1SO 9660 must be used.

6.10.1.3 End of session data

A session is closed to enable reading by CD-ROM drives. The last complete session on
the disc shall conform completely to 1SO 13346 and have two AVDPsrecorded. This
shall be accomplished by writing data according to End of session data table below.
Although not shown in the following example, the data may be written in multiple
packets.

101



End of session data

Count Description
1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user
data, file system structures, and/or link areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will
be enhanced. Implementations shall ensure that enough space is available to record the
end of session data. Recording the end of session data brings a volume into compliance
with 1SO 13346.

6.10.2 Use of UDF on CD-RW media

CD-RW mediais randomly readable and block writable. This means that while any
individual sector may be read, writing must occur in blocks containing multiple sectors.
CD-RW systems do not provide for sparing of bad areas. Writing rules and sparing
mechanisms have been defined.

6.10.2.1 Requirements
Writing which conforms to this section of the standard shall be performed using fixed
length packets.

Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,
either Mode 1 or Mode 2 Form 1 shall be used.

If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

Filenumber =0
Channel number =0
Submode = 08h
Coding information=0

102



The host shall perform read/modify/write to enable the apparent writing of single 2K
sectors.

The packet length shall be set when the disc is formatted. The packet length shall be
32 sectors (64 KB).

The host shall maintain alist of defects on the disc using a Non-Allocatable Space
List (see 2.3.13).

Sparing shall be managed by the host via the sparable partition and a sparing table.

Discs shall be formatted prior to use.

6.10.2.2 Formatting

Formatting shall consist of writing alead-in, user data area, and lead-out. These areas
may be written in any order. This physical format may be followed by a verification
pass. Defects found during the verification pass shall be enumerated in the Non-
Allocatable Space list (2.3.13). Finally, file system root structures shall be recorded.
These mandatory file system and root structures include the VVolume Recognition
Sequence, Anchor Volume Descriptor Pointers, a vV olume Descriptor Sequence, a File Set
Descriptor and a Root Directory.

The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256,
where N isthe Physical Address of the last addressable sector.

Allocation for sparing shall occur during the format process. The sparing allocation may
be zero in length.

The free space descriptors shall be recorded and shall reflect space allocated to defective
areas and sector sparing areas.

The format may include all available space on the medium. However, if requested by the
user, a subset may be formatted to save formatting time. That smaller format may be
later “grown” to the full available space.

103



6.10.2.3 Growingthe For mat
If the medium is partially formatted, it may be later grown to alarger size. This operation
consists of:

Optionally erase the lead-in of the last session.

Optionally erase the lead-out of the last session.

Write packets beginning immediately after the last previously recorded packet.
Update the sparing table to reflect any new spare areas

Adjust the partition map as appropriate

Update the free space map to show new available area

Move the last AVDP to the new N - 256

Write the lead-in (which reflects the new track size)

Write the lead-out

6.10.2.4 Host Based Defect M anagement

The host shall perform defect management operations. The CD format was defined
without any defect management; to be compatible with existing technology and
components, the host must manage defects. There are two levels of defect management:
Marking bad sectors at format time and on-line sparing. The host shall keep the tables on
the media current.

6.10.2.5 Read Modify Write Operation

CD-RW mediarequires large writable units, as each unit incurs a 14KB overhead. The
file system requires a 2K B writable unit. The difference in write sizesis handled by a
read-modify-write operation by the host. An entire packet is read, the appropriate
portions are modified, and the entire packet written to the CD.

Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levelsof Compliance

6.10.2.6.1 Level 1

The disc shall be formatted with exactly one lead-in, program area, and lead-out. The
program area shall contain exactly onetrack. The start of the partition shall be on a
packet boundary. The partition length shall be an integral multiple of the packet size.

6.10.2.6.2 Level 2

The last session shall contain the UDF file system. All prior sessions shall be contained
in one read-only partition.

104



6.10.2.6.3 Level 3
No restrictions shall apply.

6.10.3 Multisession and Mixed M ode

The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by 1SO 13346 to be at alocation relative to the beginning of the disc. The
beginning of adisc shall be determined from a base address Sfor the purposes of finding
the VRS and AVDP.

‘S isthe Physical Address of the first data sector in the first recorded data track in the
last existent session of the volume. ‘S isthe same value currently used in multisession
SO 9660 recording. The first track in the session shall be a data track.

‘N’ isthe physical sector number of the last recorded data sector on a disc.

