Universal Disk
Format”®
Specification

Revision 2.60 DRAFT12z

This document is the last draft before the final UDF 2.60 document. It is meant as a
help in reviewing the changes in the UDF 2.60 document with respect to the UDF
2.50 document. These changes are still visible in this draft. Sometimes deletions are
not visible, but explained in a yellow marked “Editorial note: .

NOTE 1: Rules that are different with respect to the UDF 2.50 document may be
included in the UDF 2.50 errata and in that way be part of the UDF 2.50 rules.

NOTE 2: UDF 2.50 + errata is identical to UDF 2.60 for non-POW media, see
“Important Notice” in the UDF 2.50 errata document.

February 28, 2005

© Copyright 1994-2005
Optical Storage Technology Association
ALL RIGHTS RESERVED

REVISION HISTORY

1.00 October 24, 1995 Original Release

1.01 November 3, 1995 DVD appendix added

1.02 August 30, 1996 Incorporates Document Change Notices DCN 2-001 through DCN 2-024

1.50 February 4, 1997 Integrated support for CD-R and CD-RW media (DCNs 2-025 thru 2-032)

2.00 April 3, 1998 Integrated support for ECMA 167 3™ Edition which included the support
for named streams. (DCN 2-033 through DCN 2-064)

2.01 March 15, 2000 Incorporates DCNs 5000, 5002, 5004, 5006-5009, 5013-5015, 5018-
5021, 5024-5027, 5029-5032, 5034-5042, 5044-5048, 5050

2.50 April 30,2003 Incorporates Metadata Partition, DCNs 5049, 5061-5066, 5068-5072,
5074-5079, 5081-5082, 5086, 5089, 5090.

2.60 January 25, 2005 Incorporates Pseudo OverWrite, DCNs 5100-5121

March 1, 2005 Approved by committee vote. Minor editorial corrections.
POINTS OF CONTACT

Optical Storage Technology Association = UDF Technical Editor

http://www.osta.org/ mailto:editor.udf@osta.org

Contact information OSTA UDF Committee email reflector

http://www.osta.org/osta/contact.htm See link: “UDF Email Reflector” at the bottom of page:

http://www.osta.org/specs/index.htm

Technical questions
mailto:info@osta.org

Important Notices

(@

®)

(©

@

THIS DOCUMENT IS AN AUTHORIZED AND APPROVED PUBLICATION OF OSTA. THE SPECIFICATIONS CONTAINED HEREIN ARE
THE EXCLUSIVE PROPERTY OF OSTA BUT MAY BE REFERRED TO AND UTILIZED BY THE GENERAL PUBLIC FOR ANY LEGITIMATE
PURPOSE, PARTICULARLY IN THE DESIGN AND DEVELOPMENT OF WRITABLE OPTICAL SYSTEMS AND SUBSYSTEMS. THIS
DOCUMENT MAY BE COPIED IN WHOLE OR IN PART PROVIDED THAT NO REVISIONS, ALTERATIONS, OR CHANGES OF ANY KIND
ARE MADE TO THE MATERIALS CONTAINED HEREIN.

COMPLIANCE WITH THIS DOCUMENT MAY REQUIRE USE OF ONE OR MORE FEATURES COVERED BY THE PATENT RIGHTS OF AN
OSTA MEMBER, ASSOCIATE OR THIRD PARTY. NO POSITION IS TAKEN BY OSTA WITH RESPECT TO THE VALIDITY OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT, WHETHER OWNED BY A MEMBER OR
ASSOCIATE OF OSTA OR OTHERWISE. OSTA HEREBY EXPRESSLY DISCLAIMS ANY LIABILITY FOR INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF OTHERS BY VIRTUE OF THIS OSTA DOCUMENT, NOR DOES OSTA UNDERTAKE A DUTY TO ADVISE USERS OR
POTENTIAL USERS OF OSTA DOCUMENTS OF SUCH NOTICES OR ALLEGATIONS. OSTA HEREBY EXPRESSLY ADVISES ALL USERS OR
POTENTIAL USERS OF THIS DOCUMENT TO INVESTIGATE AND ANALYZE ANY POTENTIAL INFRINGEMENT SITUATION, SEEK THE
ADVICE OF INTELLECTUAL PROPERTY COUNSEL AND, IF INDICATED, OBTAIN A LICENSE UNDER ANY APPLICABLE INTELLECTUAL
PROPERTY RIGHT OR TAKE THE NECESSARY STEPS TO AVOID INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT. OSTA
EXPRESSLY DISCLAIMS ANY INTENT TO PROMOTE INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT BY VIRTUE OF THE
EVOLUTION, ADOPTION, OR PUBLICATION OF THIS OSTA DOCUMENT.

