AN\C"TFA
\ ViR VA

OSTA Univer sal Disk Format Specification
Revision 2.00

Readme

The pages included in this distribution are as follows:

UDF_200.PDF Adobe Acrobat format of UDF Specification 2-132
HISTORY.TXT Revision history of UDF Specification 133
UNICODE.C Unicode sample source code 134-136
DOSNAME.C UDF DOS filename translation 137-141
UDFTRANS.C UDF OS/2, Macintosh and UNIX filename translation 142-146
FILE_ID.DIZ BBS Description file 147

*kkkkkkkkk I M P O R T A N T N O T E *kkkkkkkkk

Please fill out the OSTA UDF Developer Registration form located in the UDF
specification and return it to OSTA. This will make sure that you are kept up
to date with announcements in regards to UDF.

For additional information on OSTA and UDF visit the OSTA web site at
http://www.osta.org.

NOTE: Free Adobe Acrobat readers for several platforms are available at
http://www.adobe.com

MAMCTA

OSTA-2
A A TAY Revision 2.00
Optical Storage April 3rd, 1998
Technology Association

Universal Disk Format™
Specification

April 3rd, 1998
© Copyright 1994, 1995, 1996, 1997
Optical Storage Technology Association
ALL RIGHTSRESERVED

Revision History:

1.00 October 24, 1995 Original Release

1.01 November 3, 1995 DVD appendix added

1.02 August 30, 1996 Incorporates Document Change Notices DCN 2-001
through DCN 2-024

1.50 February 4, 1997 Integrated support for CD-R and CD-RW media
(DCN 2-025 through DCN 2-032)

2.00 April 3, 1998 Integrated support for ECMA 167 3 Edition which

included the support for named streams.
(DCN 2-033 through DCN 2-064)

Optica Storage Technology Association
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853 Voice
(805) 962-1541 Fax
info@osta.org
http://www.osta.org

This document along with the sample source code is available in electronic format from OSTA.

Important Notices

This document is a specification adopted by Optica Storage Technology Association (OSTA). This document may be revised by OSTA. It isintended solely
asaguide for companiesinterested in developing products which can be compatible with other products developed using this document. OSTA makes no
representation or warranty regarding this document, and any company using this document shall do so at its sole risk, including specifically therisksthat a
product developed will not be compatible with any other product or that any particular performance will not be achieved. OSTA shall not be liable for any
exemplary, incidental, proximate or consequential damages or expenses arising from the use of this document. This document defines only one approach to
compatibility, and other approaches may be available in the industry.

This document is an authorized and approved publication of OSTA. The underlying information and materials contained herein are the exclusive property of
OSTA but may be referred to and utilized by the general public for any legitimate purpose, particularly in the design and development of writable optical
systems and subsystems. This document may be copied in whole or in part provided that no revisions, aterations, or changes of any kind are made to the
materials contained herein. Only OSTA has the right and authority to revise or change the material contained in this document, and any revisions by any party
other than OSTA are totally unauthorized and specificaly prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the subject of a patent, patent
gpplication, copyright, mask work right or trade secret right). By publication of this document, no position is taken by OSTA with respect to the validity or
infringement of any patent or other proprietary right, whether owned by a Member or Associate of OSTA or otherwise. OSTA hereby expressy disclaims any
liahility for infringement of intellectual property rights of others by virtue of the use of this document. OSTA has not and does not investigate any notices or
allegations of infringement prompted by publication of any OSTA document, nor does OSTA undertake a duty to advise users or potential users of OSTA
documents of such notices or alegations. OSTA hereby expressly advises al users or potential users of this document to investigate and analyze any potential
infringement situation, seek the advice of intellectual property counsel, and, if indicated, obtain alicense under any applicable intellectual property right or take
the necessary stepsto avoid infringement of any intellectual property right. OSTA expressly disclaims any intent to promote infringement of any intellectual
property right by virtue of the evolution, adoption, or publication of this OSTA document.

Universal Disk Format™ and UDF™ are trademarks of the Optical Storage Technology Association.

CONTENTS

1.

2.

INTRODUCTION ...ttt e e r e e e e e e e e nnnees 1
1.1 DOCUMENT LAYOUL.......oiiiiiiiieiiiii ettt ettt ettt et e e st b e e e ekt e e sttt e e e ambe e e e abbe e e e anbneeeaanbneeas 2
A O] o 4] o] [T L (ol TP P PP TSP 3
1.3 GeNEral RETEIEINCESeiiiiiiiiiii ittt b bttt ettt e b e re e 3

1.3 1 REFEIENCES. ...ctietieitee ittt sttt bbb bt bbb h b nh e e e nneennes 3

1.3.2 DEFINITIONS ...ttt b bbbt nb b 4

L1.3.3 T OIMIS it 6

BASIC RESTRICTIONS & REQUIREMENTS ... 7
2.1 PArT L - GENEEAL ..ottt 9

N T O = = o (= = TP TP U PP 9

212 OSTA CSO CharSPEC.....ccueeiteerteerteeiteesteesteesteesteesteesteesteesteesteesbeesreesbeesreesbeesreesreesreesreesreens 10

N0 G T B L 1 1o o SRR 10

N S N 411= S =0 0 o LU 11

A% T =011 A [(< o () = TP 12
2.2 Part 3 - VOIUME STFUCTUIEooueiiiiiiiiieie ettt 16

A R B < o 1oL (o] g o TP 16

222 Primary VOlIUME DESCIIPLONccueiiueieriieeiieeiieeeteeestee et ste et e st e e sbe e saee e sneeesabeesbeeeees 17

2.2.3 Anchor Volume DesCriptor POINLES..........cocueiiiiiiiieiie et 19

224 Logical VOlIUME DESCIIPLON.....cciitiiiiieeitiie it e tee ettt ettt sbe e saee e snee e e e sbeeeees 20

225 Unallocated SPace DESCIIPLONcciueieiieieiieeiieeeieeestee ettt et e s be e sbee e seee e saee e sbeesbeeeees 22

2.2.6 Logical Volume INtegrity DESCIPION.cciueiiiiiiiieeitie et e st estee st see e e 22

227 Implemention Use Volume DESCIILONoiiiiiiiiieiii ettt 24

2.2.8 Virtual Partition M@oooeiiiiiee ettt 27

229 Sparable Partition Map... ..ottt 27

2210 Virtua ANOCEHON TaDIE.......ooiiiieeieeee e 28

A N o= 1o T = o T TP 31
2.3 PaArt 4 - File SYSTEIM. ...ttt ettt h et e et e e st a e e anbeeanaeas 34

S I R B = ot 1 oL (o] G = SRR 34

A I (R s DT o g o (o TP 35

2.3.3 Partition Header DESCIIPLONcoiueiiteieiiiieiieesteeetee ettt et e e sbe e saae e sabe e sabeesbeeeees 37

234 Fleldentifier DESCIILON ... ciieieie ettt ettt sbe e saee e s e st esbeeeees 38

X T [O B o B TP PSP U PR URP PR PRRPRRPRN 40

P N SR o 1= = o1 PR 42

2.3.7 Unallocated SPace ENMIY.........coiiiiiiiieiiee ettt ettt et saae e snbe e sabe e sbeeeees 44

2.3.8 SPACe BitMap DESCIIPLOeeiieieieeeitiee ittt et ettt be e st e st e e sbe e e seee e sneeesnbeesbeeenees 45

2.3.9 Partition INtegrity ENLIYcoouiiiiee ettt 45

2.3.10 AllOCEELION DESCITPIONS. ... teeiteeeteeeetee ettt et et et e e sbee e saee e sebe e ssbeesbe e e sbee e sbaeesnteesmbeesbeeenees 45

2.3.11 AllOCation EXIENt DESCITPLONveiiteieieieeieiee it etee ettt ettt e sbe e saee e snee e sabeesreeeees 47

2.3 12 PaINNAIME ... eeiitieieecte ettt r e b e r e r et enre e nreenre e 47
2.4 Part5 - RECOIM STIUCTUIEc.viiiiiiiiiieee e 47

3. SYSTEM DEPENDENT REQUIREMENTS.........ccociiiiiii e 48

3L PArT 1 - GENEEAL.....ciiiiiiiiiiii s 48
00 I R N 411=S =0 o o TP 48
3.2 PArt 3 - VOIUME STFUCTUNE ..ottt 49
3.21 Logica Volume Header DESCIIPLON.........ueiieiiiieiiie ettt e et e e e 49
3.3 Pt 4 - File SYSTEIM. ...ttt ettt e et et e e ba e anbe e aneeas 50
3.3 1 Fleldentifier DESCIILONc.eiiieieiie ettt ettt sbe e sbe e et e b e e 50
R (07 B Ir-'o [USROS 51
TS 1. B o 1 1= = oo SRR 53
334 Extended ALMDULES..........oooiiiiee e 56
335 NAMEA SIEAIMS.....ciiiiieitiertee et sb e r e sb e s b e sb e e sb e e sreenreenreenreens 66
3.3.6 Extended Attributes as Nnamed SIrEAMS...........ooeeiieiieiieree e 68
3.3.7 UDF Defined SYySEM SITEAIMS.......coouiiiiiieiiee ittt saee e saee et e beeeees 70
3.3.8 UDF Defined NON-SySIEmM SLIEAIMS.ooiiiiiiiiiiieeriie ettt siee s e e e 76

4. USER INTERFACE REQUIREMENTS......ooiiiiiiiiiiiie e 78
4.1 Part 3 - VOIUME STFUCTUIEooiiiiiiiiit bbbt 78
4.2 PArT 4 - File SYSTEIM ...ttt ettt et et e et e e e e ab e e anbe e e be e e sbee e e 78
N R 11 = R o OO SORUTU R PRSP 78
4.2.2 Fileldentifier DESCIIPLOLcutiiieeiiee et eriee ettt et et e et e saee e sabe e sbeessbeeesbeeesaneesnreens 79

5. INFORMATIVE.ot 87
5.1 DeSCrIPLOr LENGENSeiiiiie ittt ettt e snb e 87
5.2 Using IMPIemMeNntation USE AFEASccuieiuiiiiiiiiit ettt e siee e siee et e sieeessbe et e sbe e staeessbeesneeas 87
521 ENGLY TAENITIEIS ...t e ees 87
A A O 1 o] 7= S = ol TR 87
TR B = To T B T=T o] o] (o] g PR U RO UPR 88
5.4 TeCNNICAI CONTACESviiiiiiiiiiiiiiit ittt 88
6. APPENDICES ... 89
6.1 UDF Entity Identifier Definitionscooiiiiiiiiieie et 89
6.2 UDF Entity Identifier ValUEScc.eiiiiiiiiiiiie ettt 90
6.3 Operating SYStemM TAENTITIEISooiuiiiiiie e 91
6.4 OSTA Compressed Unicode AlGOrithm ... 93
6.5 CRC CalCUIBLION.eiiiiiiiiiiiiiee bbbt 95
6.6 Algorithm for Strategy TYPE 4096oo ittt 98

6.7 Identifier Translation AIGOFthMS...........ooiiiii e 99

B6.7.1 DOS AIGOITNM ... et rb e saee et e b e 99
6.7.2 OS2, Macintosh,Windows 95, Windows NT and UNIX Algorithm............cccococeiirnnen. 103
6.8 Extended Attribute Checksum AlGOrithm ... 108
6.9 Requirements for DVD-ROM ..ottt 109
6.9.1 Constraintsimposed by UDF for DVD-VIOE0.......ccoiiiiiiiiiiieiiie e 109
6.9.2 HOW O €80 @UDF GiSC........ciieiiieiiiiiiiie sttt 110
6.9.3 ObtaiNing DV D DOCUMENTS......c..utiiiiiiiiieitieeiieesieeestee et sbe e sbe e sbee e saee e sabeesbeeesbeeesneeas 112
6.10 Recommendations fOr CD MEIA.........c.coviiiiiiiiiiiie i 113
6.10.1 Useof UDF 0N CD-R MEIA........ccoiiiiiiiiiiie it 113
6.10.2 Use of UDF 0N CD-RW MEGIAL......ccuiiuiiriiiiiiiieiie et 115
6.10.3 Multisession and MiXed MOTE...........ooeiiiiiiiiie e 118
6.11 UDF Media Format ReVISION HISTOMYcouiiiiiiiiieiiie et 121
6.12 Developer RegiStration FOIM...........coiiiiiiiiii e 122

This page left intentionally blank

1. Introduction

The OSTA Universal Disk Format (UDF™) specification defines a subset of the standard
ECMA 167 3 edition. The primary goa of the OSTA UDF is to maximize data
interchange and minimize the cost and complexity of implementing ECMA 167.

To accomplish this task this document defines a Domain. A domain defines rules and
restrictions on the use of ECMA 167. The domain defined in this specification is known
asthe“OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of ECMA
167 on a per operating system basis.

Given some ECMA 167 structure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading this field: If the operating system supports the data in
this field then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in
this field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the
data for this field then to what value should the field be set?

For some structures of ECMA 167 the answers to the above questions were self-
explanatory and therefore those structures are not included in this document.

In some cases additional information is provided for each structure to help clarify the
standard.

This document should help make the task of implementing the ECMA 167 standard easier.

To be informed of changes to this document please fill out and return the OSTA UDF
Developers Registration Form located in appendix 6.12.

UDF 2.00 1 April 3,1998

1.1 Document Layout

This document presents information on the treatment of structures defined under standard
ECMA 167.

This document is separated into the following 4 basic sections:

Basic Restrictions and Requirements - defines the restrictions and
requirements which are operating system independent.

System Dependent Requirements - defines the restrictions and requirements
which are operating system dependent.

User Interface Requirements - defines the restrictions and requirements which
are related to the user interface.

Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard
ECMA 167. The following areas are covered:

& Interpretation of a structure/field upon reading from media.

25 Contents of a structure/field upon writing to media. Unless specified otherwise
writing refers only to creating a new structure on the media. When it applies to
updating an existing structure on the mediait will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with
respect to the categories listed above. In certain cases, one or more fields of a structure
are not described if the semantics associated with the field are obvious.

A word on terminology: in common with ECMA 167, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optional action or
requirement, and should to indicate a preferred, but still optional action or requirement.

Also, special comments associated with fields and/or structures are prefaced by the
notification: "NOTE:""

UDF 2.00 2 April 3,1998

1.2 Compliance

This document requires conformance to parts 1, 2, 3 and 4 of ECMA 167. Compliance to
part 5 of ECMA 167 is not supported by this document. Part 5 may be supported in a
later revision of this document.

For an implementation to claim compliance to this document the implementation shall
meet all the requirements (indicated by the word shall) specified in this document.

The following are afew points of clarification in regards to compliance:

Multi-Volume support is optional. An implementation can claim compliance
and only support single volumes.

Multi-Partition support is optional. An implementation can claim compliance
without supporting the special multi-partition case on a single volume defined
in this specification.

Media support. Animplementation can claim compliance and support asingle
media type or any combination. All implementations should be able to read
any mediathat is physicaly accessible.

Multisession support. Any implementation that supports reading of CD-R
media shall support reading of CD-R Multisessions as defined in 6.10.3.

File Name Translation - Any time an implementation has the need to transform
afilename to meet operating system restrictions it shall use the algorithms
specified in this document.

Extended Attributes - All compliant implementations shall preserve existing
extended attributes encountered on the media. Implementations shall create
and maintain the extended attributes for the operating systems they support.
For example, an implementation that supports Macintosh shall preserve any
0OS/2 extended attributes encountered on the media. An implementation that
supports Macintosh shall also create and maintain al Macintosh extended
attributes specified in this document.

Backwards Read Compatibility — A compliant UDF 2.00 implementation shall
be able to read all media written under UDF 1.50 and 1.02.

Backwards Write Compatibility — UDF 2.00 structures shall not be written to
media which contains UDF 1.50 or UDF 1.02 structures. UDF 1.50 and UDF
1.02 structures shall not be written to media which contains UDF 2.00
structures. These two requirements prevent media from containing different
versions of the UDF structures.

1.3 General References
1.3.1 References

I1SO 9660:1988 Information Processing - Volume and File Structure of CD-ROM for
Information Interchange

IEC 908:1987 Compact disc digital audio system

UDF 2.00 3 April 3, 1998

ISO/IEC 10149:1993

Orange Book part-11
Orange Book part-I11
ISO/IEC 13346:1995

ECMA 167

1.3.2 Definitions

Audio session
Audio track

CD-R
CD-RW
Clean File System

Data track

Dirty File System
Fixed Packet

ICB
Logical Block Address

Media Block Address

UDF 2.00

Information technology - Data Interchange on read-only 120mm optical data
discs (CD-ROM based on the Philips/Sony “Y ellow Book™)

Recordable Compact Disc System Part-11, N.V. Philips and Sony Corporation
Recordable Compact Disc System Part-111, N.V. Philips and Sony Corporation

Volume and file structure of write-once and rewritable media using non-
sequential recording for information interchange. This1SO standard is
equivalent to ECMA 167 2™ edition..

ECMA 167 3% edition is an update to ECMA 167 2" edition that adds the
support for multiple data stream files, and is available from http://www.ecma.ch.
The previous edition of ECMA 167 (2™) was is equivalent to 1SO/IEC
13346:1995. References enclosed in [] in this document are references to
ECMA 167 3% edition. The references are in the form [x/a.b.c], where x is the
section number and a.b.c is the paragraph or figure number.

Audio session contains one or more audio tracks, and no data track.

Audio tracks are tracks that are designated to contain audio sectors specified in
| SO/IEC 908.

CD-Recordable. A write once CD defined in Orange Book, part-11.
CD-Rewritable. An overwritable CD defined in Orange Book, part-I11.
The file system on the media conforms to this specification.

Data tracks are tracks that are designated to contain data sectors specified in
ISO/IEC 10149.

A file system that is not a clean file system.

An incremental recording method in which all packetsin a given track are of a
length specified in the Track Descriptor Block. Addresses presented to a CD
drive are trandated according to the Method 2 addressing specified in Orange
Book parts-11 and -111.

A control node in ECMA 167.
A logical block number [3/8.8.1].

NOTE 1: Thisis not to be confused with alogical block address [4/7.1], given
by the Ib_addr structure which contains both alogical block number [3/8.8.1]
and a partition reference number [3/8.8], the latter identifying the partition
[3/8.7] which contains the addressed logical block [3/8.8.1].

NOTE 2: A logical block number [3/8.8.1] trandlates to alogical sector number
[3/8.1.2] according to the scheme indicated by the partition map [3/10.7] of the
partition [3/8.7] which contains the addressed logical block [3/8.8.1]

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

4 April 3, 1998

Packet

Physical Address

Physical Block Address

physical sector

A recordable unit, which is an integer number of contiguous sectors [1/5.9],
which consist of user data sectors, and may include additional sectors [1/5.9]
which are recorded as overhead of the Packet-writing operation and are
addressable according to the relevant standard for recording [1/5.10].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivalent to alogical sector number [3/8.1.2].

A sector [1/5.9] given by arelevant standard for recording [1/5.10]. In this
specification, a sector [1/5.9] is equivalent to aalogical sector [3/8.1.2].

Random Access File System A file system for randomly writable media, either write once or

Sequential File System

Session

Track

UDF

user data blocks

user data sectors

UDF 2.00

rewritable
A file system for sequentially written media (e.g. CD-R)

The tracks of avolume shall be organized into one or more sessions as specified
by the Orange Book part-11. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending sequence.

The sectors of avolume shall be organized into one or more tracks. A track
shall be a sequence of sectors, the sector numbers of which form a contiguous
ascending sequence. No sector shall belong to more than one track.

Note: There may be gaps between tracks; that is, the last sector of atrack need
not be adjacent to the first sector of the next track.

OSTA Universa Disk Format

The logical blocks[3/8.8.1] which were recorded in the sectors [1/5.9]
(equivalent in this specification to logical sectors[3/8.1.2]) of a Packet and
which contain the data intentionally recorded by the user of the drive. This
specifically does not include the logical blocks [3/8.8.1], if any, whose
constituent sectors [1/5.9] were used for the overhead of recording the Packet,
even though those sectors [1/5.9] are addressable according to the relevant
standard for recording [1/5.10]. Like any logical blocks[3/8.8.1], user data
blocks are identified by logical block numbers[3/8.8.1].

The sectors [1/5.9] of a Packet which contain the data intentionally recorded by
the user of the drive, specifically not including those sectors [1/5.9] used for the
overhead of recording the Packet, even though those sectors [1/5.9] may be
addressable according to the relevant standard for recording [1/5.10]. Like any
sectors [1/5.9], user data sectors are identified by sector numbers[3/8.1.1]. In
this specification, a sector number [3/8.1.1] is equivalent to aalogical sector
number [3/8.1.2].

5 April 3, 1998

Variable Packet

Virtual Address

virtual partition

virtual sector

VAT

VAT ICB

1.3.3 Terms
May

Optional
Shall
Should

Reserved

UDF 2.00

An incremental recording method in which each packet in a given track is of a
host determined length. Addresses presented to a CD drive are as specified in
Method 1 addressing in Orange Book parts 11 and I11.

A logical block number [3/8.8.1] of alogical block [3/8.8.1] in avirtual
partition. Such alogical block [3/8.8.1] is recorded using the space of alogical
block [3/8.8.1] of a corresponding non-virtual partition. The Nth Uint32 in the
VAT represents the logical block number [3/8.8.1] in a non-virtual partition
used to record logical block number N of its corresponding virtual partition. The
first virtual addressis 0.

A partition of alogical volume [3/8.8] identified in alogical volume descriptor
[3/10.6] by a Type 2 partition map [3/10.7.3] recorded according section 2.2.8 of
to this specification. The virtual partition map contains a partition number
which is the same as the partition number [3/10.7.2.4] in a Type 1 partition map
[3/10.7.2] in the same logical volume descriptor [3/10.6]. Each logical block
[3/8.8.1] inthe virtual partition is recorded using the space of alogical block
[3/8.8.1] of that corresponding non-virtual partition. A VAT lists the logical
blocks [3/8.8.1] of the non-virtual partition which have been used to record the
logical blocks [3/8.8.1] of its corresponding virtual partition.

A logical block [3/8.8.1] in avirtual partition. Such alogical block [3/8.8.1] is
recorded using the space of alogical block [3/8.8.1] of a corresponding non-
virtual partition. A virtual sector should not be confused with a sector [1/5.9] or
alogical sector [3/8.1.2].

A file[4/8.8] recorded in the space of a non-virtual partition which has a
corresponding virtual partition, and whose data space [4/8.8.2] is structured
according to section 2.2.10 of this specification. This file provides an ordered list
of Uint32s, where the Nth Uint32 represents the logical block number [3/8.8.1]
of anon-virtual partition used to record logical block number N of its
corresponding virtual partition. Thisfile [4/8.8] is not necessarily referenced by
afileidentifier descriptor [4/14.4] of adirectory [4/8.6] in the file set [4/8.5] of
the logical volume [3/8.8].

A File Entry ICB that describes afile containing a Virtual Allocation Table.

Indicates an action or feature that is optional.

Describes a feature that may or may not be implemented. If implemented, the
feature shall be implemented as described.

Indicates an action or feature that is mandatory and must be implemented to
claim compliance to this standard.

Indicates an action or feature that is optional, but its implementation is strongly
recommended.

A reserved field is reserved for future use and shall be set to zero. A reserved
valueisreserved for future use and shall not be used.

6 April 3, 1998

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined
in this specification. These restrictions & requirements as well as additional ones are
described in detail in the following sections of this specification.

Item

Restrictions & Requirements

Logica Sector Size

The Logical Sector Size for a specific volume shall be the
same as the physical sector size of the specific volume.

Logical Block Size

The Logical Block Size for aLogical Volume shall be set to
the logical sector size of the volume or volume set on
which the specific logical volume resides.

Volume Sets

All mediawithin the same VVolume Set shall have the same
physical sector size. Rewritable/Overwritable media and
WORM media shall not be mixed in/ be present in the
same volume set.

First 32K of Volume Space

The first 32768 bytes of the Volume space shall not be used
for the recording of ECMA 167 structures. This area shall
not be referenced by the Unallocated Space Descriptor or
any other ECMA 167 descriptor. Thisisintended for use
by the native operating system.

V olume Recognition Sequence

The Volume Recognition Sequence as described in part 2
of ECMA 167 shall be recorded.

Timestamp

All timestamps shall be recorded in local time. Time zones
shall be recorded on operating systems that support the
concept of atime zone.

Entity Identifiers

Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain a value that uniquely
identifies the implementation.

Descriptor CRCs

CRCs shall be supported and calculated for all Descriptors,
except for the Space Bitmap Descriptor.

File Name Length

Maximum of 255 bytes

Maximum Pathsize

Maximum of 1023 bytes

Extent Length

Maximum Extent Length shall be 2% - Logical Block Size.
Maximum Extent Length for extentsin virtual space shall
be the Logical Block Size.

Primary Volume Descriptor

There shall be exactly one prevailing Primary Volume
Descriptor recorded per volume.

Anchor Volume Descriptor Pointer

Shall be recorded in at least 2 of the following 3 locations:
256, N-256, or N, where N is the last addressable sector of
avolume.

Partition Descriptor

A Partition Access Type of Read-Only, Rewritable,
Overwritable and WORM shall be supported.

There shall be exactly one type 1 prevailing Partition
Descriptor recorded per volume, with one exception. For
Volume Sets that consist of single volume, the volume may
contain 2 Partitions with 2 prevailing Partition Descriptors
only if one has an access type of read only and the other
has an access type of Rewritable or Overwritable, or

UDF 2.00

7 April 3, 1998

WORM. The Logica Volume for this volume would
consist of the contents of both partitions.

Logica Volume Descriptor

There shall be exactly one prevailing Logical Volume
Descriptor recorded per Volume Set.

The LogicalVolumeldentifier field shall not be null and
should contain aidentifier that aids in the identification of
the logical volume. Specifically, software generating
volumes conforming to this specification shall not set this
field to afixed or trivial value. Duplicate disks which are
intended to be identical may contain the same valuein this
field. Thisfield is extremely important in logical volume
identification when multiple media are present within a
jukebox. This name istypically what is displayed to the
user.

Logical Volume Integrity Descriptor

Shall be recorded. The extent of LVIDs may be terminated
by the extent length.

Unallocated Space Descriptor

A single prevailing Unallocated Space Descriptor shall be
recorded per volume.

File Set Descriptor

There shall be exactly one File Set Descriptor recorded per
Logica Volume on Rewritable/Overwritable media. For
WORM media multiple File Set Descriptors may be
recorded based upon certain restrictions defined in this
document. The File Set Identifier field of the File Set
Descriptor contains a name that may be used as an alias
name for identifying the Logical Volume to the user. See
2.3.2.7 for further details. The FSD extent may be
terminated by the extent length.

ICB Tag

Only strategy types 4 or 4096 shall be recorded.

File Identifier Descriptor

Thetotal length of a File Identifier Descriptor shall not
exceed the size of one Logical Block.

File Entry

Thetotal length of a File Entry shall not exceed the size of
one Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shall be
recorded.

Allocation Extent Descriptors

The length of any single Allocation Extent Descriptor shall
not exceed the Logical Block Size.

Unallocated Space Entry

The total length of an Unallocated Space Entry shall not
exceed the size of one Logical Block.

Space Bitmap Descriptor

CRC not required.

Partition Integrity Entry

Shall not be recorded.