If random write mode is used, the media may be formatted with zero or one audio
sessions followed by exactly one writable data session containing one track. Other
session configurations are possible but not described here. There shall be no more than
one writable partition or session at one time, and this session shall be the last session on
the disc.

6.10.3.1 Volume Recognition Sequence
The following descriptions are added to UDF (see also | SO/IEC 13346 Part 2) in order to
handle a multisession disc.

The volume recognition area of the UDF Bridge format shall be the part of the
volume space starting at sector S+ 16.

The volume recognition space shall end in the track in which it begins. Asaresult of
this definition, the volume recognition area always exists in the last session of adisc.
When recorded in Random A ccess mode, a duplicate VVolume Recognition Sequence
shall be recorded beginning at sector N - 256.

6.10.3.2 Anchor Volume Descriptor Pointer

Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following logical
sector numbers: S+ 256 and N - 256. The AVDP at sector N - 256 shall be recorded
before closing a session; it may not be recorded while a session is open.

6.10.3.3 UDF Bridge format

The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF Bridge disc shall contain aUDF file systeminitslast session. Thelast
session shall follow the rules described in “Multisession and Mixed Mode” section above.
The disc may contain sessions that are based on 1SO 9660, audio, vendor unique, or a
combination of file systems. The UDF Bridge format allows CD enhanced discs to be
created.

105



The UDF session may contain pointers to data in other sessions, pointers to data only
within the UDF session, or a combination of both. Some examples of UDF Bridge discs
are shown below.

Multisession UDF disc
Accessto LSN=16+x Accessto LSN=256

Loy 5 __,
| .
— —>
16 sectors R 16 sectors R
256 sectors g N - 256 / 256 sectors g
LSN=0 LSN=S
) |First Session | " 1% Recorded Track in the last session

|:| : Volume recognition area

I : Anchor point

CD enhanced disc
:|_SI session 2nd session
UDF Session amp-
Playable by conventional CD-Player Used by UDF

106



| SO 9660 converted to UDF

1% session 2" session

3" session

9660 Session 9660 Session

UDF Session

&
<

v

Written by conventional 9660 formatter software

A

Managed by UDF

v

Foreign format converted to UDF

1% session 2" session

3" session

Data Session Data Session

UDF Session

A
v

Written by another file system

A

Managed by UDF

v

107




6.11 UDF Media Format Revision History
The following table shows when changes to the UDF Specification have taken place that
affect the UDF format that can be recorded on a piece of media. The Document Change
Notices (DCNs) which document a specific change are referenced in the table. The
column Update in UDF Revision describes which revision of the UDF specification that
the changewasincluded. The fields Minimum UDF Read Revision and Minimum UDF
Write Revision relate to the Revision Access Control fields described in DCN 2-015.

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
Allocation Extent Descriptor 2-002 1.02 1.02 1.02
Path Component File Version Number 2-003 1.02 1.02 1.02
Parent Directory Entries 2-004 1.02 1.02 1.02
Device Specification Extended Attribute 2-005 1.02 1.01 1.02
Maximum Logical Extent Length 2-006 1.02 1.02 1.02
Unallocated Space Entry 2-008 1.02 1.01 1.02
DVD Copyright Management Information 2-009 1.02 1.02 1.02
Logical Volume Identifier 2-010 1.02 1.01 1.02
Extent Length Field of an Allocation Descriptor 2-012 1.02 1.01 1.02
Non-relocatable & Contiguous Flags 2-013 1.02 1.01 1.02
Revision of Requirements for DV D-ROM 2-014 1.02 1.02 1.02
Revision Access Control 2-015 1.02 1.01 1.02
Volume Set Identifier 2-017 1.02 1.01 1.02
Uniquel Ds for Extended Attributes 2-018 1.02 1.02 1.02
Clarification of Dstrings 2-019 1.02 1.01 1.02
Application FreeEA Space Extended Attribute 2-020 1.02 1.02 1.02
Update of Identifier Suffix to 1.02 2-021 1.02 1.02 1.02
Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50
Virtual Partition Map Entry 2-026 1.50 1.50 1.50
Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50
Addition of Virtual Allocation Table 2-028 1.50 1.50 1.50
Addition of Sparing Table 2-029 1.50 1.50 1.50
Addition of Non-Allocatable Space List 2-030 1.50 1.50 1.50
Reccommmendations for CD Media 2-031 1.50 1.50 1.50

108




6.12 Developer Registration Form

Any developer that plans on implementing | SO/IEC 13346 according to this document
should complete the developer registration form on the following page. By becoming a
registered OSTA developer you receive the following benefits:

Y ou will receive alist of the current OSTA registered devel opers and their
associated Implementation Identifiers. The developerson thislist are
encouraged to interchange mediato verify data interchange among
implementations.