ONE OR MORE PATENT HOLDERS HAVE FILED STATEMENTS OF WILLINGNESS TO GRANT A LICENSE, ON REASONABLE AND
NONDISCRIMINATORY TERMS, ON A RECIPROCAL BASIS, UNDER PATENT CLAIMS ESSENTIAL TO IMPLEMENT THIS SPECIFICATION.
FURTHER INFORMATION MAY BE OBTAINED FROM OSTA.

OSTA MAKES NO REPRESENTATION OR WARRANTY REGARDING ANY SPECIFICATION, AND ANY COMPANY USING A SPECIFICATION
SHALL DO SO AT ITS SOLE RISK, INCLUDING SPECIFICALLY THE RISKS THAT A PRODUCT DEVELOPED WILL NOT BE COMPATIBLE
WITH ANY OTHER PRODUCT OR THAT ANY PARTICULAR PERFORMANCE WILL NOT BE ACHIEVED. OSTA SHALL NOT BE LIABLE
FOR ANY EXEMPLARY, INCIDENTAL, PROXIMATE OR CONSEQUENTIAL DAMAGES OR EXPENSES ARISING FROM THE USE OR
IMPLEMENTATION OF THIS DOCUMENT. THIS DOCUMENT DEFINES ONLY ONE APPROACH TO COMPATIBILITY, AND OTHER
APPROACHES MAY BE AVAILABLE IN THE INDUSTRY.

Universal Disk Format® and UDF® are registered marks of the Optical Storage Technology Association.

http://www.osta.org/
http://www.osta.org/osta/contact.htm
mailto:info@osta.org
mailto:editor.udf@osta.org
http://www.osta.org/specs/index.htm

CONTENTS

1.
1.1
1.2

1.3

2.

2.1

2.2

2.3

INTRODUCTION
Document Layout
Compliance

General References

1.3.1
1.3.2
133
1.34

3 1 1) 1 Lot <L TR
| D 1CS 11118 1o) 0 -SRI

BASIC RESTRICTIONS & REQUIREMENTSciiiinienninecnensncnecsnecsnessness 9

Part 1 - General
2 B B O -1 ¢ o1) OO UPR PSP
2.1.2 OSTA CSO CRATSPEC...eecurierurereiiiesieerieesteesteesseessseesssesssseessseessseessseessseesssessssessseessseessseesnes
2,13 DISEIIIES cetettetieteet ettt ettt ettt e h e bbbttt et she e nh e et et en b eateebeeeneeaaees
0 e 1411 721 1 41 o USSP
20 B T 25 U U7 (6 331 U 1< USSR
2.1.6 Descriptor Tag Serial Number at Formatting Time.........c.ccccevieriininiiniinienieeeiececeene
2.1.7 Volume Recognition SEQUENCEcc.eertieiiriiriieriiertieie ettt sttt ettt st ebeseeesaees

Part 3 - Volume Structure
0 B B T o o o I VTP
2.2.2 Primary VOIUME DESCIIPLOTccueeiieiieiieiieeiiesiieiteieetesteseee e e et eee e e sneesseesseenseensesnsessaesseas
2.2.3 Anchor Volume Descriptor POINLET.........ccuieieiieriieieeieeie ettt
2.2.4 Logical VOIUME DESCIIPLOT.....ccueruieiieiieieeiiesiiesttesie et eeesee st et e et eeesaeesseesseeseenseensessnesnees
2.2.5 Unallocated SPace DeSCIIPLOTcueeuieriieiieieeiesiesitesteerteeeeeeeeseesseeteesseenseseaessaesseeseesesnnes
2.2.6 Logical Volume Integrity DeSCIIPLOrcc.eeruireieiieiieeieie et eieeseeie e ree e eseeae e
227 Implementation Use VOIUME DESCIIPLOT........evverieriieiieieeieeiesiesie et sieeie e saesenes
2.2.8 Virtual Partition MaPcccoecieiiiiiieiesieieeie ettt ettt snaeenees
2.2.9 Sparable Partition IMap..........ceecierieriieiiieiieiesieesieesie et seeseesee st eeeeneeeseessaesseeseenseensesnnesneas
2.2.10 Metadata Partition MaPc.cocuveiieieniieiieieie ettt e e sneennes
2.2.11 Virtual Allocation Table..........cccoiririiiiiiieiie et
2.2.12 SPATING TADIE ...ccuviiiieiieciieieee ettt ettt et nb e ra e s e e s e eeneenneens
2.2.13 Metadata Partitioncoeeueeieiiiiniinene ettt
2.2.14 Partition DESCIIPLOTeuieiieiieiieeiesieit ettt ettt sttt e et et e saeesseesseenseenseensessnenseas