V olume Descriptor Sequence Extent

Both the main and reserve volume descriptor sequence
extents shall each have a minimum length of 16 logical
sectors. The VDS Extent may be terminated by the extent
length.

Record Structure

Record structure files, as defined in part 5 of ECMA 167,
shall not be created.

UDF 2.00

8 April 3, 1998

2.1 Part1 - General

2.11

UDF 2.00

Character Sets
The character set used by UDF for the structures defined in this document is the
CS0 character set. The OSTA CSO0 character set is defined as follows:

OSTA CS0 shdll consist of the d-characters specified in the The Unicode Standard,
Version 2.0 (ISBN 0-201-48345-9 from Addison-Wesley Publishing Company
http://www.aw.com/devpress, see aso http://www.unicode.org), excluding #FEFF
and FFFE, stored in the OSTA Compressed Unicode format which is defined as
follows:

OSTA Compressed Unicode format

RBP | Length Name Contents
0 1 Compression ID Uint8
1 7? Compressed Bit Stream byte

The CompressionID shall identify the compression algorithm used to compress the
CompressedBitStream field. The following algorithms are currently supported:

Compression Algorithm

Value Description

0-7 Reserved

8 Value indicates there are 8 bits per character

in the CompressedBitStream.
9-15 Reserved

16 Value indicates there are 16 bits per character
in the CompressedBitStream.
17-253 | Reserved

254 Vaue indicates there is a unique 4-byte
binary number following.
255 Vaue indicates there is a unique 8-byte
binary number following.

For a CompressionID of 8 or 16, the value of the CompressionID shall specify the
number of BitsPerCharacter for the d-characters defined in the
CharacterBitStream field. Each sequence of CompressionlID bitsin the
CharacterBitStream field shall represent an OSTA Compressed Unicode d-
character. The bits of the character being encoded shall be added to the
CharacterBitStream from most- to least-significant-bit. The bits shall be added to
the CharacterBitStream starting from the most-significant-bit of the current byte
being encoded into.
NOTE: Thisencoding causes characters written with a CompressionlID of 16 to
be effectively written in big endian format.

9 April 3, 1998

2.1.2

2.1.3

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 2.0 standard.
Refer to appendix on OSTA Compressed Unicode for sample C source code to
convert between OSTA Compressed Unicode and standard Unicode 2.0.

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

A Compression ID of 254 or 255 shall indicate that the following 4 or 8 bytes
respectively contain a binary value unique to the context. E.g. File Identifiers may
use a Compression ID of 254 or 255 and a byte offset of the FID within the
directory to create unique directory entries when the Deleted bit is set.

OSTA CSO0 Charspec

struct charspec { [* ECMA 167 1/7.2.1*/
Uint8 CharacterSetType;
byte CharacterSetInfo[63];

}

The CharacterSetType field shall have the value of 0O to indicate the CSO coded
character set.

The CharacterSetInfo field shall contain the following byte values with the
remainder of the field set to a value of 0.

HAF, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #73, #065,
#64, #20, #55, #OE, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode”

Dstrings

The ECMA 167 standard, as well as this document, has normally defined byte positions
relativeto 0. In section 7.2.12 of ECMA 167, dstrings are defined in terms of being
relativeto 1. Since this offers an opportunity for confusion, the following shows what the
definition would be if described relative to 0.

UDF 2.00

7.2.12 Fixed-length character fields

A dstring of length n isafield of n bytes where d-characters (1/7.2) are recorded. The number of
bytes used to record the characters shall be recorded as a Uint8 (1/7.1.1) in byte n-1, wheren is
the length of the field. The characters shall be recorded starting with the first byte of the field,
and any remaining byte positions after the characters up until byte n-2 inclusive shall be set to
#00.

10 April 3, 1998

If the number of d-characters to be encoded is zero, the length of the dstring shall be zero.
NOTE: The length of a dstring includes the compression code byte(2.1.1) except for the
case of azero length string. A zero length string shall be recorded by setting the entire

dstring field to al zeros.

2.1.4 Timestamp
struct timestamp {

uint16
uUint1l6
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

}

/* ECMA 167 1/7.3*/
TypeAndTimezone;
Y ear,

Month;

Day;

Hour;

Minute;

Second;

Centiseconds;
HundredsofMicroseconds;
Microseconds;

2.1.4.1 Uintl6 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this
field, and TimeZone refersto the least significant 12 bits of thisfield.

&~ Thetime within the structure shall be interpreted as Local Time since Type
shall be equal to ONE for OSTA UDF compliant media.

& Type shall be set to ONE to indicate Local Time.

s~ Shall beinterpreted as specifying the time zone for the location when this
field was last modified. If thisfield contains -2047 then the time zone has

not been specified.

& For operating systems that support the concept of atime zone, the offset of
the time zone (in 1 minute increments), from Coordinated Universal Time,
shall beinserted in this field. Otherwise the time zone portion of thisfield
shall be set to -2047.

Note: Time zones West of Coordinated Universal Time have negative offsets.
For example, Eastern Standard Time is -300 minutes; Eastern Daylight
Timeis -240 minutes.

UDF 2.00

1 April 3, 1998

2.15

Entity Identifier

struct EntitylD { /* ECMA 167 1/7.4*]

Uint8 Flags;
char Identifier[23];
char IdentifierSuffix[8];

}

UDF classifies Entity Identifiers into 3 separate types as follows:

Domain Entity Identifiers
UDF Entity Identifiers
Implementation Entity Identifiers

The following sections describes the format and use of Entity Identifiers based
upon the different types mentioned above.

2.1.5.1 Uint8 Flags

e Sdf explanatory.

1 Shall be set to ZERO.

2.1.5.2 char ldentifier

UDF 2.00

Unless stated otherwise in this document this field shall be set to an identifier that
uniquely identifies the implementation. This methodology will alow for
identification of the implementation responsible for creating structures recorded on
media interchanged between different implementations.

If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the Identifier field to a
value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the ECMA
167 standard and this document and shows to what values they shall be set.

Entity Identifiers

Descriptor Field ID Value Suffix Type
Primary Volume Implementation 1D “*Developer 1D Implementation
Descriptor Identifier Suffix
Implementation Use | Implementation 1D “*Developer 1D Implementation
V olume Descriptor Identifier Suffix

Implementation Use
V olume Descriptor

Implementation
Identifier

“*UDF LV Info”

UDF Identifier Suffix

Partition Descriptor

Implementation 1D

“*Developer 1D

Implementation
Identifier Suffix

12

April 3, 1998

Logical Volume

Implementation ID

“*Developer 1D

Implementation

Descriptor Identifier Suffix

Logical Volume Domain ID "*OSTA UDF DOMAIN Identifier

Descriptor Compliant" Suffix

File Set Descriptor Domain ID "*OSTA UDF DOMAIN Identifier

Compliant" Suffix

File Identifier Implementation 1D “*Developer 1D Implementation

Descriptor Identifier Suffix
(optional)

File Entry Implementation ID “*Developer 1D Implementation
Identifier Suffix

UDF Extended Implementation 1D See Appendix UDF Ildentifier Suffix

Attribute

Non-UDF Extended | Implementation ID “*Developer 1D Implementation

Attribute Identifier Suffix

Device Specification | Implementation ID “*Developer 1D Implementation

Extended Attribute Identifier Suffix

Logical Volume Implementation 1D “*Developer 1D Implementation

Integrity Descriptor Identifier Suffix

Partition Integrity Implementation 1D N/A N/A

Entry

Virtual Partition Map | Partition Type “*UDF Virtual UDF Ildentifier Suffix

Identifier Partition”

Sparable Partition Partition Type “* UDF Sparable UDF Identifier Suffix

Map Identifier Partition”

Virtual Allocation Entity ID “*UDF Virtual UDF Identifier Suffix

Table Alloc Thl”

Sparing Table Sparing Identifier “*UDF Sparing UDF Identifier Suffix

Table”

NOTE: The value of the Entity Identifier field is interpreted as a sequence
of bytes, and not as a dstring specified in CS0. For ease of use the values
used by UDF for thisfield are specified in terms of ASCII character strings.
The actua sequence of bytes used for the Entity Identifiers defined by UDF

are specified in the appendix.

In the ID Value column in the above table “*Developer ID” refersto a Entity Identifier
that uniquely identifies the current implementation. The value specified should be used

when a new descriptor is created. Also, the value specified should be used for an existing
descriptor when anything within the scope of the specified EntitylD field is modified.

UDF 2.00

NOTE: The value chosen for a “*Developer ID”” should contain enough

information to identify the company and product name for an implementation. For
example, acompany called XYZ with a UDF product called DataOne might choose

“*XYZ DataOne” astheir developer ID. Also in the suffix of their developer ID
they may choose to record the current version number of their DataOne product.
Thisinformation is extremely helpful when trying to determine which

13

April 3, 1998

implementation wrote a bad structure on a piece of mediawhen multiple products
from different companies have been recording on the media

The Suffix Type column in the above table defines the format of the suffix to be used with
the corresponding Entity Identifier. These different suffix types are defined in the
following paragraphs.

NOTE: All Identifiers defined in this document (appendix 6.1) shall be registered
by OSTA as UDF ldentifiers.

2.1.5.3 IdentifierSuffix

UDF 2.00

The format of the IdentifierSuffix field is dependent on the type of the Identifier.

In regard to OSTA Domain Entity Identifiers specified in this document (appendix
6.1) the IdentifierSuffix field shall be constructed as follows:

Domain ldentifierSuffix field format

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0200)
2 1 Domain Flags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #0200 to indicate revision 2.00 of this
document. Thisfield will alow an implementation to detect changes made in
newer revisions of this document. The OSTA Domain Identifiers are only used in
the Logical Volume Descriptor and the File Set Descriptor. The DomainFlags
field defines the following bit flags:

Domain Flags

Bit Description
0 Hard Write-Protect
1 Soft Write-Protect

2-7 | Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or
file system structures within the scope of the descriptor in which it resides are
write protected. A SoftWriteProtect flag value of ONE shall indicate user write
protected structures. This flag may be set or reset by the user. The
HardWriteProtect flag is an implementation settable flag that indicates that the
scope of the descriptor in which it resides is permanently write protected. A
HardWriteProtect flag value of ONE shall indicate a permanently write protected
structure. Once set this flag shall not bereset. The HardWriteProtect flag
overrides the SoftWriteProtect flag.

14 April 3, 1998

NOTE:

The write protect flags appear in the Logical Volume Descriptor and in the File Set
Descriptor. They shall be interpreted as follows:

is fileset_write_protected = LVD.HardWriteProtect || LV D.SoftWriteProtect ||
FSD.HardWriteProtect || FSD.SoftWriteProtect

is fileset_hard protected = LVD.HardWriteProtect || FSD.HardWriteProtect

is fileset soft_protected = (LVD.SoftWriteProtect || FSD.SoftWriteProtect) & &
(!is_vol_hard_protected)

is vol_write_protected = LV D.HardWriteProtect || LV D.SoftWriteProtect

is vol_hard_protected = LVD.HardWriteProtect

is vol_soft_protected = LV D.SoftWriteProtect & & 'LV D.HardWriteProtect

Implementation use Entity Identifiers defined by UDF (appendix 6.1) the
IdentifierSuffix field shall be constructed as follows:

UDF ldentifierSuffix

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0200)
2 1 OS Class Uint8
3 1 OS Identifier Uint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in the
Appendix on Operating System Identifiers.

For implementation use Entity Identifiers not defined by UDF the IdentifierSuffix
field shall be constructed as follows:

Implementation IdentifierSuffix

RBP | Length Name Contents
0 1 OS Class Uint8
1 1 OS Identifier Uint8
2 6 Implementation Use Area bytes

It isimportant to understand the intended use and importance of the OS Class and

OS Identifier fields. The main purpose of these fieldsis to aid in debugging when
problems are found on a UDF volume. The fields aso provide useful information which
could be provided to the end user. When set correctly these two fields provide an
implementation with information such as the following:

UDF 2.00

| dentify under which operating system a particular structure was last modified.
Identify under which operating system a specific file or directory was last
modified.

If adeveloper supports multiple operating systems with their implementation, it
helps to determine under which operating system a problem may have
occurred.

15 April 3, 1998

2.2 Part 3 - Volume Structure
2.2.1 Descriptor Tag

struct tag { [* ECMA 167 3/7.2*/
Uint16 Tagldentifier;
Uint16 DescriptorVersion;
uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 DescriptorCRCLength;
Uint32 TagLocation;

}

2.2.1.1 Uintl6 TagSerialNumber
&~ lgnored. Intended for disaster recovery.

& Reset to a unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previoudy
recorded, upon volume re-initialization. It is suggested that: TagSerialNumber =
((TagSerialNumber of the Primary VVolume Descriptor) + 1).

2.2.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor. The value of thisfield
shall be set to (Size of the Descriptor) - (Length of Descriptor Tag). When
reading a descriptor the CRC should be validated.

2.2.1.3 Uint32 TagLocation

For structures referenced via a virtual address (i.e. referenced through the VAT),
this value shall be the virtual address, not the physical or logical address.

UDF 2.00 16 April 3,1998

2.2.2 Primary Volume Descriptor

struct PrimaryV olumeDescriptor { /* ECMA 167 3/10.1 */
struct tag DescriptorTag;
Uint32 V olumeDescriptorSequenceNumber;
Uint32 PrimaryV olumeDescriptorNumber;
dstring Volumeldentifier[32];
Uint16 V olumeSequenceNumber;
Uint16 MaximumV olumeSequenceNumber;
Uint16 InterchangelLevel;
Uint16 MaximumInterchangeLevel;
Uint32 CharacterSetList;
Uint32 MaximumCharacterSetL.ist;
dstring VolumeSetldentifier[128];

struct charspec
struct charspec
struct extent_ad
struct extent_ad
struct EntitylD
struct timestamp
struct EntitylD
byte
Uint32
Uint1l6
byte

}

DescriptorCharacterSet;
ExplanatoryCharacterSet;
VolumeAbstract;
VolumeCopyrightNotice;
Applicationldentifier;
RecordingDateandTime,
Implementationldentifier;
ImplementationUse[64];
PredecessorV olumeDescriptor Sequencel ocation;
Flags;

Reserved[22];

2.2.2.1 Uintl6 InterchangeLevel

&~ Interpreted as specifying the current interchange level (as specified in
ECMA 167 3/11), of the contents of the associated volume and the
restrictions implied by the specified level.

& If this volume is part of a multi-volume Volume Set then the level shall be
set to 3, otherwise the level shall be set to 2.

ECMA 167 requires an implementation to enforce the restrictions associated with
the specified current Interchange Level. The implementation may change the
value of thisfield aslong as it does not exceed the value of the Maximum

Interchange Level field.

2.2.2.2 Uintlé MaximumlInterchangelevel
&~ Interpreted as specifying the maximum interchange level (as specified in
ECMA 167 3/11), of the contents of the associated volume.

UDF 2.00

& This field shall be set to level 3 (No Restrictions Apply), unless specificaly
given adifferent value by the user.

17 April 3, 1998

NOTE: Thisfield is used to determine the intent of the originator of the volume.
If this field has been set to 2 then the originator does not wish the volume to be
included in a multi-volume set (interchange level 3). The receiver may override
this field and set it to a 3 but the implementation should give the receiver a strict
warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 CharacterSetList
&~ Interpreted as specifying the character set(s) in use by any of the structures
defined in Part 3 of ECMA 167 (3/10.1.9).

& Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.2.4 Uint32 MaximumCharacterSetL.ist
&~ Interpreted as specifying the maximum supported character sets (as
gpecified in ECMA 167) which may be specified in the CharacterSetList
fied.

& Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetldentifier
&~ Interpreted as specifying the identifier for the volume set .

& The first 16 characters of this field should be set to a unique value. The
remainder of the field may be set to any allowed vaue. Specificaly,
software generating volumes conforming to this specification shall not set
this field to a fixed or trivia value. Duplicate disks which are intended to
be identical may contain the same value in this field.

NOTE: The intended purpose of this is to guarantee Volume Sets with
unique identifiers. The first 8 characters of the unique part should come
from a CSO hexadecimal representation of a 32-bit time value. The
remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec DescriptorCharacterSet
&~ Interpreted as specifying the character sets alowed in the Volume
Identifier and Volume Set Identifier fields.

& Shall be set to indicate support for CS0O as defined in 2.1.2.
2.2.2.7 struct charspec ExplanatoryCharacterSet

&~ Interpreted as specifying the character sets used to interpret the contents of
the VolumeAbstract and VolumeCopyrightNotice extents.

UDF 2.00 18 April 3,1998

& Shall be set to indicate support for CSO as defined in 2.1.2.

2.2.2.8 struct EntitylD Implementationldentifier;

For more information on the proper handling of thisfield see section 2.1.5.

2.2.3 Anchor Volume Descriptor Pointer

struct AnchorV olumeDescriptorPointer { [* ECMA 167 3/10.2 */
struct tag DescriptorTag;
struct extent_ad MainVolumeDescriptorSequenceExtent;
struct extent_ad ReserveVolumeDescriptorSequenceExtent;
byte Reserved[480];

}

NOTE: An AnchorVolumeDescriptorPointer structure shall be recorded in at least
2 of the following 3 locations on the media :

Logical Sector 256.
Logical Sector (N - 256).
N

NOTE: Unclosed CD-R media may have an Anchor Volume Descriptor Pointer
recorded at only sector 512. Upon close, CD-R media will conform to the rules
above.

2.2.3.1 struct MainVVolumeDescriptorSequenceExtent

The main VolumeDescriptorSequenceExtent shall have a minimum length of 16
logical sectors.

2.2.3.2 struct ReserveVolumeDescriptorSequenceExtent

UDF 2.00

The reserve VolumeDescriptorSequenceExtent shall have a minimum length of 16
logical sectors.

19 April 3, 1998

2.2.4 Logical Volume Descriptor

struct LogicalVolumeDescriptor { [* ECMA 167 3/10.6 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
struct charspec DescriptorCharacterSet;
dstring LogicaVolumeldentifier[128];
Uint32 LogicalBlockSize,
struct EntitylD ~ Domainldentifier;
byte LogicalVolumeContentsUse[16];
Uint32 MapTableL ength;
Uint32 NumberofPartitionM aps,
struct EntityID Implementationldentifier;
byte ImplementationUse[128];
extent_ad IntegritySequenceExtent,
byte PartitionMaps[];

}

2.2.4.1 struct charspec DescriptorCharacterSet
&~ Interpreted as specifying the character set alowed in the
LogicalVolumeldentifier field.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize
&~ Interpreted as specifying the Logical Block Size for the logical volume
identified by this LogicalVolumeDescriptor.

& This field shall be set to the largest logical sector size encountered amongst
al the partitions on media that constitute the logical volume identified by
this LogicalVolumeDescriptor. Since UDF requires that al Volumes
within a VolumeSet have the same logical sector size, the Logical Block
Size will be the same as the logical sector size of the Volume.

2.2.4.3 struct EntitylD Domainldentifier
&~ Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield is all zero then
it isignored, otherwise the Entity Identifier rules are followed. NOTE: If
the field does not contan “*OSTA UDF Compliant” then an
implementation may deny the user access to the logical volume.

& Thisfield shall indicate that the contents of thislogical volume conforms to
the domain defined in this document, therefore the Domainldentifier shall
be set to:

"*OSTA UDF Compliant"

UDF 2.00 20 April 3,1998

As described in the section on Entity Identifier the IdentifierSuffix field of
this EntitylD shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of thisfield see section 2.1.5.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.4.3.

2.2.4.4 byte LogicalVolumeContentUse[16]

This field contains the extent location of the FileSet Descriptor. Thisis described in 4/3.1
of ECMA 167 asfollows:

“If the volume is recorded according to Part Error! Reference source not found., the extent
in which the first File Set Descriptor Sequence of the logical volume is recorded shall be
identified by a long_ad (Error! Reference source not found./Error! Reference source not
found.) recorded in the Logical Volume Contents Use field (see Error! Reference source not
found./Error! Reference source not found.) of the Logical Volume Descriptor describing the
logical volume in which the File Set Descriptors are recorded.”

Thisfiled can be used to find the FileSet descriptor, and from the FileSet descriptor the
root volume can be found.

2.2.4.5 struct EntitylD Implementationldentifier;

For more information on the proper handling of this field see the section on
Entity Identifier.

2.2.4.6 struct extent_ad IntegritySequenceExtent

A vauein thisfield isrequired for the Logical Volume Integrity Descriptor. For
Rewriteable or Overwriteable mediathis shall be set to a minimum of 8K bytes.

WARNING: For WORM media this field should be set to an extent of some
substantial length. Once the WORM volume on which the Logical Volume
Integrity Descriptor residesis full a new volume must be added to the volume set
since the Logical VVolume Integrity Descriptor must reside on the same volume as
the prevailing Logical Volume Descriptor.

2.2.4.7 byte PartitionMaps

UDF 2.00

For the purpose of interchange partition maps shall be limited to Partition Map
type 1, except type 2 maps as described in this document (2.2.8 and 2.2.9).

21 April 3, 1998

2.2.5 Unallocated Space Descriptor

struct UnallocatedSpaceDesc { /* ECMA 167 3/10.8 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
Uint32 NumberofAllocationDescriptors;
extent_ad AllocationDescriptord[];
}

This descriptor shall be recorded, even if there is no free volume space.

2.2.6 Logical Volume Integrity Descriptor

struct LogicalVolumelntegrityDesc { [* ECMA 167 3/10.10 */
struct tag DescriptorTag,
Timestamp RecordingDateAndTime,
Uint32 Integrity Type,
struct extend_ad NextlntegrityExtent,
byte LogicalVolumeContentsUse[32],
Uint32 NumberOfPartitions,
Uint32 L engthOf I mplementationUse,
Uint32 FreeSpaceTable[],
Uint32 SizeTable[],
byte ImplementationUse[]
}

The Logical Volume Integrity Descriptor is a structure that shall be written any
time the contents of the associated Logical Volume is modified. Through the
contents of the Logical Volume Integrity Descriptor an implementation can easily
answer the following useful questions:

1) Are the contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
Volume was modified?

3) What isthe total Logical Volume free space in logica blocks?

4) What isthe total size of the Logical Volumein logical blocks?

5) What is the next available Uniquel D for use within the Logical Volume?
6) Has some other implementation modified the contents of the logical

volume since the last time that the original implementation which created
the logical volume accessed it.

UDF 2.00 22 April 3,1998

2.2.6.1 byte LogicalVolumeContentsUse

See the section on Logical Volume Header Descriptor for information on the
contents of thisfield.

2.2.6.2 Uint32 FreeSpaceTable

Since most operating systems require that an implementation provide the true free
space of aLogica Volume at mount time it isimportant that these values be
maintained for al non-virtual partitions. The optiona value of #FFFFFFFF, which
indicates that the amount of available free space is not known, shall not be used for
non-virtual partitions. For virtual partitions the FreeSpaceTable shall be set to
H#HFFFFFFFF.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable

Since most operating systems require that an implementation provide the total size
of aLogica Volume at mount time it isimportant that these values be maintained
for al non-virtua partitions. The optional vaue of #FFFFFFFF, which indicates
that the partition size is not known, shall not be used for non-virtual partitions.

For virtual partitions the SizeTable shall be set to #FFFFFFFF.

2.2.6.4 byte ImplementationUse

UDF 2.00

The ImplementationUse areafor the Logical Volume Integrity Descriptor shall be
structured as follows:

ImplementationUse format

RBP | Length Name Contents

0 32 Implementationl D EntitylD

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uint16

42 2 Minimum UDF Write Revision Uint16

44 2 Maximum UDF Write Revision Uint16

46 7 Implementation Use byte

Implementation 1D - The implementation identifier EntitylD of the
implementation which last modified anything within the scope of this
EntitylD. The scope of this EntitylD isthe Logical Volume Descriptor, and
the contents of the associated Logical Volume. Thisfield allows an
implementation to identify which implementation last modified the contents
of aLogica Volume.

Number of Files - The current number of files in the associated Logical
Volume. This information is needed by the Macintosh OS. All

23 April 3, 1998

implementations shall maintain this information. NOTE: This value does
not include Extended Attributes or streams as part of the file count.

Number of Directories - The current number of directories in the
associated Logica Volume. This information is needed by the Macintosh
OS. All implementations shall maintain this information.

NOTE: The root directory shall be included in the directory count. The
directory count does not include stream directories.

Minimum UDF Read Revision - Shall indicate the minimum recommended
revison of the UDF specification that an implementation is required to
support to successfully be able to read all potential structures on the media.
This number shall be stored in binary coded decima format, for example
#0150 would indicate revision 1.50 of the UDF specification.

Minimum UDF Write Revision - Shal indicate the minimum revision of the
UDF gspecification that an implementation is required to support to
successfully be able to modify al structures on the media. This number
shall be stored in binary coded decimal format, for example #0150 would
indicate revision 1.50 of the UDF specification.

Maximum UDF Write Revision - Shdl indicate the maximum revision of
the UDF specification that an implementation which has modified the
media has supported. An implementation shall update this field only if it
has modified the media and the level of the UDF specification it supportsis
higher than the current value of this field. This number shall be stored in
binary coded decimal format, for example #0150 would indicate revision
1.50 of the UDF specification.

Implementation Use - Contains implementation specific information unique
to the implementation identified by the Implementation ID.

2.2.7 Implemention Use Volume Descriptor

UDF 2.00

struct ImpUseV olumeDescriptor { /* ECMA 167 3/10.4 */
struct tag DescriptorTag;
Uint32 V olumeDescriptor SequenceNumber;
struct EntityID Implementationldentifier;
byte ImplementationUse[460];
}

This section defines an UDF Implementation Use Volume Descriptor. This
descriptor shall be recorded on every Volume of a Volume Set. The Volume may
also contain additional |mplementation Use V olume Descriptors which are

24 April 3, 1998

implementation specific. The intended purpose of this descriptor isto aid in the
identification of aVVolume within a Volume Set that belongs to a specific Logica
Volume.

NOTE: Animplementation may still record an additional Implementation Use
Volume Descriptor in its own format on the media. The UDF Implementation Use
Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 EntitylD Implementation Identifier
Thisfield shdl specify “*UDF LV Info”.

2.2.7.2 bytes Implementation Use
The implementation use area shall contain the following structure:

struct LVInformation {
struct charspec LVICharset,

dstring LogicalVVolumeldentifier[128],
dstring LVInfol[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

struct EntityID ImplementionID,

bytes ImplementationUse[128];

}

2.2.7.2.1 charspec LVICharset
&~ Intepreted as specifying the character sets alowed in the
LogicalVolumeldentifier and LVInfo fields.

& Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.7.2.2 dstring LogicalVolumeldentifier
Identifies the Logical Volume referenced by this descriptor.

2.2.7.2.3 dstring LVInfol

Thefields LVInfol, LVInfo2 and LVInfo3 should contain additional information
to aid in the identification of the media. For example the LVInfo fields could
contain information such as Owner Name, Organization Name, and Contact
Information.

2.2.7.2.4 struct EntitylD ImplementionID
Refer to the section on Entity Identifier.

UDF 2.00 25 April 3,1998

2.2.7.2.5 bytes ImplementationUse[128]
This area may be used by the implementation to store any additional
implementation specific information.

UDF 2.00 26 April 3,1998

2.2.8 Virtual Partition Map
Thisis an extension of ECMA 167 to expand its scope to include sequentially written
media (eg. CD-R). Thisextension isfor a partition map entry to describe a virtual space.