Notification of OSTA Technical Committee meetings. Y ou may attend a
limited number of this meetings without becoming an official OSTA member.
Y ou can be added to the OSTA Technical Committee email reflector. This
reflector provides you the opportunity to post technical questions on the OSTA
Universal Disk Format Specification.

Y ou will receive an invitation to participate in the development of the next
revision of this document.

For the latest information on OSTA and UDF visit the OSTA web site at the following
address:

http://www.osta.org

109



ANACTA OSTA Universal Disk Format Specification

R SETA ; )
Optical Storage Developer Registration Form

Technology Association

Name:

Company:
Address:

City:
State/Province:

Zip/Postal Code:
Country:
Phone: FAX:

Email:

Please indicate on which operating systems you plan to support UDF:

O DOS 0O 0S/2 O Macintosh

O UNIX/POSIX O WindowsNT O Windows 95

O Other

Please indicate which media types you plan to support:

O Magneto Optical O WORM O Phase Change

O CD-ROM O CD-R O CD-RW

O DVD-ROM O DVD-R O DVD-RAM O DVD-Video
O Other

Please indicate what value you plan to usein the Implementation I dentifier field of
the Entity I dentifier descriptor to identify your implementation:

NOTE: Theidentifier should be something that uniquely identifies your company as well as your product.

O Please add my email address to the OSTA Technical Committee email reflector.
O Please send an OSTA Membership kit.

FAX Completed formto OSTA at 1-805-962-1541, or mail to:
OSTA, 311 E. Carrillo Street, SantaBarbara, CA 93101

110



A

Allocation Descriptor, 7, 36, 40, 41
Allocation Extent Descriptor, 41
Anchor Volume Descriptor Pointer, 6, 18

C

CD-R, 2, 3, 4, 25, 26, 100, 101, 102, 104
CD-RW, 2, 100, 102

Charspec, 9

Checksum, 56, 57, 58, 59, 60, 61, 65, 95
CRC, 15, 31, 40, 82, 84

CS0, 8,9, 12, 16, 17, 19, 23, 33, 66, 68, 70

D

defect management, 25, 28, 104

Descriptor Tag, 15, 31, 40

Domain, i, 11, 13

DOS, 46, 47, 51, 52, 57, 69, 78, 86, 87, 88, 89, 110

Dstrings, 9

DVD, 2, 56, 57, 76, 77, 96, 97, 98, 99, 108

DVD Copyright Management Information, 56, 57, 76,
108

DVD-Video, 96, 97

E

Entity Identifier, 6, 10, 11, 15, 16, 17, 18, 19, 21, 23,
32, 33, 34, 35, 38, 39, 40, 49, 55, 64, 76, 77

Extended Attributes, 3, 22, 52, 53, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 76

Extent Length, 6, 62, 108

F

File Entry, 7, 12, 38, 49, 54, 61, 76
File Identifier Descriptor, 11, 35, 46, 67
File Set Descriptor, 7, 11, 31, 33
FreeSpaceTable, 20, 21

H
HardWriteProtect, 13, 19, 32, 34

ICB, 7, 35, 36, 46, 47, 52, 66, 67

ICB Tag, 7, 36, 47, 66

Implementation Use Volume Descriptor, 11, 23, 74

Implementationldentifier, 16, 17, 18, 19, 23, 33, 38,
39, 40, 49, 55, 56, 57, 58, 59, 61, 63, 64

ISO/IEC 13346, i

111

L

Logical Block Size, 6, 7, 19

Logical Sector Size, 6

Logical Volume Descriptor, 7, 11, 18, 20, 22
Logical Volume Header Descriptor, 21, 45

Logical Volume Integrity Descriptor, 12, 19, 20, 40
Logical Volumel dentifier, 7

M

Macintosh, 3, 22, 39, 45, 46, 48, 52, 54, 56, 58, 59,
60, 61, 62, 63, 64, 68, 71, 76, 78, 90, 110

N

NetWare, 79
Non-Allocatable Space, 29, 30, 42, 103

O

Orphan Space, 74

0S/2, 3, 46, 47, 51, 52, 56, 57, 58, 64, 67, 68, 70, 76,
77,78, 90, 94, 110

Overwritable, 6

P

packet, 4, 5, 25, 26, 28, 29, 30, 101, 102, 103, 104
Partition Descriptor, 6, 11, 74, 98