Part 4 - File Structure
231 DESCIIPLOT TAZ c.eteueiiieitieitte ettt st sttt ettt et a e b ettt en e eetesaeenaees
2.3.2 File SEt DESCIIPIOT ..eecuvieiiieeiieeitieeete et eieeeteeeteesteesaeesbeessseessbeessaeesseessseensseenseesnseeenseennnes
2.3.3 Partition Header DESCIIPLOTccuvieiiieeiieeiieiiieete ettt esteesieeeeee et e eeeeeteesaeesnteeeseeensaesnseennne
2.3.4 File Identifier DeSCIIPLOT....ccuiiiuiierieeciieeieeeiteeiee et e eaeesteesaeesereessaeessseessreesaessaesnseeanseennses
0 B T (O] 2 T - T USRS
0 B T O 1 Tl 25313 o /TSP
2.3.7 Unallocated SPace ENtIYcccccuiieiiiiiiieiiiesiie ettt eete ettt stve et eeteeeteeeteesaeessbaesnveennnas
2.3.8 Space Bitmap DeSCIIPLOr....ccuuieiieiiieeiieiiieeiie et et e sre ettt esereesteeestaeetreesaaeeteesseeenseeenseesnses
2.3.9 Partition INtegrity ENTIY ..coc.eoiiiiiiieieieee e
2.3.10 ALLOCALION DIESCIIPLOTS . c..uviiiiiieeiieiiieeieestteete et ettt ettt estteestaeessaeebaeesseeensaeenseesnseesnseennses

il

12
12
13
13
14
15
20
20

22
22
23
25
26
28
28
31
33
33
34
36
38
40
48

50

24

3.

31

3.2

33

4.
4.1

4.2

S.
5.1

5.2

5.3

5.4

6.
6.1
6.2

6.3

2.3.11 Allocation EXtent DESCIIPLOT......ccuiriieriieiieieeiesteseeesteesteeeeeeeeseeeeeeneeensessaessaesseenseesesnnes 64
2.3.12 PAtNNamE ..ottt ettt s et et e enreeneesneas 65

Part 5 - Record Structure 65
SYSTEM DEPENDENT REQUIREMENTS....ccinnnnteiiiiccssssssssssssssccssssssssosssssens 66

Part 1 - General 66
70 I 1554 TeT] 11 o TP U R 66

Part 3 - Volume Structure 67
3.2.1 Logical Volume Header DeSCIiptorcccueiiiiierieniiiiiiie ettt 67

Part 4 - File Structure 69
3.3.1 File Identifier DESCIIPLOr.ecuieiieieeiieeiietieieete sttt ettt eee st e st et eseeenseesaesseenseensesnsesssesnees 69
70 T8 () = 70 I V- SO PR UR 70
T8 TR B O 1 (I % 11 /PRSP 72
3314 EXtended ATIIDULES.cocviiieiieeiieit ettt ettt ettt e ae et e eae e e eaeesseenseenseenseensensaenneas 76
3.3.5 NAMEA SEICAIMS ...eovvieiieiieiierieitete et ettt et e e eteesaesseesseesseeseensesneeeseesseenseenseansesssenseensens 86
3.3.6 Extended Attributes as Named Streamsccceevueerverrieriierienienieesieeie e seeeseesseeseesesaesenes 88
3.3.7 UDF Defined SyStem StrEAMS.c.eecverrieriierierrerieseierteesseeseeseesseesseenseessesssessaesseessesssessessns 89
3.3.8 UDF Defined NOn-System StrEamS.cceerurrrverierieriierieeeeeeesseesieeteesesssessaesseesessessesenes 96

USER INTERFACE REQUIREMENTS......cccniininnnnnnsnessncsnnsnessnnsansssesncsaness 98

Part 3 - Volume Structure 98
Part 4 - File Structure 98
0 T (O] 2 T I TSP U P 98
4.2.2 File Identifier DeSCIIPLOTcccvereieriieiieieeiietieieeie et see st ete e e seee st eseeesseenseesaesseensesnsesnsesnees 99