The Logical VVolume Descriptor contains alist of partitions that make up a given volume.
Asthe virtual partition cannot be described in the same manner as a physical partition, a
Type 2 partition map defined below shall be used.

If aVirtua Partition Map is recorded, then the Logical Volume Descriptor shall contain at
least two partition maps. One partition map shall be recorded as a Type 1 partition map.
One partition map shall be recorded as a Type 2 partition map. The format of this Type 2
partition map shall be as specified in the following table.

Layout of Type 2 partition map for virtual partition

RBP | Length Name Contents
0 1 Partition Map Type uint8 = 2

1 1 Partition Map Length Uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntitylD

36 2 Volume Seguence Number Uint16

38 2 Partition Number uint16

40 24 Reserved #00 bytes

Partition Type Identifier:
Fags=0
Identifier =*UDF Virtual Partition
IdentifierSuffix is recorded as in section 2.1.5.3
V olume Sequence Number = volume upon which the VAT and Partition is recorded

Partition Number = an identification of a partition within the volume identified by the
volume sequence number

2.2.9 Sparable Partition Map

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems, a partition of type 2 isused. The partition
map defines the partition number, packet size (see section 1.3.2), and size and locations of
the sparing tables. Thistype 2 map is intended to replace the type 1 map normally found
on the media. This map identifies not only the partition number and the volume sequence
number, but also identifies the packet length and the sparing tables. A Sparable Partition
Map shall not be recorded on disk/drive systems that perform defect management.

UDF 2.00 27 April 3,1998

Layout of Type 2 partition map for sparable partition

RBP Length Name Contents
0 1 Partition Map Type Uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 V olume Seguence Number Uint16
38 2 Partition Number Uintl6
40 2 Packet Length Uintl6 = 32
42 1 Number of Sparing Tables (=N_ST) Uint3
43 1 Reserved #00 byte
44 4 Size of each sparing table Uint32
48 4* N_ST L ocations of sparing tables Uint32
48+4* N ST|[16-4* N ST |Pad #00 bytes

Partition Type Identifier:

Number of Sparing Tables = the number of redundant tables recorded. This shall be avalue

FHags=0

Identifier = * UDF Sparable Partition
IdentifierSuffix is recorded asin section 2.1.5.3.

Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition.

Packet Length = the number of user data blocks per fixed packet. Shall be set to 32.

in the range of 1 to 4.
Size of each sparing table = Length, in bytes, allocated for each sparing table.

Locations of sparing tables = the start locations of each sparing table specified as a media

block address. Implementations should align the start of each sparing table with the
beginning of a packet. Implementations should record at least two sparing tablesin
physically distant locations.

2.2.10 Virtual Allocation Table

The Virtua Allocation Table (VAT) is used on sequentially written media (eg. CD-R) to

give the appearance of randomly writable media to the system. The existence of this
partition isidentified in the partition maps. The VAT shall only be recorded on
sequentially written media (eg. CD-R).

The VAT isamap that trandates Virtual Addressesto logical addresses. It shall be

recorded as afile identified by aFile Entry ICB (VAT ICB) which allows great flexibility
in building the table. The VAT ICB isthe last sector recorded in any transaction. The
VAT itself may be recorded at any location.

The VAT shall beidentified by aFile Entry ICB with afile type of 248. This ICB shall be
the last valid data sector recorded. Error recovery schemes can find the last valid VAT by
finding ICBs with file type 248.

UDF 2.00 28 April 3,1998

Thisfile, when small, can be embedded in the ICB that describesit. If it islarger, it can be
recorded in a sector or sectors preceding the ICB. The sectors do not have to be
contiguous, which alows writing only new parts of the table if desired. This allows small
incremental updates, even on disks with many directories.

When the VAT issmall (a small number of directories on the disk), the VAT is updated by
writing anew file ICB with the VAT embedded. When the VAT becomes too large to fit
in the ICB, writing a single sector with the VAT and a second sector with the ICB is
required. Beyond this point, more than one sector isrequired for the VAT. However, as
multiple extents are supported, updating the VAT may consist of writing only the sector
or sectors that need updating and writing the ICB with pointersto all of the pieces of the
VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the
proper logical location. The indirection provided by this table provides the appearance of
direct overwrite capability. For example, the ICB describing the root directory could be
referenced as virtual sector 1. A virtual sector is contained in a partition identified by a
virtual partition map entry. Over the course of updating the disk, the root directory may
change. When it changes, a new sector describing the root directory is written, and its
Logical Block Addressis recorded as the Logical Block Address corresponding to virtual
sector 1. Nothing that references virtual sector 1 needs to change, asit still points to the
most current virtual sector 1 that exists, even though it exists at anew Logical Block
Address.

The use of virtual addressing allows any desired structure to become effectively
rewritable. The structure is rewritable when every pointer that references it does so only
by its Virtual Address. When a replacement structure is written, the virtual reference does
not need to change. The proper entry in the VAT is changed to reflect the new Logical
Block Address of the corresponding Virtual Address and all virtual references then
indirectly point to the new structure. All structures that require updating, such as directory
|CBs, shall be referenced by a Virtual Address. As each structure is updated, its
corresponding entry in the VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entriesin afile. Each entry shall be
the offset, in sectors, into the physical partition in which the VAT islocated. The first
entry shall be for the virtual partition sector 0, the second entry for virtual partition sector
1, etc. The Uint32 entries shall follow the VAT header. The entry for the previous VAT
ICB allows for viewing the file system as it appeared in an earlier state. If thisfield is
#FFFFFFFF, then no such ICB is specified.

UDF 2.00 29 April 3,1998

Virtual Allocation Table structure

Offset Length Name Contents
0 2 Length of Header (=L_HD) Uint16
2 2 Length of Implementation Use (=L_1U) Uint16
4 128 Logica Volume Identifier dstring
132 4 Previous VAT ICB location Uint32
136 4 Number of FIDs identifying Files Uint32
140 4 Number of non-parent FIDs identifying Uint32

Directories

144 2 Min UDF Read version Uint16
146 2 Min UDF Write version Uint16
148 2 Max UDF Write version Uint16
150 2 Reserved #00 bytes
152 L IU Implementation Use bytes
152+L IU |4 VAT entry O Uint32
156+L IU |4 VAT entry 1 Uint32
Information | 4 VAT entry n Uint32
Length - 4

Length of Header - Indicates the amount of data preceding the VAT entries. Thisvalue
shal be 152 + L_IU.

Length of Implementation Use - Shall specify the number of bytesin the Implementation
Usefield. If thisfield is non-zero, the value shall be at least 32 and be an integral multiple
of 4.

Logical Volume Identifier - Shall identify the logical volume. Thisfield shal be used by
implementations instead of the corresponding field in the Logical Volume Descriptor. The
value of thisfield should be the same as the field in the LVD until changed by the user.

Previous VAT ICB Location - Shall specify the logical block number of an earlier VAT
ICB in the partition identified by the partition map entry. If thisfield is #FFFFFFFF, no
such ICB is specified.

Number of FIDs identifying Files - Identifies the number of files on the volume, including
hard links. The number of filesincludes al FIDsin the heirarchy for which the directory
bit isnot set. The count does not include FIDs with the deleted bit set to one. The
contents of thisfield shall be used by implementations instead of the corresponding field in
the LVID.

Number of non-parent FIDs identifying Directories - Identifies the number of directories
on the volume, plus the root directory. The count does not include FIDs with the deleted

UDF 2.00 30 April 3,1998

bit set to one. The contents of thisfield shall be used by implementations instead of the
corresponding field in the LVID.

Min UDF Read Version - Defined in 2.2.6. The contents of thisfield shall be used by
implementations instead of the corresponding field in the Logical Volume Inegrity
Descriptor (LVID).

Min UDF Write Version - Defined in 2.2.6. The contents of this field shall be used by
implementations instead of the corresponding field in the LVID.

Max UDF Write Version - Defined in 2.2.6. The contents of this field shall be used by
implementations instead of the corresponding field in the LVID.

Implementation Use - If non-zero in length, shall begin with a Entity ID identifying the
usage of the remainder of the Implementation Use area.

VAT Entry - VAT entry n shall identify the logical block number of the virtual block n.
An entry of #FFFFFFFF indicates that the virtual sector is currently unused. The LBN
specified is located in the partition identified by the partition map entry. The number of
entries in the table can be determined from the VAT file sizein the ICB:

Number of entries (N) = (Information Length - L_HD) / 4.

2.2.11 Sparing Table

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems. Certain media can only be written in
groups of sectors (“packets’), further complicating relocation: a whole packet must be
relocated rather than only the sectors being written. To address this issue a sparable
partition is identified in the partition map, which further identifies the location of the
gparing tables. The sparing table identifies relocated areas on the media. Sparing tables
are identified by a sparable partition map. Sparing tables shall not be recorded on
disk/drive systems that perform defect management.

Sparing Tables point to space allocated for sparing and contains alist of mappings of
defective sectors to their replacements. Separate copies of the sparing tables shall be
recorded in separate packets. All instances of the sparing table shall be kept up to date.

Partitions map logical space to physica space. Normally, thisis alinear mapping where an
offset and alength is specified. A sparable partition is based on this mapping, where the
offset and length of a partition within physical space is specified by a partition descriptor.
The sparing table further specifies an exception list of logical to physical mappings. All
mappings are one packet in length. The packet size is specified in the sparable partition
map.

UDF 2.00 31 April 3,1998

Available sparing areas may be anywhere on the media, either inside or outside of a
partition. If located inside a partition, sparable space shall be marked as allocated and
shall be included in the Non-Allocatable Space List. The mapped locations should be
filled in a format time; the original locations are assigned dynamically as errors occur.
Each sparing table shall be structured as shown below.

This struct

UDF 2.00

Sparing Table layout

BP | Length Name Contents
0 16 Descriptor Tag tag=0
16 32 Sparing Identifier EntitylD
48 2 Reallocation Table Length (=RT_L) Uint16
50 |2 Reserved #00 bytes
52 4 Sequence Number Uint32
56 8*RT_L Map Entry Map Entries

ure may be larger than a single sector if necessary.

Descriptor Tag
Contains a Tag Identifer of 0, which indicates that the format of the Descriptor Tag is not
specified by ECMA 167. All other fields of the Descriptor Tag shall be valid, asif the Tag
Identifier were one of the values defined by ECMA 167.
Sparing Identifier:

FHags=0

Identifier = * UDF Sparing Tabl e

IdentifierSuffix is recorded asin UDF 2.1.5.3

Reallocation Table Length
Indicates the number of entries in the Map Entry table.

Sequence Number

Contains a number that shall be incremented each time the sparing table is updated.

Map Entry

A map entry is described in the table below. Maps shall be sorted in ascending order by the
Original Location field.

Map Entry description

RBP | Length Name Contents
0 4 Original Location Uint32
4 4 Mapped Location Uint32

Original Location

Logical Block Address of the packet to be spared. The address of a packet is the address of
the first user data block of a packet. If thisfield is #FFFFFFFF, then this entry is available
for sparing. If thisfield is #FFFFFFFO, then the corresponding mapped location is marked
as defective and should not be used for mapping. Original Locations of #FFFFFFF1 through
#FFFFFFFE are reserved.

32 April 3, 1998

Mapped Location

Physical Block Address of active data. Requests to the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFFO, #FFFFFFFF, or reserved. If the
mapped location overlaps a partition, that partition shall have that space marked as allocated
and that space shall be part of the Non-Allocatable Space list.

UDF 2.00 33 April 3,1998

2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { [* ECMA 167 4/7.2*/
Uint16 Tagldentifier;
Uint16 DescriptorVersion;
uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 DescriptorCRCLength;
Uint32 TagL ocation;

}

2.3.1.1 Uintl6 TagSerialNumber
&~ lgnored.

& Reset to a unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previoudy
recorded, upon volume re-initidization. The intended use of this field is for
disaster recovery. The TagSerialNumber for all descriptorsin Part 4 should be the
same as the serial number used in the associated File Set Descriptor

2.3.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor, unless otherwise
noted. The value of thisfield shall be set to: (Size of the Descriptor) - (Length of
Descriptor Tag). When reading a descriptor the CRC should be validated.

UDF 2.00 34 April 3,1998

2.3.2 File Set Descriptor

UDF 2.00

struct FileSetDescriptor { /* ECMA 167 4/14.1 */

}

struct tag

struct timestamp

Uint16

Uint16

Uint32

Uint32

Uint32

Uint32

struct charspec
dstring

struct charspec
dstring

dstring

dstring

struct long_ad
struct EntitylD
struct long_ad
struct long_ad
byte

DescriptorTag;
RecordingDateandTime,
InterchangelLevel;
MaximumInterchangeLevel;
CharacterSetList;
MaximumCharacterSetL.ist;
FileSetNumber;
FileSetDescriptorNumber;
LogicalVolumeldentifierCharacterSet;
LogicaVolumeldentifier[128];
FileSetCharacterSet;
FileSetldentifer[32];
CopyrightFilel dentifier[32];
AbstractFileldentifier[32];
RootDirectoryl CB,;
Domainldentifier;
NextExtent;

StreamDirectoryl CB;
Reserved[32];

Only one FileSet descriptor shall be recorded. On WORM media, multiple

FileSets may be recorded.

The UDF provision for multiple File Setsis as follows:

Multiple FileSets are only alowed on WORM media
The default FileSet shall be the one with the highest FileSetNumber.

Only the default FileSet may be flagged as writable. All other FileSets
in the sequence shall be flagged HardWriteProtect (see EntitylD

definition).

No writable FileSet shall reference any metadata structures which are

referenced (directly or indirectly) by any other FileSet.
FileSets may, however, reference the actual file data extents.

Writable

Within a FileSet on WORM, if al files and directories have been recorded with
|CB strategy type 4, then the DomainID of the corresponding FileSet Descriptor
shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM is to support the ability to
have multiple archive images on the media. For example one FileSet could
represent a backup of a certain set of information made at a specific point in time.

35

April 3, 1998

The next FileSet could represent another backup of the same set of information
made at alater point in time.

2.3.2.1 Uintl6 InterchangeLevel
&~ Interpreted as specifying the current interchange level (as specified in
ECMA 167 4/15), of the contents of the associated file set and the
restrictions implied by the specified level.

1 Shall be set to alevel of 3.

An implementation shall enforce the restrictions associated with the specified
current Interchange Level.

2.3.2.2 Uintlé Maximumlinterchangelevel
&~ Interpreted as specifying the maximum interchange level of the contents of
the associated file set. This value restricts to what the current Interchange
Level field may be set.

& Shall be set to level 3.
2.3.2.3 Uint32 CharacterSetList
&~ Interpreted as specifying the character set(s) specified by any field, whose
contents are specified to be a charspec, of any descriptor specified in Part 4
of ECMA 167 and recorded in the file set described by this descriptor.
& Shall be set to indicate support for CSO only as defined in 2.1.2.
2.3.2.4 Uint32 MaximumCharacterSetL.ist
&~ Interpreted as specifying the maximum supported character set in the
associated file set and the restrictions implied by the specified level.
& Shall be set to indicate support for CSO only as defined in 2.1.2.
2.3.2.5 struct charspec LogicalVolumeldentifierCharacterSet
&~ Interpreted as specifying the d-characters allowed in the Logical Volume
Identifier field.
& Shall be set to indicate support for CS0 as defined in 2.1.2.
2.3.2.6 struct charspec FileSetCharacterSet
&~ Interpreted as specifying the d-characters allowed in dstring fields defined
in Part 4 of ECMA 167 that are within the scope of the FileSetDescriptor.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

UDF 2.00 36 April 3,1998

2.3.2.7 struct EntitylD Domainldentifier
&~ Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield isNULL then it
isignored, otherwise the Entity Identifier rules are followed.

& Thisfield shall indicate that the scope of this File Set Descriptor conforms
to the domain defined in this document, therefore the
Implementationldentifier shall be set to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the IdentifierSuffix field of
this EntitylD shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see the section on Entity Identifier.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags.

2.3.3 Partition Header Descriptor

struct PartitionHeaderDescriptor { [* ECMA 167 4/14.3 */
struct short_ ad UnallocatedSpaceTable;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionIntegrityTable;
struct short_ ad FreedSpaceTable;
struct short_ad FreedSpaceBitmap;
byte Reserved[88];

}

Asapoint of clarification the logical blocks represented as Unallocated are blocks
that are ready to be written without any preprocessing. In the case of Rewritable
media this would be a write without an erase pass. The logical blocks represented
as Freed are blocks that are not ready to be written, and require some form of
preprocessing. In the case of Rewritable media this would be a write with an erase
pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a

Logica Volume. Space Tables and Space Bitmaps shall not both be used at the
same time within aLogical Volume.

2.3.3.1 struct short_ad PartitionIntegrityTable
Shall be set to all zeros since Partitionl ntegrityEntrys are not used.

UDF 2.00 37 April 3,1998

2.3.4

File Identifier Descriptor
struct FileldentifierDescriptor { [* ECMA 167 4/14.4*/
struct tag DescriptorTag;
Uint16 FileVersionNumber;
uint8 FileCharacteristics;
uint8 LengthofFileldentifier;
struct long_ad ICB;
Uint16 LengthOfImplementationUse;
byte ImplementationUse[];
char Fileldentifier[];
byte Padding([];
}

The File Identifier Descriptor shall be restricted to the length of one Logica
Block.

2.3.4.1 Uintl6e FileVersionNumber

&~ Thereshdl be only one version of afile as specified below with the value
being set to 1.

1 Shall be set to 1.

2.3.4.2 File Characteristics

UDF 2.00

The deleted bit may be used to mark afile or directory as deleted instead of
removing the FID from the directory, which requires rewriting the directory from
that point to the end. If the space for the file or directory is deallocated, the
implementation shall set the ICB field to zero, as all fieldsin aFID must be valid
even if the deleted bit is set. See[4/14.4.3], note 21 and [4/14.4.5].

No two FIDs in adirectory shall have the same File Identifier (and File Version
Number, which shall be 1), regardless of the state of the deleted bits of those FIDs.
See [4/8.6]. Note: Implementations should re-use FIDs with the deleted bit set to
one and ICBs set to zero to avoid growing the size of the directory.

When deleting a File Identifier Descriptor an implementation may change the
Compression ID to OXFE and set the next four bytes, or to OXFF and set the next
eight bytes of the identifier to the byte offset of the FID within the directory asa
Uint32 or Uint64 value. L_FI shall be set to 5 or 9. During scans of the directory,
FIDs with a compression ID of OXFE and OXFF may be ignored.

38 April 3, 1998

2.3.4.3 struct long_ad ICB
The Implementation Use bytes of the long_ad in al File Identifier Descriptors
shall be used to store the UDF Unique ID for the file and directory namespace.

UDF Unique ID
RBP | Length Name Contents
0 2 Reserved bytes (= #00)
2 4 UDF Unique ID Uint32

Section 3.2.1Logica Volume Header Descriptor describes how UDF Unique 1D
field in Implementation Use bytes of the long_ad in the File Identifier Descriptor
and the UniquelD field in the File Entry and Extended File Entry are set.

2.3.4.4 Uintl6 LengthoflmplementationUse
&~ Shall specify the length of the ImplementationUse field.

& Shall specify the length of the ImplementationUse field. This field may be
ZERO, indicating that the ImplementationUse field has not been used.

When writing a File Identifier Descriptor to write-once media, to ensure that the
Descriptor Tag field of the next FID will never span ablock boundary, if there are
less than 16 bytes remaining in the current block after the FID, the length of the
FID shall be increased (using the Implementation Use field) enough to prevent this.
The CRC length may be set to less than the size of the FID minus 16 (to not
include the Implementation Use area).

2.3.4.5 byte ImplementationUse
&~ If the LengthoflImplementationUse field is non ZERO then the first 32
bytes of this field shall be interpreted as specifying the implementation
identifier EntitylD of the implementation which last modified the File

Identifier Descriptor.

& If the LengthoflmplementationUse field is non ZERO then the first 32
bytes of thisfield shall be set to the implementation identifier EntitylD of
the current implementation.

NOTE: For additional information on the proper handling of thisfield refer to the
section on Entity Identifier.

Thisfield allows an implementation to identify which implementation last created
and/or modified a specific File ldentifier Descriptor .

UDF 2.00 39 April 3,1998

2.35

ICB Tag

struct icbtag { [* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberof DirectEntries,
Uint16 StrategyType;
byte StrategyParameter|[2];
Uint16 Numberof Entries;
byte Reserved;
uint8 FileType;
Lb_addr ParentICBLocation;
Uint16 Flags;

}

2.3.5.1 Uintl16 StrategyType

&~ The contents of this field specifies the ICB strategy type used. For the
purposes of read access an implementation shall support strategy types 4
and 4096.

& Shall be set to 4 or 4096.
NOTE: Strategy type 4096, which is defined in the appendix, is intended for

primary use on WORM media, but may aso be used on rewritable and
overwritable media

2.3.5.2 Uint8 FileType

Asapoint of clarification avalue of 5 shall be used for a standard byte addressable
file, not 0.

2.3.5.3 ParentlCBLocation

The use of thisfield is optional.

NOTE: In ECMA 167-4/14.6.7 it states that “If this field contains O, then no such
ICB is specified.” Thisisaflaw in the ISO standard in that an implementation
could store an ICB at logical block address 0. Therefore, if you decide to use this
field, do not store an ICB at logical block address 0.

2.3.5.4 Uintl16 Flags

UDF 2.00

Bits 0-2: These bits specify the type of allocation descriptors used. Refer to the
section on Allocation Descriptors for the guidelines on choosing which type of
allocation descriptor to use.

40 April 3, 1998

UDF 2.00

Bit 3 (Sorted):
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
directories may be unsorted.

1 Shall be set to ZERO.

Bit 4 (Non-relocatable):

&~ For OSTA UDF compliant media this bit may indicate (ONE) that the file
is non-relocatable. An implementation may reset this bit to ZERO to
indicate that the file is relocatable if the implementation can not assure that
the file will not be relocated.

1 Should be set to ZERO.

Bit 9 (Contiguous):

&~ For OSTA UDF compliant media this bit may indicate (ONE) that the file
is contiguous. An implementation may reset this bit to ZERO to indicate
that the file may be non-contiguous if the implementation can not assure
that the file is contiguous.

& Should be set to ZERO.

Bit 11 (Transformed):

&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that no
transformation has taken place.

1 Shall be set to ZERO.

The methods used for data compression and other forms of data transformation
might be addressed in a future OSTA document.

Bit 12 (Multi-versions):
&~ For OSTA UDF compliant mediathis bit shall indicate (ZERO) that multi-
versioned files are not present.

1 Shall be sat to ZERO.

41 April 3, 1998

2.3.6 File Entry
struct FileEntry {
struct tag
struct icbtag
Uint32
Uint32
Uint32
Uint16
Uint8
Uint8
Uint32
Uint64
Uint64
struct timestamp
struct timestamp
struct timestamp
Uint32
struct long_ad
struct EntitylD
Uint64
Uint32
Uint32
byte
byte
}

[* ECMA 167 4/14.9 */
DescriptorTag;

ICBTag;

vid;

Gid;

Permissions;
FileLinkCount;
RecordFormat;
RecordDisplayAttributes;
RecordLength;
InformationLength;
LogicalBlocksRecorded;
AccessTime,
ModificationTime;
AttributeTime,

Checkpoint;
ExtendedAttributel CB;
Implementationldentifier;
UniquelD,

L engthof ExtendedAttributes;
Lengthof AllocationDescriptors,
ExtendedAttributeq[];
AllocationDescriptory[];

NOTE: The total length of a FileEntry shall not exceed the size of one logical

block.

2.3.6.1 Uint8 RecordFormat;

&

For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by thisfield.

1 Shall be set to ZERO.

2.3.6.2 Uint8 RecordDisplayAttributes;

&

For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by this field.

1 Shall be set to ZERO.

UDF 2.00

42 April 3, 1998

2.3.6.3 Uint8 RecordLength;

&~ For OSTA UDF compliant media this bit shal indicate (ZERO) that the
structure of the information recorded in the file is not specified by this field.

1 Shall be set to ZERO.

2.3.6.4 Uint64 InformationLength

In most cases, the InformationLength can be reconstructed during a recovery
operation by finding the sum of the lengths of each of the allocation descriptors.
However, space may be allocated after the end of the file (identified asa“file
tail.”) Asallocated and unrecorded spaceisalega part of afile, using the
allocation descriptors to determine information length will fail if the next to last
allocation descriptor for the file identifies 230 - block size bytes, or if the next to
last allocation descriptor is an integral multiple of the block size and the last
allocation descriptor is not contiguous with the next to last allocation descriptor.

2.3.6.5 Uint64 LogicalBlocksRecorded

For files and directories with embedded data the value of thisfield shall be ZERO.

2.3.6.6 struct EntitylD Implementationldentifier;

Refer to the section on Entity Identifier.

2.3.6.7 Uint64 UniquelD

UDF 2.00

For the root directory of afile set thisvalue shall be set to ZERO.
Section 3.2.1Logical Volume Header Descriptor describes how the UDF Unique

ID field in the Implementation Use bytes of the long_ad in the File Identifier
Descriptor and the Uniquel D file in the File Entry and Extended File Entry are set.

43 April 3, 1998

2.3.7

Unallocated Space Entry

struct UnallocatedSpaceEntry { [* ECMA 167 4/14.11*/
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Lengthof AllocationDescriptors,
byte AllocationDescriptors|[];
}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logica
Block.

2.3.7.1 byte AllocationDescriptors

UDF 2.00

Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in allocation descriptors specify
an extent type (ECMA 167 4/14.14.1.1). For the allocation descriptors specified
for the UnallocatedSpaceEntry the type shall be set to a value of 1 to indicate
extent allocated but not recorded, or shall be set to a value of 3 to indicate the
extent is the next extent of allocation descriptors. This next extent of alocation
descriptors shall be limited to the length of one Logical Block.

AllocationDescriptors shall be ordered sequentially in ascending location order.
No overlapping AllocationDescriptors shall exist in the table. For example,
ad.location = 2, ad.length = 2048 (logical block size = 1024) then nextad.location
= 3isnot adlowed. Adjacent AllocationDescriptors shall not be contiguous. For
example ad.location = 2, ad.length = 1024 (logical block size = 1024),
nextad.location = 3 is not allowed and would instead be asingle
AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where
adjacent AllocationDescriptors may be contiguous is when the ad.length of one of
the adjacent AllocationDescriptors is equa to the maximum AllocationDescriptors
length.

44 April 3, 1998

2.3.8 Space Bitmap Descriptor
struct SpaceBitmap{ /* ECMA 167 4/14.11 */

struct Tag DescriptorTag;
Uint32 NumberOfBits,
Uint32 NumberOfBytes;
byte Bitmap][];

}

2.3.8.1 struct Tag DescriptorTag
The calculation and maintenance of the DescriptorCRC field of the Descriptor Tag
for the SpaceBitmap descriptor isoptional. If the CRC is not maintained then both
the DescriptorCRC and DescriptorCRCLength fields shall be ZERO.

2.3.9 Partition Integrity Entry

struct PartitionlntegrityEntry { [* ECMA 167 4/14.13 */
struct tag DescriptorTag;
struct icbtag ICBTag;
struct timestamp RecordingTime,
uint8 Integrity Type;
byte Reserved[175];
struct EntitylD Implementationl dentifier;
byte | mplementationUse[256];
}

With the functionality of the Logical Volume Integrity Descriptor this descriptor is
not needed, therefore this descriptor shall not be recorded.