Partition Header Descriptor, 34

Partition Integrity Entry, 7, 12, 40

Pathname, 42

Primary Volume Descriptor, 6, 11, 15

R
Read-Only, 6
Records, 7, 43
Rewritable, 6, 34, 41

S

SizeTable, 20, 21

SoftWriteProtect, 13, 19, 34
Sparable Partition Map, 25

Sparing Table, 12, 26, 28, 29, 76, 77
strategy, 7, 32, 36

SymbolicLink, 66

T

TagSeriaNumber, 15, 31
Timestamp, 6, 10, 20, 44



U Virtual Allocation Table, 5, 26, 27, 28
virtua partition, 25, 27, 101

Unallocated Space Descriptor, 7, 20 Virtual Partition Map, 25
Unicode, 8, 9, 67, 68, 80
UniquelD, 21, 38, 39, 45, 49, 52, 61, 62, 63, 76, 77, W
108
UNIX, 46, 48, 63, 72, 73 Windows, 46, 47, 57, 69
Windows 95, 46, 47, 72, 78, 110
V Windows NT, 46, 47, 57, 72, 78, 79, 90, 110

WORM, 6, 20, 32
VAT, 5, 25, 26, 27, 28, 51, 100, 101, 102

112



OSTA Universa | Dis k Format Specification
Revisio n History

150 02/04/97 Added suppor t for CD-R Packet Writing
Added suppor t for CD-RW Packet Writing
Added suppor t for Windows 95
Added limite d suppor t for Windows NI
Incorporate s Document Change Notice s (DCN)
DQN 2-02 5 throug h 2-033

1.02  10/30/96 Incorporate s Document Change Notice s (DCN)
DCN2-001 throug h 2-024.

101  11/03/95 Added D\D Apendi x and mack a few
minor editora | changes.

1.00 10/24/95 Origina | Release



/mmmmﬁmmmm

* OSTA complian t Unicod e compression , uncompressio n routines.

* Copyrigh t 1995 Micr o Desig n International , Inc.

* Writte n by Jason M Rinn.

* Micr o Desig n Internationa | give s permissio n for the fre e use of the
* followin g sourc e code.

*

#includ e <stddef.h>

WMM**MM*MM*MMM

* The followin g two typedef s are to remove compile r dependancies.

* byt e needs to be unsigne d 8-bit , and unicode_ t needs to be unsigne d 16-bit.
*

typede f unsigne d shor t unicode._t;

typede f unsigne d char byte;

Takes an OSTA C compresse d unicod e name, and convert s it to Unicode.
The Unicod e outpu t wil | be in the byt e order

that the local compile r uses for 16-bi t values.

NOTE This routn e only perform s erro r checkin g on th e complD.

It is up to the user to ensur e that the unicod e buffe r is larg e enough,
and that the compresse d unicod e nane is correct.

RETUR VALUE

The number of unicod e character s whic h were uncompressed.
A-1is retume d if the compressio n ID is invalid.

* ok kK ok ok F X F ok %

*
/
in t  UncompressUnicode(
in t numberOfBytes, /* (Input ) number of byte s read fro m media. */
byt e *UDFCompressed, /* (Input ) byte s read fro m media. */
unicode_ t *unicode) /* (Output ) uncompresse d unicod e characters . */
{

unsigne d int complD;

int returnValue , unicodelndex , bytelndex;

/* Use UDFCompressed to stor e curren t byt e bein g read . */
compl D = UDFCompressed|Q];

/* Firs t check for vali d complD. */
if (compl D!= 8 & compl D != 16)

reunmValu e = -1;

}

else

{

unicodelnde x = 0O;
bytelnde x = 1;

/* Loop throug h all the bytes . */
whil e (bytelnde x < numberOfBytes)
{

if (compl D == 16)

MMvov e the frs t byte to the high bit s of the unicod e char. */
unicode[unicodelndex ] = UDFCompressedbytelndex++ ] << 8;

} els e unicode[unicodelndex]=0;

if (bytelnde x < numberOfBytes)

fThe n the next byte to the low bits . */
unicode[unicodelndex ] | = UDFCompressed[bytelndex++];



unicodelndex++;

returnValu e = unicodelndex;

return(returnValue);
}
WHWMMMMMMMMH
* DESCRIPTION:
* Takes a stin g of unicod e wide character s and retun s an OSTA C)
* compresse d unicod e string . The unicod e MUS be in the byt e order of
* the compile r in order to obtai n correc t results. Return s an error
* if the compressio n ID is invalid.
*
* NOTE This routin e assumes the implementatio n alread y knows, by
* the loca | environment , how mary bit s are appropriat e and therefor e does
* no checkih g to test if the input character s fi t int o that number of
* bt s or not
*
* RETURI VALUE
*
* The tota | number of byte s in the compresse d OSTA C) string,
* includin g the compressio n ID.
* A-1lis retume d if the compressio n ID is invalid.
*
in t CompressUnicode(
in t numberOfChars, /* (Input ) number of unicod e characters. */
int complD, /* (Input ) compressio n ID to be used. */
unicode_ t *unicode, /* (Input ) unicod e character s to compress . */

byt e *UDFCompressed) /* (Output ) compresse d string , as bytes. */
int bytelndex , unicodelndex;
if (compl D'!= 8 &% complD != 16)

bytelinde x = -1; /* Unsupporte d compressio n ID ! */

}
else
{
/* Plac e compressio n code in firs t byt . */
UDFCompressed[0 ] = complD;
bytelnde x = 1;
unicodelnde x = 0;
whil e (unicodeinde x < numberOfChars)
if (compl D == 16)
FFirst | plac e the high bit s of the char int o the byt e stream . */
UDFCompressed[bytelndex++ ] = (unicode[unicodelndex ] & OxFFO0) >> 8;
The n plac e the low bit s int o the stream . */
UDFCompressed[bytelndex++ ] = unicode[unicodelndex ] & OxO0FF;
unicodelndex++;
}
}

return(bytelndex);



/mmmmﬁmmmm

* OSTA UDF complian t fil e name translatio n routn e for DOS.

* Copyrigh t 1995 Micr o Desig n International , Inc.

* Writte n by Jason M Rinn.

* Micr o Desig n Internationa | give s permissio n for the fre e use of the
* followin g sourc e code.

*

#includ e <stddef.h>

#defin e DOS NAME LEN 8

#defin e DOS EXT LEN 3

#defin e ILLEGAL CHAR_MAR Ox005F
#defin e CRC_MARK 0x0023
#defin e TRUE 1
#defin e FALSE 0
#defin e PERIOD O0x002E
#defin e SPACE 0x0020

/
* The followin g two typedef s are to remove compile r dependancies.

* byt e needs to be unsigne d 8-bit , and unicode t needs to be unsigne d 16-bit.
*

typede f unsigne d shor t unicode t;

typede f unsigne d char byte;

f* * PROTOTYPE **/
unsigne d shor t cksum(registe r unsigne d char *s, registe r int n);
in t Islllegal(unicode_ t current);

/* Defin e function s or macros to bot h determin e if a characte r is printable

* and compute the uppercas e versio n of a characte r under your implementation.
*

in t  UnicodelsPrint(unicode_t);

unicode_ t UnicodeToUpper(unicode t);

[ *kk *k *kkk *k *kk *kk *kk *kkkk

* Translat e udfName to dosName usin g OSTA compliant.
* dosName must be a unicod e strin g wit h min lengt h of 12.

*

* RETURI VALUE

* Numbe of unicod e character s in dosName.
*
in t UDFDOSName(
unicode_ t *dosName, /* (Output ) DG compatibl e name. */
unicode_ t *udfName, /* (Input) Name fro m UDF volume. */
in t udfLen, /* (Input) Lengt h of UDF Name. */
byte *fidName, /* (Input) Byte s as read fro m media. */
in t fidNamelLen)/ * (Input) Numbe of byte s in fidName. */
{

int index , dosinde x = 0, extinde x = 0O, lastPeriodindex;

int needsCRC = FALSE hasExt = FALSE wrtingEx t = FALSE;
unsigne d shor t valueCRC;

unicode_ t extiDOS_EXT_LEN] , current;

MUse d to conver t hex digits . Used ASCIl for readability LF
const char hexChar ] = "0123456789ABCDEF";

for (inde x = 0 ; inde x < udfLe n ; index++)
curren t = udfName[index];
curren t = UnicodeToUpper(current);



if (curren t == PERIOD)

if (dosindex==0 || hasExt)

/* Ignor e leadin g period s or any other than used for extension . */
needsCRC = TRUE;