2.3.10 Allocation Descriptors

When constructing the data area of afile an implementation has several types of allocation
descriptors from which to choose. The following guidelines shall be followed in choosing
the proper allocation descriptor to be used:

Short Allocation Descriptor - For aLogical Volume that resdes on asingle
Volume with no intent to expand the Logical Volume beyond the single volume
Short Allocation Descriptors should be used. For example aLogical Volume
created for a stand alone drive.

NOTE: Refer to section 2.2.2.2 on the MaximumInterchangeLevel.
Long Allocation Descriptor - For aLogical Volume that resides on asingle
Logical Volume with intent to later expand the Logical Volume beyond the single

volume, or aLogical Volume that resides on multiple Volumes Long Allocation
Descriptors should be used. For example aLogical Volume created for a jukebox.

UDF 2.00 45 April 3,1998

NOTE: Thereis abenefit of using Long Allocation Descriptors even on asingle
volume, which is the support of tracking erased extents on rewritable media. See
section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of the
ExtentLength field is 0, then the 2 most significant bits shall be O.

Allocation Descriptors identifying virtual space shall have an extent length of the block
sizeor less. Allocation descriptors identifying file data, directories, or stream data shall
identify physical space. 1CBsrecorded in virtual space shall use long_ad allocation
descriptors to identify physical space. The use of short_ad allocation descriptors would
identify file datain virtual space if the ICB werein virtua space.

Descriptors recorded in virtua space shall have the virtual logical block number recorded
in the Tag Location field.

2.3.10.1 Long Allocation Descriptor

struct long_ad { [* ECMA 167 4/14.14.2 */
Uint32 ExtentLength;
Lb_addr ExtentL ocation;
byte ImplementationUse[6];

}

To alow use of the ImplementationUse field by UDF and aso by implementations
the following structure shall be recorded within the 6 byte Implementation Use
field.

struct ADI npUse

{
Ui nt 16 f1 ags;

byte inpUse[4];
}
/*
* ADI npUse Flags (NOTE: bits 1-15 reserved for future use by
UDF)
*/
#defi ne EXTENTEr ased (0x01)

In the interests of efficiency on Rewritable media that benefits from preprocessing,
the EXTENTErased flag shall be set to ONE to indicate an erased extent. This
applies only to extents of type not recorded but allocated.

UDF 2.00 46 April 3,1998

2.3.11 Allocation Extent Descriptor

struct AllocationExtentDescriptor { [* ECMA 167 4/14.5*/
struct tag DescriptorTag;
Uint32 PreviousAllocationExtentLocation;
Uint32 LengthOfAllocationDescriptors,

}

NOTE:. AllocationDescriptor extents shall be a maximum of one logical block in
length.

2.3.11.1 Uintl2 PreviousAllocationExtentLocation
&~ The previous alocation extent location shall not be used.

= Shall be set to 0.

2.3.12 Pathname
2.3.12.1 Path Component
struct PathComponent { /* ECMA 167 4/14.16.1 */

Uint8 ComponentType;

uint8 L engthof Componentl dentifier;
Uint16 ComponentFileVersionNumber;
char Componentldentifier|];

}

2.3.12.1.1 Uintlé ComponentFileVersionNumber
&~ Thereshdl be only one version of afile as specified below with the value
being set to ZERO.

1 Shall be set to ZERO.

2.4 Part5 - Record Structure

Record structure files shall not be created. If they are encountered on the media and they
are not supported by the implementation they shall be treated as an uninterpreted stream
of bytes.

UDF 2.00 47 April 3,1998

3. System Dependent Requirements

3.1 Part 1 - General
3.1.1 Timestamp

struct timestamp { [* ECMA 167 1/7.3*/
Uint16 TypeAndTimezone;
uUint16 Year;
uUint8 Month;
uint8 Day;
uUint8 Hour;
uUint8 Minute;
uint8 Second;
uUint8 Centiseconds;
uUint8 HundredsofMicroseconds;
uint8 Microseconds;

}

3.1.1.1 Uint8 Centiseconds;
&~ For operating systems that do not support the concept of
centiseconds the implementation shall ignore thisfield.

& For operating systems that do not support the concept of
centiseconds the implementation shall set thisfield to ZERO.

3.1.1.2 Uint8 HundredsofMicroseconds;
&~ For operating systems that do not support the concept of hundreds
of Microseconds the implementation shall ignore thisfield.

& For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set thisfield to
ZERO.

3.1.1.3 Uint8 Microseconds;
&~ For operating systems that do not support the concept of
microseconds the implementation shall ignore thisfield.

& For operating systems that do not support the concept of
microseconds the implementation shall set thisfield to ZERO.

UDF 2.00 48 April 3,1998

3.2 Part 3 - Volume Structure
3.2.1 Logical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { [* ECMA 167 4/14.15*/
uint64 UniquelD,
bytes reserved[24]

}

3.2.1.1 Uint64 UniquelD

Thisfield contains the next UniquelD vaue which should be used. Thefield isinitiaized
to 16, and it monotonically increases with each assignment described below. Whenever the
lower 32-bits of this value reach #FFFFFFFF, the upper 32-bits are incremented by 1, as
would be expected for a 64-bit value, but the lower 32-bits “wrap” to 16 (the initialization
value). This behavior supports Mac™ OS which uses an ID number space of 16 through
2732 - 1inclusive, and will not cause problems for other platforms.

Uniquel D is used whenever anew file or directory is created, or another name is linked to
an existing file or directory. The File Identifier Descriptors and File Entries/Extended File
Entries used for a stream directory and named streams associated with afile or directory
do not use Uniquel D; rather, the unique ID fields in these structures take their value from
the Uniquel D of the File Entry/Extended File Entry of the file/directory the streams are
associated with.

When afile or directory is created, this Uniquel D is assigned to the Uniquel D field of the
File Entry/Extended File Entry, the lower 32-bits of UniquelD are assigned to
UDFUniquel D in the Implementation Use bytes of the long_ad in the File Identifier
Descriptor (see 2.3.4.2), and Uniquel D is incremented by the policy described above.

When aname s linked to an existing file or directory, the lower 32-bits of NextUniquelD
are assigned to UDFUniquel D in the Implementation Use bytes of the long_ad in the File
Identifier Descriptor (see 2.3.4.2), and Uniquel D is incremented by the policy described
above.

The lower 32-hits shall be the same in the File Entry/Extended File Entry and itsfirst File
Identifier Descriptor, but they shall differ in subsequent FIDs.

All UDF implementations shall maintain the UDFUniquel D in the FID and UniquelD in

the FE/EFE as described in this section. The LVHD in aclosed Logica Volume Integrity
Descriptor shall have avalid Uniquel D.

UDF 2.00 49 April 3,1998

3.3 Part 4 - File System
3.3.1 File Identifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4*/
struct tag DescriptorTag;
Uint16 FileVersionNumber;
uint8 FileCharacteristics;
Uint8 LengthofFileldentifier;
struct long_ad ICB;
Uint16 L engthofImplementationUse;
byte ImplementationUse(];
char Fileldentifier[];
byte Padding([];
}

NOTE: All UDF directories shal include a File Identifier Descriptor that indicates
the location of the parent directory. The File Identifier Descriptor describing the
parent directory shall be the first File Identifier Descriptor recorded in the
directory. The parent directory of the Root directory shall be Root, as stated in
ECMA 167-4, section 8.6

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics under various
operating systems.

3.3.1.1.1 MS-DOS, 0OS/2, Windows 95, Windows NT, Macintosh
g~ If Bit Oisset to ONE, thefile shall be considered a "hidden” file.
If Bit 1is set to ONE, the file shall be considered a "directory."
If Bit 2 is set to ONE, the file shall be considered "deleted.”
If Bit 3 is set to ONE, the ICB field within the associated Fileldentifier
structure shall be considered as identifying the "parent” directory of the
directory that this descriptor is recorded in

& If thefileis designated as a"hidden" file, Bit O shall be set to ONE.
If the fileis designated as a"directory,” Bit 1 shall be set to ONE.
If thefileis designated as "deleted,” Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX
Under UNIX these bits shall be processed the same as specified in
3.3.1.1.1., except for hidden files which will be processed as normal non-
hidden files.

UDF 2.00 50 April 3,1998

3.3.2 ICB Tag
struct icbtag {

[* ECMA 167 4/14.6 */

Uint32 PriorRecordedNumberof DirectEntries,
Uint16 Strategy Type;

byte StrategyParameter|[2];

Uint16 Numberof Entries;

byte Reserved;

uint8 FileType;

Lb_addr Parentl CBL ocation;

Uint16 Flags;

3.3.2.1 Uintl16 Flags

3.3.2.1.1 MS-DOS, 0OS/2, Windows 95, Windows NT
Bits 6 & 7 (Setuid & Setgid):
&~ lgnored.

&= In the

interests of maintaining security under environments which do

support these bits; bits 6 and 7 shal be set to ZERO if any one of the
following conditions are true :

Bit 8 (Sticky):

A fileis created.
The attributes/permissions associated with afile, are modified .

A file is written to (the contents of the data associated with a file
are modified).

An Extended Attribute associated with the file is modified.

A stream associated with afileis modified.

&~ lgnored.

1 Shall be set to ZERO.

Bit 10 (System):
&~ Mapped to the MS-DOS/ OS2 system hit.

& Mapped from the MS-DOS / OS/2 system bit.

UDF 2.00

51 April 3, 1998

3.3.2.1.2 Macintosh

Bits 6 & 7 (Setuid & Setgid):

&~ lgnored.

& In the interests of maintaining security under environments which do
support these bits; bits 6 and 7 shal be set to ZERO if any one of the
following conditions are true :

A fileis created.
The attributes/permissions associated with afile, are modified .

A file is written to (the contents of the data associated with a file
are modified).

An Extended Attribute associated with the file is modified.
A stream associated with afileis modified.

Bit 8 (Sticky):
&~ lgnored.

1 Shall be set to ZERO.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO.
3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system hits.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO upon file creation only, otherwise maintained.

UDF 2.00 52 April 3,1998

3.3.3 File Entry
struct FileEntry {

}

struct tag

struct icbtag
Uint32

Uint32

Uint32

Uintl6

Uint8

Uint8

Uint32

uinte4

uinte4

struct timestamp
struct timestamp
struct timestamp
Uint32

struct long_ad
struct EntitylD
uinte4

Uint32

Uint32

byte

byte

[* ECMA 167 4/14.9 */
DescriptorTag;

ICBTag;

vid;

Gid;

Permissions;
FileLinkCount;
RecordFormat;
RecordDisplayAttributes,
RecordL ength;
InformationL ength;

L ogical BlocksRecorded;
AccessTime,
ModificationTime,
AttributeTime;
Checkpoint;
ExtendedAttributel CB;
Implementationl dentifier;
UniquelD,

L engthof ExtendedAttributes;
Lengthof AllocationDescriptors,

ExtendedAttributes[];
AllocationDescriptory[];

NOTE: The total length of a FileEntry shall not exceed the size of one logical

block.

3.3.3.1 Uint32 Uid
For operating systems that do not support the concept of a user identifier
the implementation shall ignore thisfield. For operating systems that do

support thisfield avalue of 2% - 1 shall indicate an invalid UID, otherwise
the field contains avalid user identifier.

&

For operating systems that do not support the concept of a user identifier
the implementation shall set thisfield to 2 - 1 to indicate an invalid UID,
unless otherwise specified by the user.

3.3.3.2 Uint32 Gid
For operating systems that do not support the concept of a group identifier
the implementation shall ignore thisfield. For operating systems that do
support thisfield avalue of 2+ - 1 shall indicate an invaid GID, otherwise
the field contains avalid group identifier.

UDF 2.00

&

53

April 3, 1998

&

3.3.3.3 Uint32 Permissions;

*

For operating systems that do not support the concept of a group identifier
the implementation shall set thisfield to 2% - 1 to indicate an invalid GID,
unless otherwise specified by the user.

Definitions:

*/

Bi t

/
/*

/*

/* Exec
[* Wit
/* Read
/* ChAt
/* Dele
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

for a File

ute May execute file

e May change file contents
May examine file contents
tr My change file attributes

te My delete file

OTHER _Execut e 0x00000001

OTHER Wite
OTHER_Read

OTHER ChAttr
OTHER Del et e

GROUP_Execut e

GROUP_Wite
GROUP_Read

GROUP_ChAt t r
GROUP_Del et e

OMNER_Execut e

OWNER Wite
OWNER_Read

OWNER_ChAtt r
OMNNER _Del et e

0x00000002
0x00000004
0x00000008
0x00000010

0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000400
0x00000800
0x00001000
0x00002000
0x00004000

a Directory

search directory

create and delete files
list files in directory
change dir attributes
del ete directory

*/
*/

*/
*/
*/

The concept of permissions which deals with security is not completely portable between
operating systems. This document attempts to maintain consistency among
implementations in processing the permission bits by addressing the following basic issues:
1. How should an implementation handle Owner, Group and Other permissions

when the operating system has no concept of User and Group 1ds?

2. How should an implementation process permission bits when encountered,
specifically permission bits that do not directly map to an operating system

supported permission hit?
3. What default values should be used for permission bits that do not directly map

to an operating system supported permission bit when creating a new file?

User, Group and Other
In general, for operating systems that do not support User and Group Ids the following
algorithm should be used when processing permission bits:

When reading a specific permission, thelogical OR of al three (owner, group,
other) permissions should be the value checked. For example afile would be
considered writable if the logical OR of OWNER_Write, GROUP_Write and

OTHER_Write was equal to one.

UDF 2.00

April 3, 1998

When setting a specific permission the implementation should set all three (owner,
group, other) sets of permission bits. For example to mark afile as writable the
OWNER_Write, GROUP_Write and OTHER_Write should all be set to one.

Default Permission Vaues

For the operating systems covered by this document the following table describes what
default values should be used for permission bits that do not directly map to an operating
system supported permission bit when creating a new file.

Permission File/Directory Description DOS 0S/2 | Win Win Mac UNIX
95 NT 0S
Read file Thefile may beread 1 1 1 1 1 U
Read directory The directory may be read, only if the 1 1 1 1 1 U
directory is aso marked as Execute.
Write file Thefile's contents may be modified U U U U U U
Write directory Files or subdirectories may be renamed, U U U U U U

added, or deleted, only if the directory is
also marked as Execute.

Execute file Thefile may be executed. 0 0 0 0 0 U

Execute directory The directory may be searched for a 1 1 1 1 1 U
specific file or subdirectory.

Attribute file Thefil€'s permissions may be changed. 1 1 1 1 1 Note 1

Attribute directory Thedirectory’s permissions may be 1 1 1 1 1 Note 1
changed.

Delete file Thefile may be deleted. Note2 | Note2 |Note2| Note2 | Note2 | Note?2

Delete directory The directory may be deleted. Note2 | Note2 |Note2| Note2 | Note2 | Note?2

U - User Specified, 1 - Set, 0 - Clear
NOTE 1: Under UNIX only the owner of afile/directory may change its attributes.

NOTE 2: The Delete permission bit should be set based upon the status of the Write
permission bit. Under DOS, OS/2 and Macintosh, if afile or directory is marked as
writable (Write permission set) then the file is considered deletable and the Delete
permission bit should be set. If afileisread only then the Delete permission bit should not
be set. Thisappliesto file create as well as changing attributes of afile.

Processing Permissions

Implementation shall process the permission bits according to the following table which
describes how to process the permission bits under the operating systems covered by this
document. The table addresses the issues associated with permission bits that do not
directly map to an operating system supported permission bit.

Permission File/Directory Description DOS 0S/2 | Win [Win | Mac | UNIX
95 NT 0S

Read file Thefile may beread E E E E E E

Read directory The directory may be read E E E E | E

Write file Thefile's contents may be modified E E E E E E

Write directory Files or subdirectories may be created, E E E E E E
deleted or renamed

Execute file Thefile may be executed. | | | | | E

Execute directory The directory may be searched for a specific E E E E E E
file or subdirectory.

Attribute file Thefil€'s permissions may be changed. E E E E E E

UDF 2.00 55 April 3,1998

Attribute directory Thedirectory’s permissions may be E E E E E E
changed.

Delete file Thefile may be deleted. E E E E E E

Delete directory The directory may be deleted. E E E E E E

E - Enforce, | - Ignore

The Execute bit for a directory, sometimes referred to as the search bit, has special
meaning. This bit enables a directory to be searched, but not have its contents listed. For
example assume a directory caled PRIVATE exists which only has the Execute
permission and does not have the Read permission bit set. The contents of the directory
PRIVATE can not be listed. Assume thereisafile within the PRIVATE directory called
README. The user can get access to the README file since the PRIVATE directory is
searchable.

To be able to list the contents of a directory both the Read and Execute permission bits
must be set for the directory. To be able to create, delete and rename afile or
subdirectory both the Write and Execute permission bits must be set for the directory. To
get a better understanding of the Execute bit for adirectory reference any UNIX book that
coversfile and directory permissions. The rules defined by the Execute bit for a directory
shall be enforced by al implementations. The exception to this rule applies to Macintosh
implementations. A Macintosh implementation may ignore the status of the Read hit in
determining the accessibility of a directory

NOTE: To be able to delete afile or subdirectory the Delete permission bit for the file or
subdirectory must be set, and both the Write and Execute permission bits must be set for
the directory it occupies.

3.3.3.4 Uint64 UniquelD

NOTE: For some operating systems (i.e. Macintosh) this value needs to be less than the
max value of alnt32 (2* - 1). Under the Macintosh operating system this value is used to
represent the Macintosh directory/file ID. Therefore an implementation should attempt to
keep this vaue less than the max vaue of a Int32 (2 - 1). The values 1-15 shall be
reserved for the use of Macintosh implementations.

3.3.3.5 byte Extended Attributes

Certain extended attributes should be recorded in thisfield of the FileEntry for
performance reasons. Other extended attributes should be recorded in an ICB pointed to
by the field ExtendedAttributelCB. In the section on Extended Attributes it will be
specified which extended attributes should be recorded in this field.

3.3.4 Extended Attributes
In order to handle some of the longer Extended Attributes (EAS) which may vary in
length, the following rules apply to the EA space.

1. All EAswith an attribute length greater than or equal to alogical block shall be
block aligned by starting and ending on alogica block boundary.

UDF 2.00 56 April 3,1998

2. Smaler EAs shall be constrained to an attribute length which is a multiple of 4
bytes.

3. Each Extended Attribute space shall appear as a single contiguous logical
space constructed as follows:

ECMA 167 EAs

Non block aligned Implementation Use EAs
Block aligned Implementation Use EAS
Application Use EAs

NOTE: There may exist 2 Extended Attribute spaces per file, one embeded in the
File Entry or Extended File Entry and the other as a separate space referenced by
the Extended Attribute ICB address in the File Entry or Extended File Entry.
Each Extended Attribute space, if present, must have its own Extended Attribute
Header Descriptor (see the next section).

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedA ttributeHeaderDescriptor { [* ECMA 167 4/14.10.1*/

struct tag DescriptorTag;
Uint32 ImplementationAttributesL ocation;
Uint32 ApplicationAttributesLocation;

&~ A vaueinone of the location fields highlighted above equal to or
greater than the length of the EA space shall be interpreted as an indication
that the corresponding attribute does not exist.

1 If an attribute associated with one of the location fidds
highlighted above does not exist, then the value of the corresponding
location field shall be set to #FFFFFFFF."

3.3.4.2 Alternate Permissions
struct AlternatePermissionsExtendedAttribute { /* ECMA 167 4/14.10.4 */

Uint32 AttributeType;
uint8 AttributeSubtype;
byte Reserved[3];

Uint32 Attributel ength;
Uint16 Ownerldentification;
Uint16 Groupl dentification;
Uint16 Permission;

}

This structure shall not be recorded.

UDF 2.00 57 April 3,1998

3.3.4.3 File Times Extended Attribute

struct FileTimesExtendedAttribute { [* ECMA 167 4/14.10.5*/
Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 Attributel ength;
Uint32 Datal ength;
Uint32 FileTimeExistence;
byte FileTimes;

}

3.3.43.1 Dbyte FileTimes

&

&

If thisfield contains afile creation time it shall be interpreted as the
creation time of the associated file. If the main File Entry isan
Extended File Entry, the file creation time in this structure shall be
ignored and the file creation time from the main File Entry shall be
used.

If the main File Entry is an Extended File Entry, this structure shall
not be recorded with afile creation time.

If the main File Entry is not an Extended File Entry and the File Times
Extended Attribute does not exist or does not contain the file creation time

then an

implementation shall use the Modification Time field of the File

Entry to represent the file creation time.

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute { /* ECMA 167 4/14.10.7 */

Uint32
Uint8
byte
Uint32
Uint32
Uint32
Uint32
byte
}

AttributeType;

AttributeSubtype;

Reserved[3];

Attributel ength;
ImplementationUseLength; /* (=IU_L) */
MajorDeviceldentification;
MinorDeviceldentification;
ImplementationUse[IU_L]J;

The following paradigm shall be followed by an implementation that creates a
Device Specification Extended Attribute associated with afile:

If and only if afile has a DeviceSpecificationExtendedAttribute associated
with it, the contents of the FileType field in the icbtag structure be set to 6

UDF 2.00

58 April 3, 1998

(indicating a block specia devicefile), OR 7 (indicating a character specia
devicefile).

If the contents of the FileType field in the icbtag structure do not equal 6
or 7, the DeviceSpecificationExtendedAttribute associated with afile shall
be ignored.

In the event that the contents of the FileType field in the icbtag structure
equal 6 or 7, and the file does not have a
DeviceSpecificationExtendedAttribute associated with it, access to the file
shall be denied.

For operating system environments that do not provide for the semantics
associated with a block special devicefile, requests to
open/read/write/close afile that has the
DeviceSpecificationExtendedAttribute associated with it shall be denied.

All implementations shall record a developer ID in the ImplementationUse
field that uniquely identifies the current implementation.

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute{ /* ECMA 167 4/14.10.8 */

UDF 2.00

}

Uint32 AttributeType;

uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributelLength;

Uint32 ImplementationUseLength; /* (=IU_L) */

struct EntityID Implementationldentifier;

byte ImplementationUse[IU_L]J;

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Implementation Use
Extended Attribute the Attribute Length field should be large enough to leave
padding space between the end of the Implementation Use field and the end of the
Implementation Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attribute is
used under various operating systems to store operating system specific extended
attributes.

The structures defined in the following sections contain a header checksum field.
Thisfield represents a 16-bit checksum of the Implementation Use Extended
Attribute header. The fields AttributeType through Implementationldentifier
inclusively represent the data covered by the checksum. The header checksum

59 April 3, 1998

field isused to aid in disaster recovery of the extended attribute space. C source
code for the header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, a
Macintosh implementation shall preserve any OS2 extended attributes
encountered on the media. It shall also create and support al Macintosh extended
attributes specified in this document.

3.3.45.1 All Operating Systems
3.3.4.5.1.1 FreeEASpace
This extended attribute shall be used to indicate unused space within the
extended attribute space. This extended attributes shall be stored as an
Implementation Use Extended Attribute whose Implementationldentifier
shall be st to:
"*UDF FreeEASpace"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
FreeEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 U L-1 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete extended
attribute space. The FreeEASpace extended attribute may be overwritten
and the space re-used by any implementation who sees a need to overwrite
it.

3.3.4.5.1.2 DVD Copyright Management Information
This extended attribute shall be used to store DVD Copyright Management
Information. This extended attribute shall be stored as an Implementation
Use Extended Attribute whose Implementationldentifier shall be set to:
"*UDF DVD CGMS Info"

UDF 2.00 60 April 3,1998

The ImplementationUse area for this extended attribute shall be structured

asfollows:
DVD CGMS Info format
RBP Length Name Contents
0 2 Header Checksum uintl6
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended attribute allows DVD Copyright Management Information
to be stored. The interpretation of this format shall be defined in the DVD
specification published by the DVD Consortium (see 6.9.3). Support for
this extended attribute is optional.

3.3.4.5.2 MS-DOS, Windows 95, Windows NT
&~ lgnored.

& Not supported. Extended attributes for existing files on the media shall be
preserved.

3.3.453 0S/2
0OS/2 supports an unlimited number of extended attributes which shall be stored as
anamed stream as defined in 3.3.8.2. To enhance performance the following
Implementation Use Extended Attribute will be created.

3.3.45.3.1 OS2EALength
This attribute specifies the OS/2 Extended Attribute Stream (3.3.8.2)
information length. Since this value needs to be reported back to OS/2
under certain directory operations, for performance reasons it should be
recorded in the ExtendedAttributes field of the FileEntry. This extended
attribute shall be stored as an Implementation Use Extended Attribute
whose Implementationldentifier shall be set to:

"*UDF OS/2 EALength"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
OS2EALength format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 4 0S/2 Extended Attribute L ength Uint32

UDF 2.00 61 April 3,1998

The value recorded in the OS2ExtendedAttributeLength field shall be equa
to the InformationLength field of the file entry for the OS2EA stream.

3.3.4.5.4 Macintosh OS
The Macintosh OS requires the use of the following extended attributes.

3.3.4.5.4.1 MacVolumelnfo
This extended attribute contains Macintosh volume information which
shall be stored as an Implementation Use Extended Attribute whose
Implementationldentifier shall be set to:
"*UDF Mac Volumelnfo"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
MacVolumelnfo format
RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 12 Last Modification Date timestamp
14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

The MacVolumelnfo extended attribute shall be recorded as an extended
attribute of the root directory FileEntry.

3.3.4.5.4.2 MacFinderinfo
This extended attribute contains Macintosh Finder information for the
associated file or directory. Since thisinformation is accessed frequently,
for performance reasons it should be recorded in the ExtendedAttributes
field of the FileEntry.

The MacFinderInfo extended attribute shall be stored as an
Implementation Use Extended Attribute whose Implementationldentifier
shall be set to:

"*UDF Mac FinderInfo"

UDF 2.00 62 April 3,1998

The ImplementationUse area for this extended attribute shall be structured

asfollows:
MacFinderInfo format for a directory
RBP | Length Name Contents
0 2 Header Checksum uintl6
2 2 Reserved for padding (=0) Uint16
4 4 Parent Directory 1D Uint32
8 16 Directory Information UDFDInfo
24 16 Directory Extended Information UDFDXInfo
MacFinderInfo format for afile
RBP | Length Name Contents
0 2 Header Checksum uintl6
2 2 Reserved for padding (=0) Uint16
4 4 Parent Directory 1D Uint32
8 16 File Information UDFFInfo
24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data L ength Uint32
44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended
attribute of every file and directory within the Logical Volume.

The following structures used within the MacFinderInfo structure are
listed below for clarity. For complete information on these structures refer
to the Macintosh books called "Inside Macintosh". The volume and page
number listed with each structure correspond to a specific "Inside
Macintosh" volume and page.

UDFPoint format (Volume |, page 139)

RBP | Length Name Contents
0 2 i Int16
2 2 H Int16

UDFRect format (Volume |, page 141)

RBP | Length Name Contents
0 2 Top Int16
2 2 Left Int16
4 2 Bottom Int16
6 2 Right Int16

UDF 2.00 63 April 3, 1998

UDFDInfo format (Volume 1V, page 105)

RBP | Length Name Contents
0 8 FrRect UDFRect
8 2 FrFlags Int16
10 4 FrLocation UDFPoint
14 2 FrView Int16
UDFDXInfo format (Volume 1V, page 106)
RBP | Length Name Contents
0 4 FrScrall UDFPoint
4 4 FrOpenChain Int32
8 1 FrScript Uint8
9 1 FrXflags Uint8
10 2 FrComment Int16
12 4 FrPutAway Int32
UDFFInfo format (Volume |1, page 84)
RBP | Length Name Contents
0 4 FdType Uint32
4 4 FdCreator Uint32
8 2 FdFlags Uint16
10 4 FdL ocation UDFPoint
14 2 FdFldr Int16
UDFFXInfo format (Volume 1V, page 105)
RBP | Length Name Contents
0 2 FdiconlD Int16
2 6 FdUnused bytes
8 1 FdScript Int8
9 1 FdXFlags Int8
10 2 FdComment Int16
12 4 FdPutAway Int32

NOTE: The above mentioned structures have there original Macintosh
names preceded by "UDF" to indicate that they are actually different from
the original Macintosh structures. On the media the UDF structures are
stored little endian as opposed to the original Macintosh structures which
arein big endian format.

3.3.4.5.5 UNIX
e
&
UDF 2.00

Ignored.

Not supported. Extended attributes for existing files on the media
shall be preserved.

April 3, 1998

3.3.4.6 Application Use Extended Attribute

struct ApplicationUseExtendedAttribute { [* ECMA 167 4/14.10.9*/
Uint32 AttributeType; [* = 65536 */
uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributelLength;
Uint32 ApplicationUseLength; /* (=AU_L) */
struct EntityID Applicationldentifier;
byte ApplicationUse[AU_L];
}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Application Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the ApplicationUse field and the end of the Application Use
Extended Attribute.

The structures defined in the following section contains a header checksum field.
Thisfield represents a 16-bit checksum of the Application Use Extended Attribute
header. The fields AttributeType through Applicationldentifier inclusively
represent the data covered by the checksum. The header checksum field is used to
aid in disaster recovery of the extended attribute space. C source code for the
header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes
encountered on the media. Implementations shall create and support the extended
attributes for the operating system they currently support. For example, a
Macintosh implementation shall preserve any OS2 extended attributes
encountered on the media. It shall also create and support al Macintosh extended
attributes specified in this document.

3.3.4.6.1 All Operating Systems

UDF 2.00

This extended attribute shall be used to indicate unused space within the extended
attribute space reserved for Application Use Extended Attributes. This extended
attribute shall be stored as an Application Use Extended Attribute whose
Applicationldentifier shall be set to:

"*UDF FreeAppEASpace”

65 April 3, 1998

The ApplicationUse areafor this extended attribute shall be structured as follows:

FreeAppEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-1 | Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total size of
other extended attributes without rewriting the compl ete extended attribute space.
The FreeAppEASpace extended attribute may be overwritten and the space re-
used by any implementation who sees a need to overwrite it.

3.3.5 Named Streams

Named streams provide a mechanism for associating related data of afile. Itissmilar in
concept to extended attributes. However, named streams have significant advantages over
extended attributes. They are not as limited in length. Space management is much easier
as each stream has its own space, rather than the common space of extended attributes.
Finding a particular stream does not involve searching the entire data space, asit does for
extended attributes.

Named streams are mainly intended for user data. For example, a database application
may store the records in the default or main stream and indices in named streams. The
user would then see only one file for the database rather than many, and the application
can use the various streams amost as if they were independent files.

Named Streams are identified by an Extended File Entry. Extended File Entries are
required for files with associated named streams. Files without named streams should use
Extended File Entries. Files may have normal File Entries; normal File Entries would be
used where backward compatibility is desired, such aswriting DVD Video discs.

Thereisa*System Stream Directory” which is the stream directory identified by the File
Set Descriptor. These streams are used to describe data related to the entire medium
instead of datathat relatesto afile. UDF defines severa “system streams” that are to be
identified by the system stream directory.

It is recommended that Named Streams be used to store metadata and application data
instead of Extended Attributes in new implementations.

3.3.5.1 Named Streams Restrictions

ECMA 167 3" edition defines a new File Entry that contains afield for identifying a
stream directory. This new File Entry should be used in place of the old File Entry, and
should be used for describing the streams themselves. Old and new file entries may be

UDF 2.00 66 April 3,1998

freely mixed. In particular, compatibility with old reader implementations can be
maintained for certain files.

Restrictions:

The stream directory ICB field of 1CBs describing stream directories or named streams
shall be set to zero. [no hierarchical streams]

Each named stream shall be identified by exactly one FID in exactly one Stream Directory.
[no hard links among named streams or files and named streamsg|

Each Stream Directory ICB shall be identified by exactly one Stream Directory ICB field.
[no hard links to stream directories|

Hard Links to files with named streams are allowed.
Named Streams and Stream Directories shall not have Extended Attributes.

The Unique ID field of Named Streams and Stream Directories shall be set to zero and
shall be ignored when read. The Unique ID of a Named Stream or Stream Directory shall
be considered to be the same as the Unique ID of the main data stream.

The UID, GID, and permissions fields of the main File Entry shall apply to all named
streams associated with the main stream. At the time of creation of a named stream the
values of the UID, GID and permissions fields of the main file entry should be used as the
default values for the corresponding fields of the named stream. Implementations are not
required to maintain or check these fieldsin a named stream.

Implementations should not present streams marked with the metadata bit set in the FID
to the user. Streams marked with the metadata bit are intended solely for the use of the
file system implementation.

The parent entry FID in a stream directory points to the main Extended File Entry, so its
reference must be counted in the Link Count field of the Extended File Entry.

Note: There is a potential pitfall when deleting files/directories: if the link count goes to
one when a FID is deleted, implementations must check for the presence of a stream
directory. If present, there are no more FIDs pointing to this File Entry, so it and all
associated structures must be deleted.

The modification time field of the main Extended File Entry should be updated whenever

any associated named stream is modified. The Access Time field of the main Extended
File Entry should be updated whenever any associated named stream is accessed. The

UDF 2.00 67 April 3,1998

SETUID and SETGID bits of the ICB Tag flags field in the main Extended File Entry
should be cleared whenever any associated named stream is modified.

The ICB for aNamed Stream directory shall have afile type of 13. All named streams
shall have afiletype of 5.

All systems shall make the main data stream available, even on implementations that do
not implement named streams.

3.3.5.2 System Named Streams (Metadata)

A set of named streams is defined by UDF for file system use. Some UDF named streams
are identified by the File Set Descriptor and apply to the entire file set (System Stream
Directory). Others pertain to individua files or directories and are identified by the stream
directory.

All UDF named streams shall have the Metadata bit set in the File Identifier Descriptor in
the Stream Directory, unless otherwise specified in this document. All streams not
generated by the file system implementation shall have this bit set to zero.

All UDF named streams shall have afile type of 5 in the ICB identifying the stream.

The four characters * UDF are the first four characters of al UDF defined named streams
in this document. Implementations shall not use any identifier beginning with * UDF for
named streams that are not defined in this document. All identifiers for named streams
beginning with *UDF are reserved for future definition by OSTA.

3.3.6 Extended Attributes as named streams

An extended attribute may be recorded as a named stream instead. The extended attribute
is converted according to the following rules:

The stream is marked as a Metadata stream.

The EA header and Header Checksum are not recorded. If the EA included pad bytes
between the Header Checksum and the remaining data, these are also not recorded.

Any extended attribute of afile or directory can be converted to a stream of the samefile
or directory by the following algorithm:

1. Create astream for the file or directory containing the extended attribute. The

identifier specified for the Entity Identifier becomes the stream name.
2. Copy the data of the extended attribute into the stream.

UDF 2.00 68 April 3,1998

3. Delete the extended attribute.

UDF 2.00 69 April 3,1998

3.3.7 UDF Defined System Streams
This section contains the definition of UDF defined system streams.

Stream Name Stream Location Metadata Flag
“*UDF Unique ID Mapping Data’” | System Stream Directory (File Set Descriptor) 1
“* UDF Non-Allocatable Space” System Stream Directory (File Set Descriptor) 1
“*UDF Power Cal Table” System Stream Directory (File Set Descriptor) 1
“* UDF Backup” System Stream Directory (File Set Descriptor) 1

Since the streams listed above have the Metadata flag set, the implementation shall not
pass the name of the stream across the “ plug-in file system interface” of a platform.

3.3.7.1 UniquelD Mapping Data Stream

The Unique ID Mapping Data allows an implementation to go directly to the ICB
hierarchy for the file/directory associated with a UDFUniquelD, or to the ICB hierarchy
for the directory which contains the file/directory associated with the UDFUniquel D.
Unique ID Mapping Datais stored as a named stream of the System Stream Directory
(associated with the File Set Descriptor). The name of this stream shall be set to:

“*UDF Unique ID Mapping Data’

The Metadata bit in the File Characteristics field of the File Identifier Descriptor shall be
set to 1 to indicate that the existence of this file should not be made known to clients of a
platform’s file system interface.

shall be created for read-only media

shall be created by implementations which batch write (e.g., pre-mastering tools) a
volume on write-once and rewritable media

for implementations which perform incremental updates of volumes on write-once or
rewritable media (e.g., on-line file systems), the following rules apply:

may be created and maintained if not present

shall be maintained if present and volumeis clean

should be repaired and maintained, but may be deleted, if present and volume is dirty
for these rules, avolumeis clean if either avalid Close Logical VVolume Integrity
Descriptor or avalid Virtual Address Tableis recorded

3.3.7.1.1 UDF Unique ID Mapping Data

UDF Unique ID Mapping Data

RBP Length Name Contents
0 32 Implementation I dentifier EntitylD
32 4 Flags Uint32
36 4 Mapping Entry Count (=MEC) Uint32
40 8 Reserved Bytes (= #00)

UDF 2.00 70 April 3,1998

| 48 | 16*MEC | Mapping Entries | IDMappingEntry

Implementation Identifier is described in [cross reference to 2.1.5].

Flags are defined as follows:

Bit O, If set to ONE, shal mean UDF Unique ID, once decremented by 16 (the
value NextUniquel D isinitialized to), can be used as an index into the array
Mapping Entries. Blank entries, if present, are all beyond the last array element
with a UDF Unique ID.

Bits 1 - 31, reserved, shall be set to ZERO.
Mapping Entry Count isthe size, in entries, of the array Mapping Entries.

Mapping Entries is an array of UDF Unique ID Mapping Entry structures. There
IS one mapping entry for every non-stream, non-parent File Identifier Descriptor.
Whenever the volume is consistent, the array is always sorted in ascending order of
UDF Unique ID. Except as limited by the flags, blank entries are allowed
anywhere in the array, and entries are not required to have a UDF Unique ID value
of one more than the preceding entry. A blank entry has avalue of ZERO in all
fields.

3.3.7.1.2 UDF Unique ID Mapping Entry

The contents of the stream is described by the table “UDF Unique ID Mapping Data’
which contains some header fields before an array of “UDF Unique ID Mapping Entry.”
The fields of the structures are described below their corresponding table.

UDF Unique ID Mapping Entry

RBP Length Name Contents
0 4 UDFUnique ID Uint32
4 4 Parent Logical Block Number Uint32
8 4 Object Logica Block Number Uint32
12 2 Parent Partition Reference Number uintl6
14 2 Object Partition Reference Number Uint16

UDF Unique ID isthe value found in aFID for thefile or directory.

Parent Logical Block Number isthe logical block number of the ICB identifying
the directory that contains the FID identifying the object.

Object Logical Block Number isthe logical block number of the ICB identifying
this object.

UDF 2.00 71 April 3,1998

Parent Partition Reference Number isthe partition reference number from the
long_ad of the ICB field in the parent in the same directory containing the FID for
thisfile or directory.

Object Partition Reference Number is the partition reference number from the
long_ad of the ICB field in the FID with this UDFUniquel D.

3.3.7.2 Non-Allocatable Space Stream

ECMA 167 does not provide for a mechanism to describe defective areas on media or
areas not usable due to allocation outside of the file system. The Non-Allocatable Space
Stream provides a method to describe space not usable by the file system. The Non-
Allocatable Space Stream shall be recorded only on media systems that do not do defect
management (eg. CD-RW).

The Non-Allocatable Space Stream shall be generated at format time. All space indicated
by the Non-Allocatable Space Stream shall also be marked as allocated in the free space
map. The Non-Allocatable Space Stream shall be recorded as a named stream in the
system stream directory of the File Set Descriptor. The stream name shall be:

“*UDF Non-Allocatable Space”

The stream shall be marked with the attributes Metadata (bit 4 of file characteristics set to
ONE) and System (bit 10 of ICB flags field set to ONE). This stream shall have al Non-
Allocatable sectors identified by its allocation extents. The allocation extents shall indicate
that each extent is allocated but not recorded. Thislist shall include both defective sectors
found at format time and space allocated for sparing at format time.

3.3.7.3 Power Calibration Stream

One of the potentia limitations on the effective use of the packet-write capabilities of CD-
Recordable drivesis the limited number (100) of power calibration areas available on
current CD-R media. These power calibration areas are used to establish the appropriate
power calibration settings with which data can be successfully and reliably written to the
CD-R disc currently in the drive. The appropriate settings for a specific drive can vary
significantly from disc to disc, between two different drives of the same make and model,
and even using the same disc, drive and system configuration, but under different
environmental conditions.

Because of this, most current CD-R drives recalibrate themselves the first time awriteis
attempted after a media change has occurred. Thisimposes no restriction on recording to
discs using the disc-at-once or track-at-once modes, since in each of these modes the disc
will fill (either by consuming the total available data capacity or total number of recordable
tracks) in less than 100 separate writes. When using packet-write though, the disc could
be written to thousands of times over an extended period before the disc isfull.

UDF 2.00 72 April 3,1998

Suppose, for instance, one wanted to incrementally back-up any new and/or modified files
at the end of each work day (though the drive might also be used intermittently to do
other projects during the day). These back-ups may require writing as little as a megabyte
(or even less) each day. If one of the power calibration areasis used to calibrate the drive
before writing to the disc every day, within five months the power calibration areas will all
have been used, but only a small fraction of the total disc capacity will have been
consumed. It islikely that such aresult would be both unexpected and unacceptable to
the user of such a product.

The industry is attempting to provide ways to reduce the frequency with which the power
calibration area of a CD-Recordable disc must be used. At least one current CD-R drive
model tries to remember the power calibration values last used for recording data on each
of asmall number of recently encountered discs. Most CD-Recordable drives provide a
mechanism for the host software to retrieve from the drive the most recent power
calibration settings used by the drive to record data on the current disc, and to restore and
use such information at some future time.

The Power Calibration Table described herein would be used to store on the disc the
power calibration information thus obtained for future use by compatible implementations.
The table consists of a header followed by alist of records containing power calibration
settings which have been used by various drives and/or hosts, under various conditions, to
record data on this disc, as well as other relevant information which may be used to
determine which of the recorded calibration settings may be appropriate for use in a future
gtuation. While every effort has been made to anticipate and include all necessary
information to make effective use of the recorded power calibration information possible,
itisup to the individual implementation to determine if, when and how such information
will actually be used.

The Power Calibration Table shall be recorded as a system stream of the File Set
Descriptor according to the rules of 3.3.5. The name of the stream shall be as follows:

“* UDF Power Cal Table
Implementations that do not support the Power Calibration Table shall not delete this
stream. Further, any implementation which supports and/or uses the Power Calibration

Table shal not delete or modify any records from such table which the implementation,
through its use thereof, did not clearly and specifically obsolete or update.

UDF 2.00 73 April 3,1998

The stream shall be formatted as follows:

3.3.7.3.1 Power Calibration Table Stream

RBP Length Name Contents

0 32 Implementation Identifier EntitylD [UDF
2.1.5]

32 4 Number of Records Uint32 [1/7.1.5]
56 * Power Calibration Table Records bytes

Implementation Identifier:
See UDF section 2.1.5.
Number of Records:
Shall specify the number of records contained in the power calibration table
Power Calibration Table Records:

A series of power calibration table records for drives which have written to this disc.
The length of thistableis variable, but shall be amultiple of four bytes. Recording of
datain any unstructured field shall be left-justified and padded on the right with #20

bytes.
Power Calibration Table Record Layout
RBP Length Name Contents
0 2 Record Length Uint16 [1/7.1.3]
2 2 Drive Unique Area Length [DUA_L] Uint16 [1/7.1.3]
4 32 Vendor ID bytes
36 16 Product ID bytes
52 4 Firmware Revision Level bytes
56 16 Serial Number/Device Unique ID bytes
72 8 Host ID bytes
80 12 Originating Time Stamp Timestamp [1/7.3]
92 12 Updated Time Stamp Timestamp [1/7.3]
104 2 Speed Uint16 [1/7.1.3]
106 6 Power Calibration Values bytes
112 [DUA_L] | DriveUnique Area bytes

Record Length - The length of this Power Calibration Table Record in bytes, including the

optiona variable length Drive Unique Area. Shall be amultiple of four bytes.

UDF 2.00

74

April 3, 1998

Drive Unique Area Length - The length of the optional Drive Unique Arearecorded at the
end of thisrecord in bytes. Shall be a multiple of four bytes.

Vendor ID - The Vendor ID reported by the drive.

Product ID - The Product ID reported by the drive.

Firmware Revision Level - The Firmware Revision Level reported by the drive.

Serial Number/Device Unique ID - A serial number or other unique identifier for the
specific drive, of the model specified by the vendor and product 1Ds given, which has
successfully used the power calibration values reported herein to record data on this disc.

Host ID - The host serial number, ethernet ID, or other value (or combination of values)
used by an implementation to identify the specific host computer to which the drive was
attached when it successfully used the power calibration values reported herein to record
data on thisdisc. Animplementation shall attempt to provide an unique value for each
host, but is not required to guarantee the value's uniqueness.

Originating Time Stamp - The date and time at which the power calibration values
recorded herein were initially verified to have been successully used.

Updated Time Stamp - The date and time at which the power calibration values recorded
herein were most recently verified to have been successully used.

Speed - The recording speed, as reported by the drive, at which power calibration values
recorded herein were successfully used. Thisvalue isthe number of kilobytes per second
(bytes per second / 1000) that the data was written to the disc by the drive (truncating any
fractions). For example, a speed of 176 means data was written to the disc at 176
Kbytes/second, which is the basic CD-DA (Digital Audio) datarate (a.k.a. “1X” for
CD-DA). A speed of 353 means data was written to the disc at 353 Kbytes/second, or
twice the basic CD-DA datarate (ak.a. “2X” for CD-DA). CD-ROM recording rates
should be adjusted upward (roughly 15%) to the corresponding CD-DA rates to
determine the correct speed value (eg. A “1X” CD-ROM data rate should be recorded as
a“1X” CD-DA, whichisaspeed of 176). Note that these are raw data rates and do not
refelect al overhead resulting from (additional) headers, error correction data, etc.

Power Calibration Values - The vendor-specific power calibration values reported by the
drive.

UDF 2.00 75 April 3,1998

Drive Unique Area - Optional areafor recording unrestricted information unique to the
drive (such as drive operating temperature) which certain implementations may use to
enhance the use of the recorded power calibration information or the operation of the
associated drive. Recording of datain thisfield shall be defined by the drive manufacturer.
This area shall be an integral multiple of four bytesin length.

3.3.7.4 UDF Backup Time
The name of this stream shall be &t to:

“*UDF Backup”

This stream shall have the following contents, which should be embedded in the

|ICB:
UDF Backup Time
RBP Length Name Contents
0 12 Backup Time timestamp

Backup Time isthe latest time that a backup of this volume was performed.

3.3.8 UDF Defined Non-System Streams
This section defines the following non-system streams:

Stream Name

Stream Location

Metadata Flag

“* UDF Macintosh Resource Fork”

Any file or directory

0

“*UDF OS2 EA”

Any file or directory

“*UDF NT ACL”

0
Any file or directory 0
0

“*UDF UNIX ACL” Any file or directory

3.3.8.1 Macintosh Resource Fork Stream

Because the Resource Fork is referenced by an explicit interface, UDF implementations
are not provided the authoritative name for this stream. For the purpose of interchange,
the name shall be set to:

“* UDF Macintosh Resource Fork”
The Metadata bit in the File Characteristics field of the File Identifier Descriptor shall be

set to O to indicate that the existence of this file should be made known to clients of a
platform’s file system interface.

UDF 2.00 76 April 3,1998

3.3.8.2 OS/2 EA Stream
All OS/2 definable extended attributes shall be stored as a named stream whose name shall
be set to:

"*UDF OS/2 EA"

The OS2EA Stream contains atable of OS/2 Full EAs (FEA) as shown below.

FEA format
RBP | Length Name Contents
0 1 Flags Uint8
1 1 Length of Name (=L_N) Uint8
2 2 Length of Value (=L_V) Uint16
4 L N Name bytes
4+L N LV Value bytes

For a complete description of Full EAs (FEA) please reference the following IBM
document:

"Installable File System for OS/2 Version 2.0"
OS/2 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

3.3.8.3 Access Control Lists

Certain operating systems support the concept of Access Control Lists (ACLS) for
enforcing file accessrestrictions. In order to facilitate support for ACL’s UDF 2.0 will
define a set of system level named streams, whose purpose will be to store the ACL
associated with a given file object.

ACLsunder UDF will be stored as named streams, following the rules of section 3.3.5.
The contents of the named stream ACL shall be opague and are not defined by this
document. Interpretation of the contents of the named ACL shall be left to the operating
system for which the ACL isintended. The following names will be used to identify the
ACLsand shal bereserved. These names shall not be used for application named
streams.

““*UDF NT ACL”

This name shall identify the named stream ACL for theWindows NT operating system.

“*UDF UNIX ACL”

This name shall identify the named stream ACL for the UNIX operating system.

UDF 2.00 77 April 3,1998

4. User Interface Requirements
4.1 Part 3 - Volume Structure

Part 3 of ECMA 167 contains various ldentifiers which, depending upon the
implementation, may have to be presented to the user.

Volumeldentifier

VolumeSetldentifier

LogicalVolumelD

These identifiers, which are stored in CSO, may have to go through some form of
trandation to be displayable to the user. Therefore when an implementation must
perform an OS specific trandation on the above listed identifiers the
implementation shall use the algorithms described in section 4.1.2.1.

C source code for the trandation algorithms may be found in the appendices of this
document.

4.2 Part 4 - File System

4.2.1 ICB Tag

struct icbtag { [* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberof DirectEntries,
Uint16 Strategy Type;
byte StrategyParameter|[2];
Uint16 NumberofEntries;
byte Reserved; /* ==#00 */
uint8 FileType;
Lb_addr Parentl CBL ocation;
Uint16 Flags;

}

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the following values
in this field shall result in an Access Denied error condition under non-UNIX
operating system environments :

FileType values - 0 (Unknown), 6 (block device), 7 (character device), 9
(FIFO), and 10 (C_ISSOCK).

Any open/close/read/write requests to a file of type 12 (SymbolicLink) shall
access the file/directory to which the symbolic link is pointing.

UDF 2.00 78 April 3,1998

4.2.2 File Identifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4*/
struct tag DescriptorTag;
Uint16 FileVersionNumber;
uint8 FileCharacteritics;
uint8 LengthofFileldentifier;
struct long_ad ICB;
Uint16 L engthofImplementationUse;
byte ImplementationUse]];
char Fileldentifier[];
byte Padding([];

}

4.2.2.1 char Fileldentifier
Since most operating systems have their own specifications as to characteristics of
alega Fileldentifier, this becomes a problem with interchange. Therefore since
all implementations must perform some form of Fileldentifier trandation it would
be to the users advantage if all implementations used the same algorithm.

The problems with Fileldentifier trandations fall within one or more of the
following categories:

Name Length -Most operating systems have some fixed limit for the
length of afile identifier.

Invalid Characters - Most operating systems have certain
characters considered as being illegal within afile identifier name.

Displayable Characters - Since UDF supports the Unicode
character set standard characters within afile identifier may be
encountered which are not displayable on the receiving system.

Case Insensitive - Some operating systems are case insensitive in
regards to file identifiers. For example OS/2 preserves the origina
case of the file identifier when thefileis created, but uses a case
insensitive operations when accessing the file identifier. In 0OS/2
“Abc” and “ABC” would be the same file name.

Reserved Names - Some operating systems have certain names that
cannot be used for afile identifier name.

The following sections outline the Fileldentifier trandation algorithm for each
specific operating system covered by this document. This agorithm shall be used

UDF 2.00

79 April 3, 1998

UDF 2.00

by all OSTA UDF compliant implementations. The agorithm only applies when
reading anillega Fileldentifier. The origina Fileldentifier name on the media
should not be modified. This agorithm shall be applied by any implementation
which performs some form of Fileldentifier translation to meet operating system
file identifier restrictions.

All OSTA UDF compliant implementations shall support the UDF trandation
algorithms, but may support additional algorithms. If multiple algorithms are
supported the user of the implementation shall be provided with a method to select
the UDF trandation algorithms. It is recommended that the default displayable
algorithm be the UDF defined a gorithm.

The primary goal of these algorithms is to produce a unique file name that meets
the specific operating system restrictions without having to scan the entire
directory in which the file resides.

C source code for the following agorithms may be found in the appendices of this
document.

NOTE: In the definition of the following algorithms anytime a d-character is
specified in quotes, the Unicode hexadecimal value will also be specified. In
addition the following algorithms reference “ CSO Hex representation”, which
corresponds to using the Unicode values #0030 - #0039, and #0041 - #0046 to
represent avalue in hex.

The following algorithms could still result in name-collisions being reported to the
user of an implementation. However, the rationale includes the need for efficient
access to the contents of a directory and consistent name transl ations across |ogical
volume mounts and file system driver implementations, while allowing the user to
obtain access to any file within the directory (through possibly renaming afile).

Definitions:
A Fileldentifier shall be considered as being composed of two parts, afile name
and file extension.

The character "' (#002E) shall be considered as the separator for the Fileldentifier
of afile; characters appearing subsequent to the last "' (#002E) shall be considered
as consgtituting the file extension if and only if it isless than or equa to 5
charactersin length, otherwise the file extension shall not exist. Characters
appearing prior to the file extension, excluding the last *.' (#002E), shall be
considered as constituting the file name.

NOTE: Even though OS2, Macintosh, and UNIX do not have an official
concept of afilename extension it is common file naming conventions to

80 April 3, 1998

4.2.2.1.

UDF 2.00

end afilewith “.” followed by a1 to 5 character extension. Therefore the
following algorithms attempt to preserve the file extension up to a
maximum of 5 characters.

1 MS-DOS

Due to the restrictions imposed by the MS DOS operating system environments on
the Fileldentifier associated with afile the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating system
environments :

Restrictions: The file name component of the Fileldentifier shall not exceed 8
characters. Thefile extension component of the Fileldentifier shall not exceed 3
characters.

1. Fileldentifier Lookup: Upon request for a"lookUp" of a Fileldentifier,
a case-insengitive comparison shall be performed.

2. Vadlidate Fileldentifer: If the Fileldentifier isavaid MS-DOSfile
identifier then do not apply the following steps.

3. Remove Spaces. All embedded spaces within the identifier shall be
removed.

4. Invalid Characters. A Fileldentifier that contains characters considered
invalid within afile name or file extension (as defined above), or not
displayable in the current environment, shall have them trandated into
" " (#OO5F). (thefile identifier on the mediais NOT modified).
Multiple sequentia invalid or non-displayable characters shall be
trandated into asingle “_” (#005F) character. Reference the appendix
on invalid characters for acomplete list.