}
else
{
/* First , fin d last characte r whic h is NO a perio d or space. */
lastPeriodinde X = udiLe n - 1,
whil e (lastPeriodinde x >= 0 & (udfName[lastPeriodindex ] = PERIOD
|| udfName[lastPeriodindex ] == SPACE))
lastPeriodindex--;
}
/* Now searc h for las t remainin g period . */
whil e (lastPeriodinde x >= 0 && udfNamellastPeriodindex ] '= PERIOD)
lastPeriodIndex--;
}
/* See if the perio d we found was the last or not. */
i f (lastPeriodinde x 1= index)
needsCRC = TRUE /* If not, name needs translation .*
}
/* As lon g as the perio d was not trailing,
* the fl e name has an extension.
*
i f (lastPeriodinde x >= 0)
hasExt = TRUE;
}
}
}
else
{
if ((hasEx t && dosinde x == DOS NAME LEN|| extihde x == DOS _EXT _LEN)
{
/* Fil e name or extensio n is too long for DOS */
needsCRC = TRUE;
}
else

if (curen t == SPACE) /* Ignor e spaces. */

needsCRC = TRUE;
}

else

/* Look for ilega | or unprintabl e characters . */
i f (Islllegal(current ) || !UnicodelsPrint(current))

needsCRC = TRUE;

curen t = ILLEGAL_CHAR_MARK;

/* Skip llega | characterseve n spaces) , but not periods . */
while(index+ 1 < udfLen



&& (Islllegal(udfName[index+1])
|| !'UnicodelsPrint(udfName[index+1]))
&% udfNamefindex+1l ] !'= PERIOD)

{

index++;

}

/* Add curren t char to eithe r fl e name or ext. */
i f (writingExt)

extlextindex++ ] = current;

}

else

dosName[dosindex++ ] = current;

}
}

/* See if we are done wit h fl e name eithe r becaus e we reached
* the end of the fl e nare length , or the fina | period.

*

i f (writingEx t &% hasExt &&% (dosinde x == DOS NAME L& ||

inde x == lastPeriodindex))
{
/* If so, and the name has an extension , star t readin g it . */
writingEx t = TRUE;
/* Extensio n start s afte r last period . */
inde x = lastPeriodindex;
}

}

fNo w handl e CRC if needed. */

i f (needsCRC)

{
/* Add CRCto end of fl e nanme or at posito n 4. */
if (dosinde x >4)

dosinde x = 4;

}

dosName[dosindex++ ] = CRC_MARK;
valueCR C = cksum(fidName , fidNameLen);

/* Convert lower 12-bit s of CRC to hex characters . */
dosName[dosIndex++ ] hexChar[(valueCR C & Ox0f00 ) >> §];
dosName[dosIndex++ ] hexChar[(valueCR C & 0x00f0 ) >> 4];
dosName|[dosindex++ ] hexChar[(valueCR C & 0x000f);

/* Add extension , if any. */
if (extinde x !'= 0)

dosName[dosindex++ ] = PERIOD;
for (inde x = 0; inde x < extindex ; index++)

dosName[dosindex++ ] = ext[index];

}

return(dosindex);



WMMMMHMMMMM

* Decide s if a Unicod e characte r matches one of a lis t of ASCIl characters.
* Used by DCB versio n of Isllega | for readability , sinc e al of the

* jlega | character s above 0x0020 are in the ASCIl subset of Unicode.

* Works very similarl y to the standar d C functio n strchr().

*

* RETURI VALUE

* Non-zer o if the Unicod e characte r is in the give n ASCIl string.

*

in t UnicodelnString(

unsigne d char *string, /[* (Input ) Strin g to searc h through. */

unicode_ t ch) /* (Input ) Unicod e char to searc h for . */
{

int foun d = FALSE;

whil e (*stin g !'= "0 ' && foun d == FALSE)

{
/* These type s shoul d compare, sinc e bot h are unsigne d numbers. */
if (kstrin g == ch)
foun d = TRUE;
}
string++;
return(found);
}
/Mﬂmmmmm*ﬂmmmmm
* Decide s whether characte r passed is an ilega | characte r for a

* DGs fil e name.

*

* RETURI VALUE

*

* Non-zer o if fil e characte r is ilegal
*
int Islllegal(
unicode_ t ch) /* (Input ) characte r to test . */
/* Genuine ilega | char s for DOS */
if ch < 0x20 || UnicodelnString("\V:*?\"<>|" , ch))
return(1);
else
return(0);



/Wmmmﬁﬁmmmm

* OSTA UDF complian t fil e name translatio n routn e for OS/2,

* Windows 95, Windows NT, Macintos h and UNIX.