5. Leading Periods: In the event that there do not exist any characters
prior to thefirst "." (#002E) character, leading "." (#002E) characters
shall be disregarded up to the first non “.” (#002E) character, in the
application of this heuristic.

6. Multiple Periods: In the event that the Fileldentifier contains multiple
"." (#002E) characters, all characters appearing subsequent to the last
"' (#002E) shall be considered as congtituting the file extension if and
only if it islessthan or equal to 5 charactersin length, otherwise the
file extension shall not exist. Characters appearing prior to thefile
extension, excluding the last "." (#002E), shall be considered as
constituting the file name. All embedded "." (#002E) characters within
the file name shall be removed.

7. Long Extension: In the event that the number of characters constituting
the file extension at this step in the process is greater than 3, the file
extension shall be regarded as having been composed of the first 3
characters amongst the characters constituting the file extension at this
step in the process.

81 April 3, 1998

8.

Long Filename: In the event that the number of characters constituting
the file name at this step in the process is greater than 8, the file name
shall be truncated to 4 characters.

Fileldentifier CRC: Since through the above process character
information from the origina Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the origina Fileldentifier.
The file name shall be composed of the first 4 characters constituting
the file name at this step in the process; followed by a4 digit CSO Hex
representation of the 16-bit CRC of the original CS0 Fileldentifier.
NOTE: All other algorithms except DOS precede the CRC by a
separator '# (#0023). Due to the limited number of charactersin a
DOS file name a separator for the CRC is not used.

10. The new file identifier shall be trandated to al upper case.

4.2.2.1.2 OS/2
Due to the restrictions imposed by the OS/2 operating system environment, on the
Fileldentifier associated with afile the following methodology shall be employed
to handle Fileldentifier(s) under the above-mentioned operating system
environment:

UDF 2.00

1.

Fileldentifier L ookup: Upon request for a"lookUp™ of a Fileldentifier,
a case-sendtive comparison may be performed. If the case-sensitive
comparison is not done or if it fails, a case-insensitive comparison shall
be performed.

Validate Fileldentifer: If the Fileldentifier isavalid OS2 file identifier
then do not apply the following steps.

Invalid Characters. A Fileldentifier that contains characters considered
invalid within an OS/2 file name, or not displayable in the current
environment shall have them trandated into " " (#005F). Multiple
sequential invalid or non-displayable characters shall be trandated into
a single “_" (#005F) character. Reference the appendix on invalid
characters for a complete list.

Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.

If thereis afile extension then the new Fileldentifier shal be
composed of up to the first (254 - (Iength of (new file extension) + 1
(for the'.")) - 5 (for the #CRC)) characters constituting the file name at

82 April 3, 1998

this step in the process, followed by the separator '# (#0023); followed
by a4 digit CSO Hex representation of the 16-bit CRC of the original
CS0 Fileldentifier, followed by '." (#002E) and the file extension at this
step in the process.

Otherwise if thereis no file extension the new Fileldentifier shall be
composed of up to the first (254 - 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator '# (#0023); followed by a4 digit CSO Hex representation of
the 16-bit CRC of the original CSO Fileldentifier.

4.2.2.1.3 Macintosh

Due to the restrictions imposed by the Macintosh operating system environment,
on the Fileldentifier associated with afile the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating system
environment :

UDF 2.00

1.

Fileldentifier L ookup: Upon request for a"lookUp™ of a Fileldentifier,
a case-sendtive comparison may be performed. If the case-sensitive
comparison is not done or if it fails, a case-insensitive comparison shall
be performed.

Validate Fileldentifer: If the Fileldentifier isavalid Macintosh file
identifier then do not apply the following steps.

Invalid Characters. A Fileldentifier that contains characters considered
invalid within a Macintosh file name, or not displayable in the current
environment, shal have them trandated into " " (#005F). Multiple
sequential invalid or non-displayable characters shall be trandated into
a single “_" (#005F) character. Reference the appendix on invalid
characters for a complete list

Long Fileldentifier - In the event that the number of characters
constituting the Fileldentifier at this step in the process is greater than
31 (maximum name length for the Macintosh operating system), the
new Fileldentifier will consst of the first 26 characters of the
Fileldentifier at this step in the process.

Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of

creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to thefirst (31 - (Iength of (new file extension) + 1
(for the'.")) - 5 (for the #CRC)) characters constituting the file name at
this step in the process, followed by the separator '# (#0023); followed
by a4 digit CSO Hex representation of the 16-bit CRC of the original

83 April 3, 1998

CS0 Fileldentifier, followed by '.' (#002E) and the file extension at this
step in the process.

Otherwise if thereis no file extension the new Fileldentifier shall be
composed of up to thefirst (31 - 5(for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator '# (#0023); followed by a4 digit CSO Hex representation of
the 16-bit CRC of the original CSO Fileldentifier.

4.2.2.1.4 Windows 95 & Windows NT

UDF 2.00

Due to the restrictions imposed by the Windows 95 and Windows NT operating
system environments, on the Fileldentifier associated with afile the following
methodology shall be employed to handle Fileldentifier(s) under the above-
mentioned operating system environment:

1. Fileldentifier Lookup: Upon request for a "lookUp" of a Fileldentifier,
a case-sendtive comparison may be performed. If the case-sensitive
comparison is not done or if it fails, a case-insensitive comparison shall
be performed.

2. Vadlidate Fileldentifer: If the Fileldentifier isavalid file identifier for
Windows 95 or Windows NT then do not apply the following steps.

3. Invalid Characters. A Fileldentifier that contains characters considered
invalid within a file name of the supported operating system, or not
displayable in the current environment shall have them trandated into
" " (#005F). Multiple sequentia invalid or non-displayable characters
shall be trandated into a single “_” (#005F) character. Reference the
appendix on invalid characters for a complete list.

4. Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

5. Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to the first (255 - (Iength of (new file extension) + 1
(for the'.")) - 5 (for the #CRC)) characters congtituting the file name at
this step in the process, followed by the separator '# (#0023); followed
by a4 digit CSO Hex representation of the 16-bit CRC of the original
CS0 Fileldentifier, followed by '." (#002E) and the file extension at this
step in the process.

Otherwise if there is no file extension the new Fileldentifier shal be
composed of up to the first (255 - 5 (for the #CRC)) characters

84 April 3, 1998

4.2.2.1.5 UNIX

UDF 2.00

constituting the file name at this step in the process. Followed by the
separator '# (#0023); followed by a4 digit CSO Hex representation of
the 16-bit CRC of the original CSO Fileldentifier.

Due to the restrictions imposed by UNIX operating system environments, on the
Fileldentifier associated with afile the following methodology shall be employed
to handle Fileldentifier(s) under the above-mentioned operating system
environment:

1.

2.

Fileldentifier L ookup: Upon request for a"lookUp™ of a Fileldentifier,
a case-sengitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid UNIX file
identifier for the current system environment then do not apply the
following steps.

Invalid Characters: A Fileldentifier that contains characters considered
invalid within a UNIX file name for the current system environment, or
not displayable in the current environment shall have them trandated
into" " (#005E). Multiple sequential invalid or non-displayable
characters shall be trandated into asingle“_" (#005E) character.
Reference the appendix on invalid characters for a complete list

Long Fileldentifier - In the event that the number of characters
constituting the Fileldentifier at this step in the process is greater than
MAXNameLength (maximum name length for the specific UNIX
operating system), the new Fileldentifier will consst of the first
MAXNameLength-5 characters of the Fileldentifier at this step in the
process.

Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier the file
name shall be modified to contain a CRC of the original Fileldentifier.

If there is afile extension then the new Fileldentifier shall be
composed of up to the first (MAXNameLength - (length of (new file
extension) + 1 (for the'.")) - 5 (for the #CRC)) characters constituting
the file name at this step in the process, followed by the separator '#
(#0023); followed by a4 digit CSO Hex representation of the 16-bit
CRC of the original CSO Fileldentifier, followed by '." (#002E) and the
file extension at this step in the process.

Otherwise if thereis no file extension the new Fileldentifier shall be

composed of up to the first (MAXNameLength - 5 (for the #CRC))
characters constituting the file name at this step in the process.

85 April 3, 1998

Followed by the separator '# (#0023); followed by a4 digit CSO Hex
representation of of the 16-bit CRC of the original CSO Fileldentifier.

UDF 2.00 86 April 3,1998

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors
described in ECMA 167.

Descriptor Length
Anchor Volume Descriptor Pointer 512
V olume Descriptor Pointer 512
Implementation Use Volume Descriptor 512
Partition Descriptor 512
Logica Volume Descriptor Nno max
Unallocated Space Descriptor Nno max
Terminating Descriptor 512
Logical Volume Integrity Descriptor Nno max
File Set Descriptor 512
File Identifier Descriptor Maximum of a
Logical Block Size
Allocation Extent Descriptor 24
Indirect Entry 52
Termina Entry 36
File Entry Maximum of a
Logica Block Size
Unallocated Space Entry Maximum of a
Logica Block Size
Space Bit Map Descriptor Nno max
Partition Integrity Entry N/A

5.2 Using Implementation Use Areas

5.2.1 Entity Identifiers
Refer to the section on Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space
Orphan space may exist within alogical volume, but it is not recommended since it
may be reallocated by some type of logical volume repair facility. Orphan spaceis
defined as space that isnot directly or indirectly referenced by any of the non-
implementation use descriptors defined in ECMA 167.

NOTE: Any alocated extent for which the only reference resides within an
implementation use field is considered orphan space.

UDF 2.00 87 April 3,1998

5.3 Boot Descriptor
Please refer to the "OSTA Native Implementation Specification” document for
information on the Boot Descriptor.

5.4 Technical Contacts
Technical questions regarding this document may be emailed to the OSTA
Technical Committee at info@osta.org. Also technical questions may be faxed to
the attention of the OSTA Technical Committee at 1-805-962-1542.

OSTA may aso be contacted through the following address:
Technical Committee Chairman
OSTA
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853

Also monitor the OSTA web site at www.osta.org for additional information.

UDF 2.00 88 April 3,1998

6. Appendices

6.1 UDF Entity Identifier Definitions

Entity Identifier

Description

"*OSTA UDF Compliant”

Indicates the contents of the specified logical volume or file set
is complaint with domain defined by this document.

“*UDF LV Info” Contains additional Logical Volume identification information.

"*UDF FreeEA Space" Contains free unused space within the implementation extended
attribute space.

“* UDF FreeAppEA Space” Contains free unused space within the application extended

attribute space.

“*UDF DVD CGMS Info”

Contains DVD Copyright Management Information

"*UDF OS2 EALength"

Contains OS/2 extended attribute length.

"*UDF Mac Volumelnfo"

Contains Macintosh volume information.

"*UDF Mac FinderInfo"

Contains Macintosh finder information.

“*UDF Virtual Partition”

Describes UDF Virtual Partition

“*UDF Sparable Partition”

Describes UDF Sparable Partition

“*UDF Virtual Alloc Thl”

Contains information for handling rewriting to sequentialy
written media.

“*UDF Sparing Table”

Contains information for handling defective areas on the media

UDF 2.00

89 April 3, 1998

6.2 UDF Entity Identifier Values

Entity Identifier

Byte Value

"*OSTA UDF Compliant”

#2A, #4F, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,
#6D, #70, #6C, #069, #61, #OE, #74

“*UDF LV Info” #2A, #55, #44, #46, #20, #4C, #56, #20, #49, #OE, #66, #6F

"*UDF FreeEA Space" H#2A, #55, #44, #46, #20, #46, #72, #65, #65, #45, #41, #53,
#70, #61, #63, #65

"*UDF FreeAppEA Space" #2A, #55, #44, #46, #20,

#4606, #72, #65, #65, #41, #70, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info”

#2A, #55, #44, #46, #20, #44, #56, #44, #20,
#43, #4717, #4D, #53, #20, #49, #OE, #66, #6F

"*UDF OS/2 EALength" #2A, #55, #44, #46, #20, #45, #41, #AC, #65, #OE, #67, #74,
#68
"*UDF Mac Volumelnfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,

#75, #6D, #65, #49, #6E, #66, #6F

"*UDF Mac FinderInfo"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69, #6E,
H#64, #65, #72, #49, #OE, #66, #O6F

“*UDF Virtual Partition”

#2A, #55, #44, #46, #20, #56, #69, #712, #14, #75, #61, #6C,
#20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“* UDF Sparable Partition”

#2A, #55, #44, #46, #20, #53, #10, #61, #72, #61, #62, #6C,
#65, #20, #50, #61, #72, #74, #069, #74, #69, #6F, #6E

“*UDF Virtual Alloc Thl”

#2A, #55, #44, #46, #20, #56, #69, #712, #14, #75, #61, #6C,
#20, #41, #6C, #6C, #OF, #63, #20, #54, #62, #6C

“*UDF Sparing Table”

#2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #OE, #67,
#20, #54, #61, #62, #6C, #65

UDF 2.00

90 April 3, 1998

6.3 Operating System ldentifiers
The following tables define the current allowable values for the OS Class and OS
Identifier fieldsin the IdentifierSuffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the specified
descriptor was recorded. Thevalid valuesfor thisfield are as follows:

Value Operating System Class
0 Undefined

1 DOS

2 0S5/2

3 Macintosh OS
4 UNIX
5

6

Windows 9x
Windows NT
7-255 | Reserved

The OS Identifier field will identify under which operating system the specified
descriptor was recorded. Thevalid valuesfor thisfield are as follows:

OS OS Operating System ldentified

Class | ldentifier

0 AnyVaue | Undefined

1 0 DOS/Windows 3.x

2 0 0s/2

3 0 Macintosh OS System 7

4 0 UNIX - Generic

4 1 UNIX - IBM AIX

4 2 UNIX - SUN OS/ Solaris

4 3 UNIX - HP/UX

4 4 UNIX - Silicon Graphics Irix

4 5 UNIX - Linux

4 6 UNIX - MKLinux

4 7 UNIX - FreeBSD

5 0 Windows 95

6 0 Windows NT

For the most up to date list of values for OS Class and OS Identifier please contact OSTA
and request a copy of the UDF Entity Identifier Directory. Thisdirectory will aso
contain Implementation Identifiers of ISVswho have provided the necessary information
to OSTA.

UDF 2.00 91 April 3,1998

NOTE: If you wish to add to this list please contact the OSTA Technical Committee
Chairman at the OSTA address listed in section 5.3 Technical Contacts.

UDF 2.00 92 April 3,1998

6.4 OSTA Compressed Unicode Algorithm

/***

* OSTA conpliant Uni code conpression, unconpression routines.
* Copyright 1995 Mcro Design International, Inc.
* Witten by Jason M Rinn.
* Mcro Design International gives perm ssion for the free use of the
* foll owi ng source code.
*/
#i ncl ude <stddef. h>

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to be
* unsigned 16-bit.
*/
t ypedef unsigned short unicode_t;
t ypedef unsigned char byte;

/***

* Takes an OSTA CSO conpressed uni code nane, and converts
* it to Unicode.

* The Uni code output will be in the byte order

* that the local conpiler uses for 16-bit val ues.

* NOTE: This routine only perfornms error checking on the conplD.
* It is up to the user to ensure that the unicode buffer is large
* enough, and that the conpressed uni code nanme is correct.

*

* RETURN VALUE

*

* The nunber of unicode characters which were unconpressed.

* A -1 is returned if the conpression IDis invalid.

*/

nt Unconpr essUni code(

nt nunber O Byt es, /*
byt e *UDFConpressed, /*
uni code_t *uni code) /

{

(I'nput) nunber of bytes read fromnedia. */
(I'nput) bytes read from nedi a. */
* (Qutput) unconpressed unicode characters. */

unsi gned int conpl D
i nt returnVal ue, uni codel ndex, byt el ndex;

/* Use UDFConpressed to store current byte being read. */
conpl D = UDFConpr essed[0] ;

/* First check for valid conplD. */
if (conplD!= 8 && conplD != 16)
{

returnValue = -1;
}
el se
{

uni codel ndex = O;
byt el ndex = 1;

/* Loop through all the bytes. */
whi | e (bytel ndex < nunber Of Byt es)
{

if (conplD == 16)

/*Move the first byte to the high bits of the unicode char. */
uni code[uni codel ndex] = UDFConpressed[byt el ndex++] << 8;
}

el se
uni code[uni codel ndex] = 0O;

}
i f (bytelndex < nunber Of Byt es)

UDF 2.00 93 April 3,1998

/*Then the next byte to the low bits. */
uni code[uni codel ndex] | = UDFConpr essed[byt el ndex++] ;

uni codel ndex++;
ret ur nVal ue = uni codel ndex;

return(returnVal ue);

/***

* DESCRI PTI ON:

* Takes a string of unicode wide characters and returns an OSTA CSO

* conpressed uni code string. The unicode MJUST be in the byte order of
* the conpiler in order to obtain correct results. Returns an error
* if the conpression IDis invalid.

*

* NOTE: This routine assunes the inplenentation already knows, by

* the local environnent, how many bits are appropriate and

* therefore does no checking to test if the input characters fit

* into that number of bits or not.

*

* RETURN VALUE

*

* The total nunber of bytes in the conpressed OSTA CSO string,

* i ncl udi ng the conpression ID.

* A -1 is returned if the conpression IDis invalid.

*/

i nt ConpressUni code(

i nt nunber O Chars, /* (Input) nunber of unicode characters. */
int conpl D, /* (Input) conpression ID to be used. */
uni code_t *uni code, /* (Input) unicode characters to conpress. */

byt e *UDFConpressed) /* (Qutput) conpressed string, as bytes. */
{

i nt bytel ndex, unicodel ndex;

if (conplD!= 8 && conplD != 16)

bytel ndex = -1; /* Unsupported conpression ID ! */

}
el se
{ . o
/* Place conpression code in first byte. */
UDFConpr essed[0] = conpl D;
byt el ndex = 1;
uni codel ndex = O;
whil e (uni codel ndex < nunber O Chars)
{
if (conpl D == 16)
{
/* First, place the high bits of the char
* into the byte stream
*/
UDFConpr essed[byt el ndex++] =
(uni code[uni codel ndex] & O0xFF00) >> 8;
/*Then place the low bits into the stream */
UDFConpr essed[byt el ndex++] = uni code[uni codel ndex] & O0xO0O0FF;
uni codel ndex++;
}
}

return(byt el ndex) ;

UDF 2.00 94 April 3,1998

6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum
used in the TAG descriptors of ECMA 167.

/*
* CRC 010041
*
/
static unsigned short crc_table[256] = {

0x0000, 0x1021, 0x2042, 0x3063, 0x4084, O0x50A5, 0x60C6, Ox70E7,
0x8108, 0x9129, O0xAl4A, 0xB16B, 0xCl18C, OxD1AD, OxE1CE, OxF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, O0xA35A, 0xD3BD, 0xC39C, OxF3FF, OxE3DE,
0x2462, 0x3443, 0x0420, 0x1401, Ox64E6, 0x74C7, 0x44A4, 0x5485,
OxA56A, 0xB54B, 0x8528, 0x9509, OxE5EE, OxF5CF, OxC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, Ox66F6, 0x5695, 0x46B4,
0xB75B, OxA77A, 0x9719, 0x8738, OxF7DF, OxE7FE, 0xD79D, 0xC7BC,
0x48C4, O0x58E5, 0x6886, O0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
OxCI9CC, OxDOED, OxE98E, OxF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
Ox5AF5, 0x4AD4, O0x7AB7, 0x6A96, Ox1A71, OxO0A50, 0x3A33, O0x2Al2,
OxDBFD, 0xCBDC, OxFBBF, OxEB9E, 0x9B79, 0x8B58, 0xBB3B, O0xABlA,
Ox6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
OxEDAE, OxFD8F, OxCDEC, 0xDDCD, OxAD2A, 0xBDOB, 0x8D68, 0x9D49,
Ox7E97, Ox6EB6, Ox5ED5, Ox4EF4, O0x3E13, O0x2E32, 0x1E51, OxO0E7O0,
OxFF9F, OxEFBE, OxDFDD, OxCFFC, OxBF1B, OxAF3A, 0x9F59, O0x8F78,
0x9188, 0x81A9, O0xB1CA, OxAlEB, 0xD10C, 0xCl12D, OxF14E, OxE1l6F,
0x1080, Ox00Al, 0x30C2, O0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, O0xA3FB, 0xB3DA, 0xC33D, 0xD31C, OxE37F, OxF35E,
0x02B1, 0x1290, O0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
OxB5EA, OxA5CB, 0x95A8, 0x8589, OxF56E, OxE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
OxA7DB, O0xB7FA, 0x8799, 0x97B8, OxE75F, OxF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, OxF90E, OxE92F, 0x99C8, O0x89E9, 0xB98A, O0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18CO, OxO08E1l, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, OxEB3F, OxFB1E, 0x8BF9, 0x9BD8, 0xABBB, O0xBB9A,
0x4A75, O0x5A54, O0x6A37, O0x7A16, OxO0AF1l, Ox1ADO, 0Ox2AB3, 0x3A92,
OxFD2E, OxEDOF, OxDD6C, 0xCD4D, OxBDAA, O0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4CA5, 0x3CA2, 0x2C83, 0x1CEO, 0x0CcC1,
OXEF1F, OxFF3E, OxCF5D, OxDF7C, OxAF9B, OxBFBA, 0x8FD9, Ox9FF8,
Ox6E17, Ox7E36, O0x4E55, Ox5E74, 0x2E93, Ox3EB2, OxO0ED1, O0x1EFO

b

unsi gned short

cksum(s, n)
regi ster unsigned char *s;
register int n;

{
regi ster unsigned short crc=0;
while (n-- > 0)

crc = crc_table[(crc>>8 ~ *s++) & Oxff] ~ (crc<<8);

return crc;

}

/* UNI CODE Checksum */

unsi gned short

uni code_cksum(s, n)
regi ster unsigned short *s;
register int n;

regi ster unsigned short crc=0;
while (n-- > 0) {

UDF 2.00 o5 April 3,1998

/* Take high order byte first--corresponds to a big endian byte stream */
crc = crc_table[(crc>>8 ~ (*s>>8) & Oxff] " (crc<<8);
crc = crc_table[(crc>>8 ~ (*s++ & Oxff)) & Oxff] ~ (crc<<8);

}
return crc;
}
#i f def MAIN
unsi gned char bytes[] = { 0x70, Ox6A, O0x77 };
mai n()
unsi gned short x;
x = cksun{bytes, sizeof bytes);
printf("checksum cal cul ated=%l. 4x, correct=%.4x\en", x, 0x3299);
exit(0);
}
#endi f

UDF 2.00 96 April 3,1998

The CRC table in the previous listing was generated by the following program:

#i ncl ude <stdi 0. h>

/*
* a.out 010041 for CRC-CCITT
*/

mai n(argc, argv)
int argc; char *argv[];
{

unsi gned long crc, poly;
int n, i;

sscanf (argv[1], "% o", &poly);

i f(poly & Oxffff0000){
fprintf(stderr, "polynomal is too large\en");
exit(1);

}

printf("/*\en * CRC 0%\en */\en", poly);
prlntf(static unsigned short crc tabl e[256] = {\en");
for(n = 0; n < 256; n++){
if(n % 8 == 0)
printf(" ");
crc = n << §;
for(i =0; i < 8; i++){
if(crc & 0x8000)
crc = (crc << 1) » poly;
el se
crc <<= 1;
crc &= OxFFFF;

}
if(n == 255)

printf("0x¥®4X ", crc);
el se

printf("0x¥®4X, ", crc);
if(n %8 == 7)

printf("\en");

i)rintf("};\en");
exit(0);

All the above CRC code was devised by Don P. Mitchell of AT& T Bell Laboratories and
Ned W. Rhodes of Software Systems Group.

It has been published in "Design and Validation of Computer Protocols,"

Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.

Copyright isheld by AT&T.

AT&T gives permission for the free use of the above source code.

UDF 2.00 97 April 3,1998

6.6 Algorithm for Strategy Type 4096

This section describes a strategy for constructing an ICB hierarchy. For strategy type
4096 the root 1CB hierarchy shall contain 1 direct entry and 1 indirect entry. To indicate
that thereis 1 direct entry a 1 shall be recorded as a Uint16 in the StrategyParameter field
of the ICB Tag field. A value of 2 shall be recorded in the MaximumNumberOfEntries
field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also contain 1
direct entry and 1 indirect entry, where the indirect entry specifies the address of another
ICB of the same type. See the figure below:

DE
IE

DE
IE

DE
IE N

NOTE: This strategy builds an ICB hierarchy that isasimple linked list of direct entries.

UDF 2.00 98 April 3,1998

6.7 ldentifier Translation Algorithms
The following sample source code examples implement the file identifier trandation
algorithms described in this document.

The following basic agorithms may also be used to handle OS specific trandations of the
Volumeldentifier, VolumeSetldentifier, LogicalVolumelD and FileSetID.

6.7.1 DOS Algorithm

/***

* OSTA UDF conpliant file name translation routine for DOCS.

* Copyright 1995 Mcro Design International, Inc.
Witten by Jason M Rinn.
M cro Design International gives perm ssion for the free use of the
foll owi ng source code.

/

* % ok *

#i ncl ude <st ddef. h>

#defi ne DOS_NAME_LEN 8

#define DOS_EXT_LEN 3
#define | LLEGAL_CHAR MARK 0x005F
#defi ne TRUE 1
#defi ne FALSE 0
#def i ne PERI OD 0x002E
#def i ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/
t ypedef unsigned short unicode_t;
t ypedef unsigned char byte;

[*** PROTOTYPES ***/
unsi gned short uni code_cksun{register unsigned short *s, register int n);
int Islllegal (unicode_t current);

/* Define functions or macros to both determne if a character
* is printable and conpute the uppercase version of a character
* under your inplenmentation.
*/

i nt Uni codel sPrint(unicode_t);

uni code_t Uni codeToUpper (uni code_t);

/***

* Transl at e udf Name to dosName usi ng OSTA conpli ant.

* dosNane nmust be a unicode string with min length of 12.
*

* RETURN VALUE

* Nunmber of unicode characters in dosNane.

*/

nt UDFDOSNane(

uni code_t *dosNane, /* (Qutput)DOS conpati bl e nane. */
uni code_t *udf Nane, /* (Input) Name from UDF vol une. */
i nt udf Len) /* (Input) Length of UDF Name. */

int index, doslndex = 0, extlndex = 0, |astPeriodlndex;
int needsCRC = FALSE, hasExt = FALSE, witingExt = FALSE;

UDF 2.00 99 April 3,1998

unsi gned short val ueCRC;
uni code_t ext[DOS_EXT_LEN], current;

/*Used to convert hex digits. Used ASCII for readability. */
const char hexChar[] = "0123456789ABCDEF";

for (index 0 ; index < udfLen ; index++)

current
current

udf Narme[i ndex] ;
Uni codeToUpper (current);

if (current == PERI OD)
i f (doslndex==0 || hasExt)

/* lgnore | eading periods or any other than
* used for extension.
*/
needsCRC = TRUE;
}

el se

{
/* First, find last character which is NOT a period

* or space.
*/
| ast Peri odl ndex = udflLen - 1;
whi |l e(l ast Peri odl ndex >=0 &&
(udf Nane[| ast Peri odl ndex] == PERI QD | |
udf Narme[| ast Peri odl ndex] == SPACE))

| ast Peri odl ndex- -;

}

/* Now search for |ast remmining period. */
whil e(l astPeriodl ndex >= 0 &&
udf Nanme[| ast Peri odl ndex] != PERI OD)

| ast Peri odl ndex- -;

}

/* See if the period we found was the last or not. */
if (lastPeriodlndex != index)

needsCRC = TRUE; /* If not, nane needs translation. */

}

/* As long as the period was not trailing,
* the file name has an extension.

*/

if (lastPeriodlndex >= 0)

hasExt = TRUE;
}
}
}
el se

{

if ((!'hasExt && doslndex == DOS_NAME_LEN) ||
ext I ndex == DOS_EXT_LEN)

/* File name or extension is too long for DOS. */
needsCRC = TRUE;

}

el se

{
if (current == SPACE) /* lgnore spaces. */

UDF 2.00 100

April 3, 1998

needsCRC = TRUE;

}
el se
{ . .
/* Look for illegal or unprintable characters. */
if (Islllegal(current) || !UnicodelsPrint(current))
{
needsCRC = TRUE;
current = | LLEGAL_CHAR_ MARK;
/* Skip Illegal characters(even spaces),
* but not periods.
*/
whi | e(i ndex+1 < udfLen
&& (Isll1egal (udf Name[i ndex+1])
|| !Unicodel sPrint(udf Name[i ndex+1]))
&& udf Nane[i ndex+1] != PERI OD)
i ndex++;
}
}
/* Add current char to either file nane or ext. */
if (writingExt)
{
ext [ext | ndex++] = current;
}
el se
dosNane[dosl ndex++] = current;
}

}

/* See if we are done with file nane, either because we reached
* the end of the file name length, or the final period.

*/

if ('witingExt &% hasExt && (doslndex == DOS_NAME_LEN ||

i ndex == | ast Peri odl ndex))
{
/* If so, and the name has an extension, start reading it. */
writingExt = TRUE;
/* Extension starts after |ast period. */
i ndex = | ast Peri odl ndex;
}
}
/*Now handle CRC i f needed. */
i f (needsCRC)
{

}

| *
i f

UDF 2.00

/* Add CRC to end of file name or at position 4. */
i f (doslndex >4)

dosl ndex = 4;

}
val ueCRC = uni code_cksun{ udf Nane, udfLen);

/* Convert 16-bit CRC to hex characters. */

dosNane[dosl ndex++] = hexChar[(val ueCRC & Oxf000) >> 12]
dosNane[dosl ndex++] = hexChar[(val ueCRC & 0x0f 00) >> 8];
dosNane[dosl ndex++] = hexChar[(val ueCRC & 0x00f0) >> 4];
dosNane[dosl ndex++] = hexChar[(val ueCRC & 0x000f)];

Add extension, if any. */
(extlndex !'= 0)

101

April 3, 1998

dosNane[dosl ndex++] = PERI OD;
for (index = 0; index < extlndex; index++)

dosNane[dosl ndex++] = ext[index];

}

return(dosl ndex) ;

/***

* Decides if a Unicode character matches one of a |ist

* of ASCII characters.

* Used by DOS version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCI| subset of Unicode.
* Works very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCI| string.
*/

i nt Unicodel nString(

unsi gned char *string, /* (Input) String to search through. */

uni code_t ch) /* (Input) Unicode char to search for. */

int found = FALSE;

while (*string != '"\0" && found == FALSE)
{ /* These types should conpare, since both are unsigned nunbers. */
if (*string == ch)
f ound = TRUE;
}st ring++;

return(found);

/***
* Deci des whet her character passed is an illegal character for a

* DOS file nane.

*

* RETURN VALUE

*

* Non-zero if file character is illegal.

*/

nt Islllegal(
uni code_t ch) /* (Input) character to test. */

{ /* Genuine illegal char's for DOS. */
if (ch < 0x20 || UnicodelnString("\\/:*2\"<>|", ch))
return(l);
el se
return(0);
}

UDF 2.00 102 April 3,1998

6.7.2 OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm

/***

* OSTA UDF conpliant file name translation routine for OS/2,

* W ndows 95, W ndows NT, Macintosh and UNI X.

* Copyright 1995 Mcro Design International, Inc.
Witten by Jason M Rinn.
M cro Design International gives perm ssion for the free use of the
foll owi ng source code.

/

* % ok *

/***

* To use these routines with different operating systens.
*
cs/ 2

Define OS2

Defi ne MAXLEN = 254

W ndows 95
Define WN_95
Defi ne MAXLEN = 255

W ndows NT
Define W N_NT

Define MAXLEN = 255

Maci nt osh:
Defi ne MAC.
Defi ne MAXLEN = 31.

UNI X
Define UNI X
Defi ne MAXLEN as specified by unix version.

E I T I R B S . N T I A S

/

#define | LLEGAL_CHAR MARK 0x005F

#defi ne CRC_MARK 0x0023
#defi ne EXT_SI ZE 5
#def i ne TRUE 1
#def i ne FALSE 0
#def i ne PERI OD 0x002E
#def i ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/
t ypedef unsigned int unicode_t;
t ypedef unsigned char byte;

[*** PROTOTYPES ***/
int Islllegal (unicode_t ch);
unsi gned short uni code_cksun(register unsigned short *s, register int n);

/* Define a function or macro which deternines if a Unicode character is
* printabl e under your inplementation.
*/

i nt Uni codel sPrint(unicode_t);

/***

* Translates a long file nane to one using a MAXLEN and an ill egal

* char set in accord with the OSTA requirenents. Assunes the nane has
* already been translated to Uni code.
*
*

RETURN VALUE

UDF 2.00 103 April 3,1998

*

* Nunber of unicode characters in translated nane.
*/
i nt UDFTr ansNane(
uni code_t *newNane, / *
uni code_t *udf Nanme, /
i nt udf Len, /
{

(Qut put) Transl ated nane. Miust be of |ength MAXLEN*/
* (Input) Nanme from UDF vol une. */
* (Input) Length of UDF Nane. */

int index, newl ndex = 0, needsCRC = FALSE;

i nt extlndex, newExtlndex = 0, hasExt = FALSE;
#ifdef (OS2 | WN_95 | WN_NT)

int traillndex = O;
#endi f

unsi gned short val ueCRC;

uni code_t current;

const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udflLen; index++)

{
current = udf Nanme[i ndex];
if (Islllegal(current) || !UnicodelsPrint(current))
needsCRC = TRUE;
/* Replace Illegal and non-displayable chars with underscore. */
current = | LLEGAL_CHAR_ MARK;
/* Skip any other illegal or non-displayable characters. */

whil e(i ndex+1 < udfLen && (Isll1egal (udf Name[i ndex+1])
|| !Unicodel sPrint(udf Name[i ndex+1])))

i ndex++;

/* Record position of extension, if one is found. */
if (current == PERIOD && (udflLen - index -1) <= EXT_SI ZE)

{
if (udfLen == index + 1)
/* Atrailing period is NOT an extension. */
hasExt = FALSE;
}
el se
hasExt = TRUE;
ext | ndex = index;
newExt | ndex = newl ndex;
}
}

#ifdef (OS2 | WN_95 | W N_NT)
/* Record position of last char which is NOT period or space. */
else if (current !'= PERIOD && current != SPACE)

traill ndex = new ndex;

#endi f
if (newl ndex < MAXLEN)
newNane[newl ndex++] = current;
}
el se
needsCRC = TRUE;
}
}

UDF 2.00 104 April 3,1998

#ifdef (OS2 | WN_95 | W N_NT)
/* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */
if (traillndex != newl ndex - 1)

{
newl ndex = traillndex + 1;
needsCRC = TRUE;
hasExt = FALSE; /* Trailing period does not nake an extension. */
}
#endi f

i f (needsCRC)
{

uni code_t ext[EXT_SI ZE] ;
int |ocal Extl ndex = 0;
i f (hasExt)
{
i nt maxFi | enanelLen;
/* Transl ate extension, and store it in ext. */
for(index = 0; index<EXT_SIZE && extlndex + index +1 < udflLen;
i ndex++)
{

current = udf Name[extlndex + index + 1];

if (Islllegal (current) || !UnicodelsPrint(current))
{
needsCRC = 1;
/* Replace Illegal and non-displ ayabl e chars
* with underscore.
*/
current = | LLEGAL_CHAR_ MARK;
/* Skip any other illegal or non-displayable
* characters.
*/
whi l e(index + 1 < EXT_SIZE
&& (Islllegal (udf Nane[extl ndex + index + 2])
|| 'isprint(udf Name[extlndex + index + 2])))

i ndex++;

}

ext [l ocal Ext | ndex++] = current;

}

/* Truncate filenane to | eave room for extension and CRC. */
maxFi | enanmeLen = ((MAXLEN - 5) - |ocal Extlndex - 1);

i f (newi ndex > maxFil enanelLen)

newl ndex = maxFi | enanelLen;

}
el se

newl ndex = newExt | ndex;
}

}
else if (newl ndex > MAXLEN - 5)

/*1f no extension, nmake sure to | eave roomfor CRC. */
newl ndex = MAXLEN - 5;

}
newNane[newl ndex++] = CRC_MARK; /* Add mark for CRC. */

/*Calculate CRC fromoriginal filenane fromFileldentifier. */
val ueCRC = uni code_cksun{udf Nane, udfLen);

/* Convert 16-bits of CRC to hex characters. */

newNane[newl ndex++] = hexChar[(val ueCRC & 0xf000) >> 12];
newNanme[newl ndex++] = hexChar[(val ueCRC & 0x0f 00) >> 8];

UDF 2.00 105 April 3,1998

hexChar [(val ueCRC & 0x00f Q) >> 4];
hexChar [(val ueCRC & 0x000f)];

newNanme[newl ndex++]
newNanme[newl ndex++]

/* Place a translated extension at end, if found. */
if (hasExt)
{

newNane[newl ndex++] = PERI OD;
for (index = 0;index < local Extlndex ;index++)

newNanme[newl ndex++] = ext[index];

}
}

return(new ndex) ;

#ifdef (052 | WN. 95 | WN_NT)

/***

* Decides if a Unicode character matches one of a |ist

* of ASCII characters.

* Used by OS2 version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCI| subset of Unicode.
* Works very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCI| string.
*/

i nt Unicodel nString(

unsi gned char *string, /* (Input) String to search through. */

uni code_t ch) /* (Input) Unicode char to search for. */

int found = FALSE;
while (*string != '"\0" && found == FALSE)
{

/* These types should conpare, since both are unsigned nunbers. */
if (*string == ch)

f ound = TRUE;
}

string++;
return(found);
}
#endi f /* OS2 */

/***

* Deci des whet her the given character is illegal for a given CS.
*

* RETURN VALUE

*

*

Non-zero if char is illegal.
*/
int Islllegal (unicode_t ch)
#i f def MAC
/* Only illegal character on the MAC is the colon. */
if (ch == 0x003A)
return(l);
el se

return(0);

#elif defined UNI X

UDF 2.00 106 April 3,1998

/* Illegal UNI X characters are NULL and slash. */

if (ch == 0x0000 ||

return(l);
el se

return(0);

#elif defined (OS2 |

ch == 0x002F)

WN 95 | WN_NT)

/* Illegal char's for OS/2 according to WARP tool kit.

if (ch < 0x0020 ||
return(l);

el se
return(0);

b
#endi f
}

UDF 2.00

Uni codel nString("\\/:*?2\"<>|",

107

ch))

April 3, 1998

6.8 Extended Attribute Checksum Algorithm

UDF 2.00

/

Cal cul ates a 16-bit checksum of the Inplenentation Use
Extended Attribute header. The fields AttributeType

t hrough Implementationldentifier inclusively represent the
data covered by the checksum (48 bytes).

* 0% ok X X X X

/

U nt16 Conput eEAChecksum(byte *data)

{

Ui nt 16 checksum = 0;
Ui nt count ;

for(count = 0; count < 48; count++)

{
}

return(checksum);

checksum += *dat a++;

108

April 3, 1998

6.9 Requirements for DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DV D-ROM
discs.

DVD-ROM discs shal be mastered with the UDF file system
DVD-ROM discs shal consist of asingle volume and a single partition.

NOTE:. Thedisc may aso include the ISO 9660 file system. If the disc contains both
UDF and 1SO 9660 file systems it shall be known as a UDF Bridge disc. This UDF Bridge
disc will alow playing DVD-ROM mediain computers which may only support 1SO
9660. As UDF computer implementations are provided, the need for 1SO 9660 will
disappear, and future discs should contain only UDF.

If you intend to do any DV D development with UDF, please make sure that you fill out
the OSTA UDF Developer Registration Form located in appendix 6.11. For planned
operating system, check the Other box and writein DVD.

6.9.1 Constraints imposed by UDF for DVD-Video

This section describes the restrictions and requirements for UDF formatted DV D-Video
discs for dedicated DVD content players. DVD-Video is one specific application of DVD-
ROM using the UDF format for the home consumer market. Due to limited computing
resources within a DV D player, restrictions and requirements were created so that aDVD
player would not have to support every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain al required data as specified by ECMA
167 (2™ edition) and UDF 1.02. Thiswill ease playing of DVD-Video in computer
systems. Examples of such datainclude the time, date, permission bits, and a free space
map (indicating no free space). While DVD player implementations may ignore these
fields, a UDF computer system implementation will not. Both entertainment-based and
computer-based content can reside on the same disc.

NOTE: DVD-Video discs mastered according to UDF 2.00 may not be compatible with
DVD-Video players. DVD-Video players expect mediain UDF 1.02 format.

In an attempt to reduce code size and improve performance, al division described is
integer arithmetic; all denominators shall be 2*n, such that all divisons may be carried out
vialogica shift operations.

A DVD player shal only support UDF and not I SO 9660.

Originating systems shall constrain individual files to be less than than or equal to 2% -
Logical Block Size bytesin length.

UDF 2.00 109 April 3,1998

The data of each file shall be recorded as a single extent. Each File Entry shall be
recorded using the ICB Strategy Type 4.

File and directory names shall be compressed as 8 bits per character using OSTA
Compressed Unicode format .

A DVD player shall not be required to follow symbolic links to any files.

The DVD-Video files shall be stored in a subdirectory named "VIDEO TS" directly
under the root directory. Directory names are standardized in the DVD Specifications
for Read-Only Disc document.

NOTE: The DVD Specifications for Read-Only Disc is a document, developed by
the DVD Consortium, that describes the names of all DVD-Video filesand a DVD-
Video directory which will be stored on the media, and additionally describes the
contents of the DVD-Video files.

The file named "VIDEO_TS.IFO" inthe VIDEO_TS subdirectory shall be read first.

All the above constraints apply only to the directory and files which the DVD player needs
to access. There may be other files and directories on the media which are not intended
for the DVD player and do not meet the above listed constraints. These other files and
directories are ignored by the DVD player. Thisiswhat enables the ability to have both
entertainment-based and computer-based content on the same disc.

6.9.2 How to read a UDF disc
This section describes the basic procedures that aDVD player would go through to read a
UDF formatted DVD-Video disc.

6.9.2.1 Step 1. Volume Recognition Sequence
Find an ECMA 167 Descriptor in a volume recognition area which shall start at
logical sector 16.

6.9.2.2 Step 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer which is located at an anchor point must be
found. Duplicate anchor points shall be recorded at logical sector 256 and logical
sector n, where n is the highest numbered logical sector on the disc.

A DVD player only needs to look at logical sector 256; the copy at logical sector nis
redundant and only needed for defect tolerance. The Anchor Volume Descriptor
Pointer contains three things of interest:
1. Static structures that may be used to identify and verify integrity of the disc.
2. Location of the Main Volume Descriptor Sequence (absolute logical sector
number)
3. Length of the Main VVolume Descriptor Sequence (bytes)

UDF 2.00 110 April 3,1998

The datalocated in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer may be
used for format verification if desired. Verifying the checksum in byte 4 and CRC in
bytes 8-11 are good additional verifications to perform. MVDS L ocation and
MVDS _Length are read from this structure.

6.9.2.3 Step 3. Volume Descriptor Sequence
Read logical sectors:

MVDS _Location through MVDS Location + (MVDS_Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence can not
be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with atag identifier of 5. The partition
number and partition location shall be recorded in logica sector number.

Partition_L ocation and Partition_L ength are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with atag identifier of 6. The
location and length of the File Set Descriptor shall be recorded in the Logical Volume
Descriptor.

FSD_Location, and FSD_Length are returned from this structure.

6.9.2.4 Step 4. File Set Descriptor
The File Set Descriptor islocated at logical sector numbers:

Partition_L ocation + FSD_L ocation through
Partition_L ocation + FSD_L ocation + (FSD_L ength - 1) / BlockSize

RootDir_L ocation and RootDir_L ength shall be read from the File Set Descriptor in
logical block number.

6.9.2.5 Step 5. Root Directory File Entry
RootDir_L ocation and RootDir_Length define the location of a File Entry. The File
Entry describes the data space and permissions of the root directory.

The location and length of the Root Directory is returned.

6.9.2.6 Step 6. Root Directory
Parse the data in the root directory extent to find the VIDEO_TS subdirectory.

Find the VIDEO_TS File Identifier Descriptor. The name shall bein 8 bit
compressed UDF format. Verify that VIDEO_TSisadirectory.

UDF 2.00 111 April 3,1998

Read the File Identifier Descriptor and find the location and length of a File Entry
describing the VIDEO_TS directory.

6.9.2.7 Step 7. File Entry of VIDEO_TS

The File Entry found in the step above describes the data space and permissions of the
VIDEQO_TSdirectory.

The location and length of the VIDEO_TS directory is returned.

6.9.2.8 Step 8. VIDEO_TS directory
The extent found in the step above contains sets of File Identifier Descriptors. In this
pass, verify that the entry pointsto afile and is named VIDEO_TS.IFO.

6.9.2.9 Step 9. File Entry of VIDEO_TS.IFO

The File Entry found in the step above describes the data space and permissions of the
VIDEO _TS.IFOfile.

The location and length of the VIDEO_TS.IFO fileis returned.

Further files can be found in the same manner asthe VIDEO_TS.IFO file when
needed.

6.9.3 Obtaining DVD Documents

To obtain a copy of the DVD Specifications for Read-Only Disc document as well as
other DVD related material, contact:

Toshiba Corporation

DVD Business Promotion & Support
DVD Products Division

Attn: Senior Manager

TEL: +81-3-3457-2473

FAX: +81-3-5444-9430

UDF 2.00 112 April 3,1998

6.10 Recommendations for CD Media

CD Media (CD-R and CD-RW) requires specia consideration due to its nature. CD was
originally designed for read-only applications which affects the way in which it is written.
The following guidelines are established to ensure interchange.

Each file and directory shall be described by asingle direct ICB. The ICB should be
written after the file data to allow for data underruns during writing, which will cause
logical gapsinthefiledata. The ICB can be written afterward which will correctly
identify al extents of the file data. The ICB shall be written in the data track, the file
system track (if it exists), or both.

6.10.1 Use of UDF on CD-R media

ECMA 167 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and
either N or (N - 256), where n is the last recorded Physical Address on the media. UDF
requires that the AVDP be recorded at both sector 256 and sector (N - 256) when each
sessionisclosed (2.2.3). Thefile system may be in an intermediate state before closing
and still be interchangeable, but not strictly in compliance with ECMA 167. Inthe
intermediate state, only one AVDP exists. It should exist at sector 256, but if thisis not
possible due to atrack reservation, it shall exist at sector 512.

Implementations should place file system control structures into virtual space and file data
into real space. Reader implementations may cache the entire VAT, the size of the VAT
should be considered by any UDF originating software. Computer based implemenations
are expected to handle VAT sizes of at least 64K bytes; dedicated player implementations
may handle only smaller sizes.

The VAT may be located by using READ TRACK INFORMATION (for unfinished
media) or READ TOC or READ CD RECORDED CAPACITY for finished media. See
X3T10-1048D (SCSI-3 Multi Media Commands).

6.10.1.1 Requirements
Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or
Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on one
discisnot alowed.

If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

File number =0
Channel number =0
Submode = 08h
Coding information = 0

UDF 2.00 113 April 3,1998

An intermediate state is allowed on CD-R mediain which only one AVDP is recorded;
thissingle AVDP shall be at sector 256 or sector 512 and according to the
multisession rules below.

Sequentid file system writing shall be performed with variable packet writing. This
allows maximum space efficiency for large and small updates. Variable packet writing
is more compatible with CD-ROM drives as current models do not support method 2
addressing required by fixed packets.

The Logical Volume Integrity descriptor shall be recorded and the volume marked as
open. Logica volume integrity can be verified by finding the VAT ICB at the last
recorded Physical Address. If the VAT ICB is present, the volume is clean; otherwise
itisdirty.

The Partition Header descriptor, if recorded, shall specify no Unallocated Space Table,
no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space Table, and
no Freed Space Bitmap. The drive is capable of reporting free space directly,
eliminating the need for a separate descriptor.

Each surface shall contain O or 1 read only partitions, O or 1 write once partitions, and
0 or 1 virtua partitions. CD media should contain 1 write once partition and 1 virtual
partition.

6.10.1.2 “Bridge” formats

I SO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an SO 9660 file
system is desired, it may contain references to the same files as those referenced by ECMA
167 structures, or reference a different set of files, or a combination of the two.

It is assumed that early implementations will record some 1SO 9660 structures but that as
implementations of UDF become available, the need for 1SO 9660 structures will
decrease.

If an 1SO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA
extensions of SO 9660 must be used.

6.10.1.3 End of session data

A session is closed to enable reading by CD-ROM drives. The last complete session on
the disc shall conform completely to ECMA 167 and have two AVDPs recorded. This
shall be accomplished by writing data according to End of session data table below.
Although not shown in the following example, the data may be written in multiple packets.

UDF 2.00 114 April 3,1998

End of session data

Count Description
1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user
data, file system structures, and/or link
areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will
be enhanced. Implementations shall ensure that enough space is available to record the
end of session data. Recording the end of session data brings a volume into compliance
with ECMA 167.

6.10.2 Use of UDF on CD-RW media

CD-RW mediais randomly readable and block writable. This means that while any
individual sector may be read, writing must occur in blocks containing multiple sectors.
CD-RW systems do not provide for sparing of bad areas. Writing rules and sparing
mechanisms have been defined.

6.10.2.1 Requirements
Writing which conforms to this section of the standard shall be performed using fixed
length packets.

Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,
either Mode 1 or Mode 2 Form 1 shall be used.

If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

File number =0
Channel number =0
Submode = 08h
Coding information = 0

UDF 2.00 115 April 3,1998

The host shall perform read/modify/write to enable the apparent writing of single 2K
sectors.

The packet length shall be set when the disc is formatted. The packet length shall be
32 sectors (64 KB).

The host shall maintain alist of defects on the disc using a Non-Allocatable Space List
(see3.3.7.1.2).

Sparing shall be managed by the host via the sparable partition and a sparing table.

Discs shall be formatted prior to use.

6.10.2.2 Formatting

Formatting shall consist of writing alead-in, user data area, and lead-out. These areas
may be written in any order. This physical format may be followed by a verification pass.
Defects found during the verification pass shall be enumerated in the Non-Allocatable
Space list (see 3.3.7.1.2). Findlly, file system root structures shall be recorded. These
mandatory file system and root structures include the V olume Recognition Sequence,
Anchor Volume Descriptor Pointers, a Volume Descriptor Sequence, a File Set
Descriptor and a Root Directory.

The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256,
where N is the Physical Address of the last addressable sector.

Allocation for sparing shall occur during the format process. The sparing allocation may
be zero in length.

The free space descriptors shall be recorded and shall reflect space allocated to defective
areas and sector sparing aress.

The format may include all available space on the medium. However, if requested by the
user, a subset may be formatted to save formatting time. That smaller format may be later
“grown” to the full available space.

UDF 2.00 116 April 3,1998

6.10.2.3 Growing the Format
If the medium is partially formatted, it may be later grown to alarger size. This operation
consists of :

Optionally erase the lead-in of the last session.

Optionally erase the lead-out of the last session.

Write packets beginning immediately after the last previously recorded packet.
Update the sparing table to reflect any new spare areas

Adjust the partition map as appropriate

Update the free space map to show new available area

Move thelast AVDP to the new N - 256

Write the lead-in (which reflects the new track size)

Write the lead-out

6.10.2.4 Host Based Defect Management

The host shall perform defect management operations. The CD format was defined
without any defect management; to be compatible with existing technology and
components, the host must manage defects. There are two levels of defect management:
Marking bad sectors at format time and on-line sparing. The host shall keep the tables on
the media current.

6.10.2.5 Read Modify Write Operation

CD-RW media requires large writable units, as each unit incurs a 14KB overhead. The
file system requires a 2KB writable unit. The difference in write sizesis handled by a
read-modify-write operation by the host. An entire packet is read, the appropriate
portions are modified, and the entire packet written to the CD.

Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levels of Compliance

6.10.2.6.1 Level 1

The disc shall be formatted with exactly one lead-in, program area, and lead-out. The
program area shall contain exactly one track. The start of the partition shall be on a
packet boundary. The partition length shall be an integral multiple of the packet size.

6.10.2.6.2 Level 2

The last session shall contain the UDF file system. All prior sessions shall be contained in
one read-only partition.

UDF 2.00 117 April 3,1998

6.10.2.6.3 Level 3
No restrictions shall apply.

6.10.3 Multisession and Mixed Mode

The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by ECMA 167 to be at alocation relative to the beginning of the disc. The
beginning of a disc shall be determined from a base address S for the purposes of finding
the VRS and AVDP.

‘S’ isthe Physical Address of the first data sector in the first recorded data track in the last
existent session of the volume. ‘S’ isthe same value currently used in multisession |SO
9660 recording. Thefirst track in the session shall be a data track.

‘N’ isthe physical sector number of the last recorded data sector on a disc.

If random write mode is used, the media may be formatted with zero or one audio sessions
followed by exactly one writable data session containing one track. Other session
configurations are possible but not described here. There shall be no more than one
writable partition or session at one time, and this session shall be the last session on the
disc.

6.10.3.1 Volume Recognition Sequence
The following descriptions are added to UDF (see d'so ECMA 167 Part 2) in order to
handle a multisession disc.

The volume recognition area of the UDF Bridge format shall be the part of the volume
Space starting at sector S + 16.

The volume recognition space shall end in the track in which it begins. As aresult of
this definition, the volume recognition area always exists in the last session of adisc.
When recorded in Random Access mode, a duplicate Volume Recognition Sequence
should be recorded beginning at sector N - 16.

6.10.3.2 Anchor Volume Descriptor Pointer

Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following logical
sector numbers: S + 256 and N - 256. The AVDP at sector N - 256 shall be recorded
before closing a session; it may not be recorded while a session is open.

6.10.3.3 UDF Bridge format

The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF Bridge disc shall contain a UDF file system in its last session. The last
session shall follow the rules described in “Multisession and Mixed Mode” section above.
The disc may contain sessions that are based on SO 9660, audio, vendor unique, or a
combination of file systems. The UDF Bridge format allows CD enhanced discs to be
created.

A new Main and Reserve Volume Descriptor Sequence may exist in each added session,
and may be different than earlier VDSs.

UDF 2.00 118 April 3,1998

If the last session on a CD does not contain avalid UDF file system, the disc is hot a UDF
disc. Only the UDF structuresin the last session, and any UDF structures and data

referenced through them, are valid.