* Copyrigh t 1995 Micr o Desig n International , Inc.

* Writte n by Jason M Rinn.

* Micr o Desig n Internationa | give s permissio n for the fre e use of the
* followin g sourc e code.

*

/

WMMMMMMMM
To use thes e routine s wit h differen t operatn g systems.

0S/2
Defin e O

Defin e MAXLE = 254

Windows 95
Defin e WIN_95
Defin e MAXLEN

255

Defin e WIN_NT
Defin e MAXLEN = 255

Macintosh:
Defin e MAC.
Defin e MAXLEN = 31.

*

*

*

*

*

*

*

*

*

*

* Windows NI
*

*

*

*

*

*

*

* UNIX
* Defin e UNIX.

* Defin e MAXLEN as specifie d by uni x version.

*

#defin e ILLEGAL CHAR_MAR O0x005F
#defin e CRC_MARK 0x0023
#defin e EXT_SIZE 5
#defin e TRUE 1
#defin e FALSE 0
#defin e PERIOD O0x002E
#defin e SPACE 0x0020

/Wﬂmﬂﬂmmmm&mﬂwmm

* The followin g two typedef s are to remove compie r dependancies.
* byt e needs to be unsigne d 8-bit , and unicode t needs to

* be unsigne d 16-bit.

*

typede f unsigne d int unicode_t;

typede f unsigne d char byte;

f* * PROTOTYPE **/
in t Islllegal(unicode_ t chy,
unsigne d shor t cksum(unsigne d char *s, int n)

/* Defin e a functio n or macro whic h determine s if a Unicod e characte r is
* printabl e under your implementation.

*

in t UnicodelsPrint(unicode_t);

/mmmmm&mmmmm
* Translate s a long fl e name to one usin g a MAXLIN and an illegal
* char set in accor d wit h the OSTA requirements. Assumes th e name has



* aread y been translate
*

* RETURI VALUE
*
*
*

in t UDFTransName(

unicode_ t *newName,/*(Output)Translate

unicode_ t *udfName , /*

in t udflLen, [*
byt e *fidName, /*
in t fidNameLen) /*

int index ,

int extindex
#ifde f (OS2 | WIN_95 |

int traillnde X = 0;
H#endif

Numbe of unicod e character

newinde x = 0,
newExtinde x = 0, hasExt

d to Unicode.

S in translate d name.

d name Must be of lengt h MAXLEN*

(Input) Nane fro m UDF volume.*/

(Input) Lengt h of UDF Name. */

(Input) Byte s as read fro m media. */
(Input) Numbe of byte s in fidName . */

needsCRC = FALSE;
= FALSE;
WIN_NT)

unsigne d shor t valueCRC;

unicode  t current;

const char hexChar ] = "0123456789ABCDEF";
for (nde x = 0; inde x < udfLen ; index++)
curren t = udfName[index];

i f (Islllegal(current

) |

IUnicodelsPrint(current))

needsCRC = TRUE;

/* Replac e llega | and non-displayabl e char s wit h underscore */
curen t = ILLEGAL_CHAR_MARK;
/* Skip any othe r ilega | or non-displayabl e characters */
while(index+ 1 < udfLe n &% (Islllegal(udfName[index+1])
|| !'UnicodelsPrint(udfName[index+1])))
index++;
}
}
/* Record posito n of extension , if one is found . */
if (curen t =— PERIOD & (udfLe n - inde x -1) <= EXT_SIZE)
{
if (udfLe n = inde x + 1)
/* A tralin g perio d is NO an extension */
hasExt = FALSE;
}
else
hasExt = TRUE;
extinde x = index;
newExtinde x = newindex;
}
}
#ifde f (OS2 | WIN_95 | WIN_NT)
/* Record posiio n of last char which is NO perio d or space. */

els e if (curren t

traillnde X

#endif

= PERIOD & curren t = SPACE)

newlndex;



}

if (newinde x < MAXLEN)

newName[newindex++ ] = current;

}

else

needsCRC = TRUE;
}

#ifde f (OS2 | WIN_95 | WIN_NT)
/* For OS2 95 & NT, truncat e any trailin g period s and\o r spaces . */

i f
{

Y
#endif

i f
{

(traillnde X I'= newinde x - 1)

newinde x = traillnde X + 1;
needsCRC = TRUE;
hasExt = FALSE /* Tralin g perio d does not make an extension . */