The UDF session may contain pointers to data or metadata in other sessions, pointers to
data or metadata only within the UDF session, or a combination of both. Some examples

of UDF Bridge discs are shown below.

Multisession UDF disc

Access to LSN=16+x Access to LSN=256
| B
—> —>
16 sectors R 16 sectors R
256 sectors N - 256 / 256 sectors
LSN=0 LSN=S
|Fi rst Session | 1% Recorded Track in the last session
|:| : Volume recognition area
I : Anchor point
CD enhanced disc
_']_St session 2nd session
UDF Session aup-
Playable by conventional CD-Player Used by UDF

UDF 2.00 119

April 3, 1998

| SO 9660 converted to UDF

1% session 2" session 3" session
9660 Session 9660 Session UDF Session >
Written by conventional 9660 formatter software
Managed by UDF
Foreign format converted to UDF
1% session 2" session 3" session
Data Session Data Session UDF Session aup-
Written by another file system
Managed by UDF
UDF 2.00 120 April 3,1998

6.11 UDF Media Format Revision History

The following table shows when changes to the UDF Specification have taken place that
affect the UDF format that can be recorded on a piece of media. The Document Change
Notices (DCNs) which document a specific change are referenced in the table. The
column Update in UDF Revision describes which revision of the UDF specification that
the change wasincluded. The fields Minimum UDF Read Revision and Minimum UDF
Write Revision relate to the Revision Access Control fields described in 2.2.6.4.

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
Allocation Extent Descriptor 2-002 1.02 1.02 1.02
Path Component File Version Number 2-003 1.02 1.02 1.02
Parent Directory Entries 2-004 1.02 1.02 1.02
Device Specification Extended Attribute 2-005 1.02 1.01 1.02
Maximum Logical Extent Length 2-006 1.02 1.02 1.02
Unallocated Space Entry 2-008 1.02 1.01 1.02
DVD Copyright Management Information 2-009 1.02 1.02 1.02
Logica Volume Identifier 2-010 1.02 1.01 1.02
Extent Length Field of an Allocation Descriptor 2-012 1.02 1.01 1.02
Non-relocatable & Contiguous Flags 2-013 1.02 1.01 1.02
Revision of Requirements for DVD-ROM 2-014 1.02 1.02 1.02
Revision Access Control 2-015 1.02 1.01 1.02
Volume Set Identifier 2-017 1.02 1.01 1.02
Uniquel Ds for Extended Attributes 2-018 1.02 1.02 1.02
Clarification of Dstrings 2-019 1.02 1.01 1.02
Application FreeEA Space Extended Attribute 2-020 1.02 1.02 1.02
Update of Identifier Suffix to 1.02 2-021 1.02 1.02 1.02
Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50
Virtual Partition Map Entry 2-026 1.50 1.50 1.50
Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50
Addition of Virtual Allocation Table 2-028 1.50 1.50 1.50
Addition of Sparing Table 2-029 1.50 1.50 1.50
Addition of Non-Allocatable Space List 2-030 1.50 1.02 1.50
Reccommmendations for CD Media 2-031 1.50 1.50 1.50
Change 1.50 to 2.00 2-033 2.00 1.02 2.00
Clarified Domain flags 2-034 2.00 1.02 2.00
Unicode 2.0 Support 2-035 2.00 1.02 2.00
Named Streams 2-036 2.00 2.00 2.00
Unique ID Table as a Named Stream 2-037 2.00 1.02 2.00
Mac Resource Fork as a Named Stream 2-038 2.00 2.00 2.00
Location Field of the Extended Attribute Header 2-043 2.00 1.02 2.00
Access Contral Lists 2-044 2.00 2.00 2.00
Descriptor Tags spanning block boundaries 2-047 2.00 1.02 2.00
Power Calibration Stream 2-048 2.00 1.02 2.00
Support for CD-R Multisession Required 2-050 2.00 1.50 2.00
Value of fieldsin LVID for virtual partition on CD-R 2-051 2.00 1.50 2.00
System stream to indicate volume backup time 2-055 2.00 2.00 2.00
New VAT 2-056 2.00 2.00 2.00
Restricting Virtual Addresses 2-057 2.00 1.50 2.00
File Times Extended Attribute 2-058 2.00 1.02 2.00
0S/2 EA Stream 2-061 2.00 2.00 2.00
Non-Allocatable Space Stream 2-062 2.00 1.02 2.00

UDF 2.00 121 April 3,1998

6.12 Developer Registration Form

Any developer that plans on implementing ECMA 167 according to this document should
compl ete the devel oper registration form on the following page. By becoming a registered
OSTA developer you receive the following benefits:

You will receive alist of the current OSTA registered developers and their
associated Implementation Identifiers. The developerson thislist are
encouraged to interchange mediato verify data interchange among
implementations.

Notification of OSTA Technical Committee meetings. Y ou may attend a
limited number of this meetings without becoming an official OSTA member.
Y ou can be added to the OSTA Technical Committee email reflector. This
reflector provides you the opportunity to post technical questions on the OSTA
Universal Disk Format Specification.

Y ou will receive an invitation to participate in the development of the next
revision of this document.

For the latest information on OSTA and UDF visit the OSTA web site at the following

address:

UDF 2.00

http://www.osta.org

122 April 3, 1998

ACTA OSTA Universal Disk Format Specification

RS IVAW :)
Optical Storage Developer Registration Form

Technology Association

Name:

Company:
Address:

City:
State/Province:

Zip/Postal Code:
Country:
Phone: FAX:

Email:

Please indicate on which operating systems you plan to support UDF:

O DOS O 0S/2 O Macintosh

O UNIX/POSIX O WindowsNT O Windows 95

O Other

Please indicate which media types you plan to support:

O Magneto Optical O WORM O Phase Change

O CD-ROM O CD-R O CD-RW

O DVD-ROM O DVD-R O DVD-RAM O DVD-Video
O DVD+RW

O Other

Please indicate what value you plan to use in the Implementation Identifier field of
the Entity Identifier descriptor to identify your implementation:

NOTE: The identifier should be something that uniquely identifies your company as well as your product.

O Please add my email address to the OSTA Technical Committee email reflector.
O Please send an OSTA Membership kit.

FAX Completed form to OSTA at 1-805-962-1541, or mail to:
OSTA, 311E. Carillo Street, Santa Barbara, CA 93101

UDF 2.00 123 April 3,1998

A

Access Control Lists, 77

ACL, 77

Allocation Descriptor, 8, 40, 45, 46
Allocation Extent Descriptor, 47

Anchor Volume Descriptor Pointer, 7, 19

C

CD-R, 2, 3,4, 5, 27, 113, 114, 115, 117
CD-RW, 2, 113, 115

charspec, 10

Checksum, 60, 61, 62, 63, 66, 108

CRC, 16, 34, 45, 95, 97

CS0, 9, 10, 13, 18, 19, 20, 25, 36, 78, 80, 82

D

defect management, 27, 31, 117

Descriptor Tag, 16, 34, 45

Domain, 1, 12, 13, 14

DOS, 50, 51, 55, 61, 81, 91, 99, 100, 101, 102, 123

Dstrings, 10

DVD, 2, 60, 61, 89, 90, 109, 110, 111, 112, 121

DVD Copyright Management Information, 60, 61, 89,
121

DVD-Video, 109, 110

E

ECMA 167, 1

Entity Identifier, 7, 12, 17, 19, 20, 21, 23, 24, 35, 37,
39, 42, 43, 45, 53, 59, 65, 89, 90

Extended Attributes, 3, 24, 56, 57, 59, 60, 61, 62, 63,
65, 66, 89

extent, 21

Extent Length, 7, 121

F

File Entry, 8, 13, 42, 53

File Identifier Descriptor, 13, 38, 39, 50, 79
fileset, 21

File Set Descriptor, 8, 13, 21, 34, 35, 37
File Set Descriptor Sequence, 21
FreeSpaceTable, 22

H
HardWriteProtect, 14, 21, 35, 37

ICB, 8, 38, 40, 50, 51, 56, 78, 79

ICB Tag, 8, 40, 51, 78

Implementation Use Volume Descriptor, 12, 24, 25,
87

UDF 2.00

124

Implementationldentifier, 17, 19, 20, 21, 24, 37, 42,
43, 45, 53, 59, 60, 61, 62, 65

L

Logica Block Size, 7, 8, 20

Logica Sector Size, 7

logical volume, 21

Logical Volume Descriptor, 8, 13, 20, 21, 23
Logica Volume Header Descriptor, 23, 49

Logica Volume Integrity Descriptor, 13, 21, 22, 45
LogicalVolumeldentifier, 8

M

Macintosh, 3, 23, 24, 50, 52, 55, 56, 60, 62, 63, 64,
65, 80, 83, 89, 91, 103, 123

metadata, 35, 66, 67, 68

Metadata, 68, 70, 76

N
Non-Allocatable Space, 32, 33, 72, 116

O

Orphan Space, 87

0S/2, 3, 50, 51, 55, 60, 61, 65, 77, 79, 80, 82, 89, 90,
91, 103, 107, 123

Overwritable, 7

P

packet, 4, 6, 27, 28, 31, 32, 33, 114, 115, 116, 117
Partition Descriptor, 7, 12, 87, 111

Partition Header Descriptor, 37

Partition Integrity Entry, 8, 13, 45

Pathname, 47

power calibration, 72, 73, 74, 75, 76

Primary Volume Descriptor, 7, 12, 17

R
Read-Only, 7
Records, 8, 47
Rewritable, 7, 37, 46

S

SizeTable, 22

SoftWriteProtect, 14, 21, 37

Sparable Partition Map, 27

Sparing Table, 13, 28, 31, 32, 89, 90

strategy, 8, 35, 40

stream, 4, 47, 49, 66, 67, 68, 70, 71, 74, 76, 77, 94,
96

stream directory, 49, 66, 67, 68

streams, 2, 49, 66, 67, 68, 77

SymbolicLink, 78

April 3, 1998

T \Y

TagSerialNumber, 16, 34 VAT, 6, 27, 56, 113, 114, 115

Timestamp, 7, 11, 22, 48 Virtual Allocation Table, 6
virtua partition, 27, 114

U Virtual Partition Map, 27

Volume Set, 7, 8, 17, 18, 24, 121

UDFUniquelD, 49, 70, 72

Unallocated Space Descriptor, 8, 22 \Y;

Unicode, 9, 10, 79, 80, 93

UniquelD, 22, 42, 43, 49, 53, 56, 121 Windows, 50, 51, 61, 81

UNIX, 50, 52, 64, 85 Windows 95, 50, 51, 84, 91, 123

Windows NT, 50, 51, 61, 84, 91, 103, 123
WORM, 7, 21, 35

UDF 2.00 125 April 3,1998

Universal Disk Format Specification
Revision History

1.02

1.01

1.00

04703798

02/04/97

10/30/96

11/03/95

10724795

Added
Added
Added
Added
Added
Added
Added

support
support
support
support
support
support
limited

for
for

Stream Files

Access Control lists
Power Calibration
CD-R Packet Writing
CD-RW Packet Writing
Windows 95

support for Windows NT
Incorporates Document Change Notices (DCN)
DCN 2-025 through 2-033

Incorporates Document Change Notices (DCN)
DCN2-001 through 2-024.

Added DVD Apendix and made a few

minor editoral changes.

Original Release

/***

* OSTA compliant Unicode compression, uncompression routines.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.

*/
#include <stddef.h>

/***

* The following two typedef®s are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to be

* unsigned 16-bit.

*/

typedef unsigned short unicode_t;

typedef unsigned char byte;

/
* Takes an OSTA CSO compressed unicode name, and converts
* it to Unicode.
* The Unicode output will be iIn the byte order
* that the local compiler uses for 16-bit values.
* NOTE: This routine only performs error checking on the complD.
* 1t is up to the user to ensure that the unicode buffer is large
* enough, and that the compressed unicode name is correct.
*
* RETURN VALUE
*
* The number of unicode characters which were uncompressed.
* A -1 is returned if the compression ID is invalid.
*/

int UncompressUnicode(
int numberOfBytes, /* (Input) number of bytes read from media. */

byte *UDFCompressed, /* (Input) bytes read from media. */
unicode_t *unicode) /* (Output) uncompressed unicode characters. */
{

unsigned int complD;
int returnValue, unicodelndex, bytelndex;

/* Use UDFCompressed to store current byte being read. */
complD = UDFCompressed[0];

/* First check for valid complID. */
if (complD '= 8 && complID != 16)

returnValue = -1;
3
else
{

unicodelndex = 0;
bytelndex = 1;

/* Loop through all the bytes. */
while (bytelndex < numberOfBytes)

{
it (complD == 16)

/*Move the first byte to the high bits of the unicode char. */
unicode[unicodelndex] = UDFCompressed[bytelndex++] << 8;
}

else
{
unicode[unicodelndex] = O;
}
if (bytelndex < numberOfBytes)

/*Then the next byte to the low bits. */
unicode[unicodelndex] |= UDFCompressed[bytelndex++];

unicodelndex++;

3

returnValue = unicodelndex;
3
return(returnvalue);

}

/***

* DESCRIPTION:

* Takes a string of unicode wide characters and returns an OSTA CSO
* compressed unicode string. The unicode MUST be in the byte order of
* the compiler in order to obtain correct results. Returns an error
* if the compression ID is invalid.

*

* NOTE: This routine assumes the implementation already knows, by

* the local environment, how many bits are appropriate and

* therefore does no checking to test if the input characters fit

* into that number of bits or not.

*

* RETURN VALUE

*

* The total number of bytes iIn the compressed OSTA CSO string,

* including the compression ID.

* A -1 is returned if the compression ID is invalid.

*/

int CompressUnicode(

int numberOfChars, /* (Input) number of unicode characters. */
int complD, /* (Input) compression ID to be used. */
unicode_t *unicode, /* (Input) unicode characters to compress. */

byte *UDFCompressed) /* (Output) compressed string, as bytes. */
{

int bytelndex, unicodelndex;

it (complID !'= 8 && complD != 16)

bytelndex = -1; /* Unsupported compression ID ! */
}
else
{

/* Place compression code in first byte. */
UDFCompressed[0] = complD;

bytelndex = 1;
unicodelndex = 0O;

while (unicodelndex < numberOfChars)

{

}
}

if (complD == 16)

/* First, place the high bits of the char
* into the byte stream.
*/
UDFCompressed[bytelndex++] =
(unicode[unicodelndex] & OxFF0O0) >> 8;

/*Then place the low bits into the stream. */
UDFCompressed[bytelndex++] = unicode[unicodelndex] & OxOOFF;
unicodelndex++;

return(bytelndex);

/***

* OSTA UDF compliant file name translation routine for DOS.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.

*/
#include <stddef.h>

#define DOS_NAME_LEN 8

#define DOS_EXT_LEN 3
#define ILLEGAL CHAR_MARK OxO005F
#define TRUE 1
#define FALSE 0
#define PERIOD 0x002E
#define SPACE 0x0020

/***

* The following two typedef®s are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to

* be unsigned 16-bit.

*/

typedef unsigned short unicode_t;

typedef unsigned char byte;

/*** PROTOTYPES ***/
unsigned short unicode cksum(register unsigned short *s, register int n);
int Islllegal(unicode_t current);

/* Define functions or macros to both determine if a character

* is printable and compute the uppercase version of a character
* under your implementation.

*/

int UnicodelsPrint(unicode_t);

unicode_t UnicodeToUpper(unicode_ t);

/***

* Translate udfName to dosName using OSTA compliant.

* dosName must be a unicode string with min length of 12.
*

* RETURN VALUE

* Number of unicode characters in dosName.

*/

int UDFDOSName(
unicode_t *dosName, /* (Output)DOS compatible name. */

unicode_t *udfName, /* (Input) Name from UDF volume. */
int udfLen) /* (Input) Length of UDF Name. */
{

int index, doslndex = 0, extlndex = 0, lastPeriodIlndex;
int needsCRC = FALSE, hasExt = FALSE, writingExt = FALSE;
unsigned short valueCRC;

unicode_t ext[DOS EXT LEN], current;

/*Used to convert hex digits. Used ASCIl for readability. */
const char hexChar[] = "0123456789ABCDEF";

for (index

{

0 ; index < udfLen ; index++)

current
current

udfName[index];
UnicodeToUpper(current);

if (current == PERIOD)

{
if (dosIndex==0 || haskxt)

/* lIgnore leading periods or any other than
* used for extension.
*/
needsCRC = TRUE;
}

else

/* First, find last character which is NOT a period
* or space.
*/
lastPeriodlindex = udflLen - 1;
while(lastPeriodlndex >=0 &&
(udfName[lastPeriodlndex]== PERIOD ||
udfName[lastPeriodlndex] == SPACE))

{
}

/* Now search for last remaining period. */

while(lastPeriodlndex >= 0 &&
udfName[lastPeriodlndex] !'= PERIOD)

{

}

/* See if the period we found was the last or not. */
if (lastPeriodlndex != index)

lastPeriodlndex--;

lastPeriodlndex--;

needsCRC = TRUE; /* If not, name needs translation.

}

/* As long as the period was not trailing,
* the file name has an extension.

*/

if (lastPeriodlndex >= 0)

{

}

hasExt = TRUE;

if (("haskxt && doslndex == DOS_NAME LEN) ||
extIndex == DOS_EXT_LEN)

/* File name or extension is too long for DOS. */
needsCRC = TRUE;

}

else
it (current == SPACE) /* lgnore spaces. */

needsCRC = TRUE;

}
else
/* Look for illegal or unprintable characters. */
if (Islllegal(current) || !'UnicodelsPrint(current))
needsCRC = TRUE;
current = ILLEGAL_CHAR_MARK;
/* Skip lllegal characters(even spaces),
* but not periods.
*/
while(index+1l < udflLen
&& (Islllegal (udfName[index+1])
Il 'UnicodelsPrint(udfName[index+1]))
&& udfName[index+1] '= PERIOD)
index++;
}
}
/* Add current char to either file name or ext. */
if (writingExt)
ext[extlndex++] = current;
}
else
dosName[doslIndex++] = current;
}
}

}

by
/* See if we are done with file name, either because we reached
* the end of the file name length, or the final period.

*/

if (lwritingExt && haskExt && (doslndex == DOS_NAME_LEN ||

index == lastPeriodlndex))
{

/* 1T so, and the name has an extension, start reading it. */
writingExt = TRUE;
/* Extension starts after last period. */
index = lastPeriodlndex;
}
}

/*Now handle CRC if needed. */
if (needsCRC)
{

/* Add CRC to end of file name or at position 4. */
if (doslndex >4)
{

doslndex = 4;

}

valueCRC = unicode_cksum(udfName, udflLen);

/* Convert 16-bit CRC to hex characters. */
dosName[dosIndex++] hexChar[(valueCRC & Oxf000) >> 12]
dosName[dosIndex++] hexChar[(valueCRC & 0x0f00) >> 8];
dosName[dosIndex++] hexChar[(valueCRC & 0x00f0) >> 4];
dosName[dosIndex++] hexChar[(valueCRC & 0x000f)];

/* Add extension, if any. */
if (extindex != 0)

{
dosName[dosIndex++] = PERIOD;
for (index = 0; iIndex < extlIndex; index++)
dosName[dosIndex++] = ext[index];
}
}
return(doslindex);
}
/
* Decides if a Unicode character matches one of a list
* of ASCII characters.
* Used by DOS version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCII subset of Unicode.
* Works very similarly to the standard C function strchr().
*
* RETURN VALUE
*
* Non-zero 1If the Unicode character is in the given ASCII string.
*
/

int UnicodelnString(
unsigned char *string, /* (Input) String to search through. */
unicode_t ch) /* (Input) Unicode char to search for. */
{
int found = FALSE;
while (*string = "\0" && found == FALSE)
{
/* These types should compare, since both are unsigned numbers. */
if (*string == ch)
{

}

string++;

found = TRUE;

return(found);

b
/

* Decides whether character passed is an illegal character for a

* DOS file name.
*

* RETURN VALUE

* Non-zero if file character is illegal.
*/
int Islllegal(
unicode_t ch) /* (Input) character to test. */
{
/* Genuine illegal char"s for DOS. */
if (ch < 0x20 || UnicodelnString("\\/:*?\"'<>|", ch))

return(l);
}
else
{

return(0);

/***

* OSTA UDF compliant file name translation routine for 0S/2,

* Windows 95, Windows NT, Macintosh and UNIX.

* Copyright 1995 Micro Design International, Inc.

* Written by Jason M. Rinn.

* Micro Design International gives permission for the free use of the
* following source code.

*/

/***

To use these routines with different operating systems.

*

0S/2
Define 0S2
Define MAXLEN = 254

Windows 95
Define WIN_95
Define MAXLEN = 255

Windows NT
Define WIN_NT
Define MAXLEN = 255

Macintosh:
Define MAC.
Define MAXLEN = 31.

UNIX
Define UNIX.
Define MAXLEN as specified by unix version.

ok R oF R 2k % X X X o X o ok o ok % 3k % X

*
N

#define ILLEGAL CHAR_MARK Ox005F
#define CRC_MARK 0x0023
#define EXT_SIZE 5
#define TRUE 1
#define FALSE 0
#define PERIOD 0x002E
#define SPACE 0x0020

/
* The following two typedef"s are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.

*/

typedef unsigned int unicode_t;

typedef unsigned char byte;

/*** PROTOTYPES ***/
int Islllegal(unicode_t ch);
unsigned short unicode cksum(register unsigned short *s, register int n);

/* Define a function or macro which determines if a Unicode character is
* printable under your implementation.

*/

int UnicodelsPrint(unicode_t);

/***

* Translates a long file name to one using a MAXLEN and an illegal
* char set in accord with the OSTA requirements. Assumes the name has
already been translated to Unicode.

RETURN VALUE

ok ok % %

Number of unicode characters in translated name.
*/
int UDFTransName(
unicode_t *newName,/*(Output)Translated name. Must be of length MAXLEN*/
unicode_t *udfName, /* (Input) Name from UDF volume.*/
int udfLen, /* (Input) Length of UDF Name. */
{

int index, newlndex = 0, needsCRC = FALSE;

int extindex, newExtlndex = 0, hasExt = FALSE;
#ifdef (0S2 | WIN_95 | WIN_NT)

int traillndex = 0;
#endif
unsigned short valueCRC;
unicode_t current;
const char hexChar[] = '"0123456789ABCDEF";

for (index = 0; index < udfLen; index++)

{

current = udfName[index];

if (Islllegal(current) || !'UnicodelsPrint(current))

needsCRC = TRUE;
/* Replace Illegal and non-displayable chars with underscore. */
current = ILLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable characters. */
while(index+1l < udfLen && (Islllegal (udfName[index+1])
Il '"UnicodelsPrint(udfName[index+1])))
{

}

index++;

}

/* Record position of extension, if one is found. */
if (current == PERIOD && (udfLen - index -1) <= EXT_SIZE)

if (udfLen == index + 1)

{
/* A trailing period is NOT an extension. */
hasExt = FALSE;
3
else
{
hasExt = TRUE;
extindex = index;
newExtIndex = newlndex;
3

}

#ifdef (0S2 | WIN_95 | WIN_NT)
/* Record position of last char which is NOT period or space. */
else if (current != PERIOD && current !'= SPACE)

traillndex = newlndex;

}
#endif
it (newlndex < MAXLEN)
{
newName[newlndex++] = current;
}
else
{
needsCRC = TRUE;
}

}

#ifdef (0S2 | WIN_95 | WIN_NT)
/* For 0S2, 95 & NT, truncate any trailing periods and\or spaces. */
if (traillndex = newlndex - 1)
{
newlndex traillndex + 1;

needsCRC = TRUE;
hasext = FALSE; /* Trailing period does not make an extension. */

¥
#endi T

if (needsCRC)
{
unicode_t ext[EXT_SIZE];
int localExtlndex = 0;
if (hasExt)
{
int maxFilenamelLen;
/* Translate extension, and store it in ext. */
for(index = 0; index<EXT_SIZE && extlndex + index +1 < udflLen;

index++)
{
current = udfName[extlndex + index + 1];
it (Islllegal(current) || 'UnicodelsPrint(current))
{
needsCRC = 1;
/* Replace lllegal and non-displayable chars
* with underscore.
*/
current = ILLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable
* characters.
*/
while(index + 1 < EXT_SIZE
&& (Islllegal (udfName[extlndex + index + 2])
Il lisprint(udfName[extindex + index + 2])))
{
index++;
}
ext[localExtlndex++] = current;
}

/* Truncate filename to leave room for extension and CRC. */

maxFilenameLen = ((MAXLEN - 5) - localExtlndex - 1);
if (newlndex > maxFilenamelLen)

newlndex = maxFilenamelLen;

}
else
{
newlndex = newExtlndex;
}

}
else if (newlndex > MAXLEN - 5)

/*1f no extension, make sure to leave room for CRC. */

newlndex = MAXLEN - 5;

}
newName[newlndex++] = CRC_MARK; /* Add mark for CRC. */

/*Calculate CRC from original filename from Fileldentifier.
valueCRC = unicode_cksum(udfName, udflLen);

/* Convert 16-bits of CRC to hex characters.
hexChar[(valueCRC
hexChar[(valueCRC
hexChar[(valueCRC
hexChar[(valueCRC

newName[newlndex++]
newName[newlndex++]
newName[newlndex++]
newName[newlndex++]

/* Place a translated extension at end,

if (hasExt)

{
newName[newlndex++] = PERIOD;
for (index = 0;index < localExtlndex
{
newName[newlndex++] = ext[index];
}
3

}

return(newlndex) ;

}
#ifdef (0S2 | WIN_95 | WIN_NT)

& 0xf000) >> 12];
& 0x0f00) >> 8];
& 0x00f0) >> 4];
& 0x0001)];

if found.

;index++)

*/

/***

* Decides if a Unicode character matches one of a list

* of ASCII1 characters.

* Used by 0S2 version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCII subset of Unicode.
* Works very similarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCII string.
*/

int UnicodelnString(

unsigned char *string, /* (Input) String to search through.
unicode_t ch) /* (Input) Unicode char to search for. */

{
int found = FALSE;

while (*string != "\0" && found

/* These types should compare, since both are unsigned numbers. */

if (*string == ch)

{
}

string++;

found = TRUE;

return(found);

}
#endif /7* 0S2 */

/***

* Decides whether the given character is illegal for a given OS.

RETURN VALUE

X ok %

Non-zero if char is illegal.
*/
int Islllegal(unicode_t ch)

{

#ifdef MAC
/* Only illegal character on the MAC is the colon. */
it (ch == 0x003A)

return(l);
}
else
{

return(0);
}

#elif defined UNIX
/* 1llegal UNIX characters are NULL and slash. */
if (ch == 0x0000]| ch == 0x002F)

return(l);

}

else
return(0);

}

#elif defined (0S2 | WIN_95 | WIN_NT)
/* 1llegal char®s for 0S/2 according to WARP toolkit. */
if (ch < 0x0020 || UnicodelnString("\\/:*?\"<>|", ch))

return(l);
¥

else

return(0);

¥
#endi T

}

UDF Specification v2.00 - A specification
describing the Universal Disk Format
developed by the Optical Storage Technology
Association (0OSTA). This specification is
for developers who plan to implement UDF
which is based upon the 1SO 13346 standard.
UDF is a file system format standard that
enables file interchange among different
operating systems.