(needsCRC)

unicode_ t ext[EXT_SIZE];
in t localExtinde X =0;

i f (hasExt)
{
in t maxFilenameLen;
/* Translat e extension , and stor e it in ext. */
forinde x = 0; index<EXT _SIZ E &% extinde x + inde x +1 < udfLen;
index+ + )
{
curren t = udfNamel[extinde x + inde x + 1];
i f (Islllegal(current ) || lisprint(current))
{
needsCRC = 1;
/* Replac e llega | and non-displayabl e chars
* wit h underscore.
¥

curren t = ILLEGAL CHAR MARK;

/* Skip any other ilega | or non-displayable
* characters.

#

while(inde x + 1 < EXT_SIZE

& (Islllegal(udfNamelextinde X + inde x + 2])
|| lisprint(udfName[extinde X + inde x + 2))))
index++;
}
ext[localExtindex++ ] = current;

}

/* Truncat e flenam e to leav e roomfor extensio n and CRC */
maxFilenameLe n = (MAXLEN - 4) - localExtinde x - 1);
if (newlnde x > maxFilenamelLen)

newinde x = maxFilenamelLen;

}

else

{



newlnde x = newExtindex;

}
}
els e if (newinde x > MAXLE - 5)

Al f no extenson , make sure to leav e roomfor CRC */
newinde x = MAXLE - 5;

}
newName[newindex++ ]| = CRC_MARK /* Add mark for CRC */

fCalculat e CRC fro morigina | filenam e fro m Fileldentifier .ox
valueCR C = cksum(fidName , fidNameLen);

/* Convert 16-bit s of CRC to hex characters . */
newName[newIndex++ hexChar[(valueCR C & Oxf000 ) >> 12];

] =
newName[newindex++ ] = hexChar[(valueCR C & Ox0f00 ) >> §];
newName[newindex++ ] = hexChar[(valueCR C & 0x00f0 ) >> 4];
newName[newindex++ ] = hexChar[(valueCR C & 0x000f)];

o

/* Plac e a translate extensio n at end, if found . */

if (hasExt)

newName[newindex++ ] = PERIOD;
for (nde x = Ojinde x < localExtinde X index+ + )

newName[newindex++ | = ext[index];

}
}

return(newIndex);

}

#ifde f (OS2 | WIN_95 | WIN_NT)

/

* Decide s if a Unicod e characte r matches one of a list

* of ASCIl characters.

* Used by O versio n of Isllega | for readability , sinc e all of the
* flega | character s above 0x0020 are in the ASCIl subset of Unicode.
* Works very similarl y to the standar d C functo n strchr().
*

*

*

*

RETURI VALUE
Non-zer o if the Unicod e characte r is in the give n ASCIlI string.
*
in t UnicodelnString(
unsigne d char *string, /* (Input ) Stin g to searc h through. */
unicode_ t ch) /* (Input ) Unicod e char to searc h for . */

int foun d = FALSE;
whil e (*stin g != 0 ' && foun d = FALSE)
{

/* These type s shoul d compare, sinc e both are unsigne d numbers. */
if (*strin g == ch)

foun d = TRUE;
string++;
return(found);
itendif /* O */

/m*ﬁmw&kkm&kkmﬁﬁmkkkkkkm



* Decide s whether the give n characte r is ilega | for a give n OS

*

* RETURI VALUE

*

* Non-zer o if char is ilegal
*
in t Islllegal(unicode_ t ch)
#ifde f MAC
/* Only ilega | characte r on the MAC is the colon . */
if (ch == 0x003A)
return(1);
else
return(0);
#eli f define d UNIX
/* llega | UNIX character s are NULL and slash . */
if ch = 0x0000 || ch == Ox002F)
return(1);
else
return(0);
#eli f define d (OS2 | WIN_95 | WIN_NT)
/* llega | char s for OS/2 accordn g to WAR toolkit . */
if ch < 0x0020 || UnicodelnString("\V:*?\"<>|" , ch))
return();
else

return(0);

Y
#endif



UDF Specificatio n vi0 2 - A specification
describin g th e Universa | Dis k Format
develope d by the Optica | Storag e Technology
Associatio n (OSTA). Thi s specificatio nis
for developer s who pla n to implement UDF
whic h is based upon the ISO 13346 standard.
UDF is a fl e syste mformat standar d that
enable s fil e interchang e among different
operatin g systems.