Descriptor Lengths 107
Using Implementation Use Areas 107
52,1 Entity IAentifIers. ...oecviecieiieciiecieeis ettt ettt et enaensaennees 107
5.2.2 OPRAN SPACEieuiiiieiieieeie ettt ettt et ste et et e ebestesstesaee st e st enaeese e st e seenteenteenaenneas 108
Boot Descriptor 108
Clarification of Unrecorded Sectors 108

UDF Entity Identifier Definitions 109
UDF Entity Identifier Values 110
Operating System Identifiers 111
6.3.1 OIS CLaSS -ttt ettt b ettt ettt e at e b ettt e st e et e e b ee bt e bt et e enteeaeeeaee 111
6.3.2 OS TAONLITICT ...ttt ettt et et sa e st e b e e be e et etesaeesaee e 112

il

6.4 OSTA Compressed Unicode Algorithm
6.5 CRC Calculation
6.6 Algorithm for ICB Strategy Type 4096
6.7 Identifier Translation Algorithms

DOS AIZOTTERM ...ttt st e e e sessaesreesseenseenseennenes
0S/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm............cccccvvrverrennenne.

6.7.1
6.7.2

6.8 Extended Attribute Header Checksum Algorithm

6.9 Requirements for DVD-ROM
Constraints imposed on UDF by DVD-Video........cccoecverieniieiiieieniecieceeeeie e
How to read @ UDF DVD-ViIde0 diSCccveruieiieiieieeiiesierieeie ettt eeee e neans
Obtaining DVD DOCUMENLSeevirieiierieriieie e eteeeesteesteeteeresaessaesseessessesnnesseesseenseenes

6.9.1
6.9.2
6.9.3

6.10 Recommendations for CD Media

6.10.1
6.10.2
6.10.3

6.11 Common aspects of recording for different media

6.11.1
6.11.2
6.11.3
6.11.4
6.11.5

6.12 Requirements for DVD-R/-RW/-RAM interchangeability

6.12.1
6.12.2
6.12.3
6.12.4

6.13 Recommendations for DYD+R and DVD+RW Media

6.13.1
6.13.2

6.14 Recommendations for Mount Rainier formatted media

6.14.1
6.14.2

6.15 Introduction to the Pseudo OverWrite Mechanism

6.15.1
6.15.2
6.15.3
6.15.4

6.16 Recommendations for Blu-ray Disc media

6.16.1
6.16.2
6.16.3
6.16.4

Use Of UDF 0N CD-R MEAIA ..evvvvviiiiiiiiiieeieee et
Use 0f UDF 0n CD-RW MEdIa........ccooiiiiiiiiiiiiieeeeee et
Multisession and MIXed MOEcoovuueeiiiiiiiiieeeiee et e e

REAI-TIME FILES ..ottt
Incremental recording Using VATc.oooveiiiiiiiieiieceet et
MUItISESSION USAZE.....cvieiieniieieieiieeiientieteeteeteeteseeesseeseeseaeseessesseesseenseensesnsesnsesssenseenes
UDF Bridge fOrmatcceeouieiieieeiesiieeecie ettt ettt ese e sneesaeenseenes
Examples of UDF Multisession and UDF Bridgecccoccveeiieienieniieieeiecie e

Requirements for DVD-RAMc.oooiiiiiiiiieiieeie ettt e sve e eseae e
Requirements for DVD-RWcooiiiiiiiiieiiceee ettt
Requirements for DVID-R.......ccoioiiiiiiiiiieie ettt
Requirements for Real-Time file recording on DVD diSCSccceviiriiniinciiciiirceen

Use of UDF on DVDAHR Mediaocuveviieiieiieiieie et e
Use of UDF on DVD+RW 4.7 GBytes Basic Format media............ccccecereverienveneenen.

Properties of CD-MRW and DVD+MRW media and drives.........cccceceeeeveeeieiieenneenns
Background Physical FOrmattingcccccooiiiiiiiniinieiiienesceeeeeee e

Characteristics of Media formatted for Pseudo OverWritecccoeevvevvvieiienienieenn,
WIIEE SEIALEEY 1.eveevveiieeiieeiiete ettt ettt et et et e et et e st et e st esteenseesaeesaessaenseensesnsesnnesneanns
Requirements for UDF Implementations............cecverierereieeienieniieieeieeee e seeesenenenenns
Implementation Notes for UDF Implementations.........c.ccoceveeeeeenienieneneneneeeeneenennens

Requirements for Blu-ray Disc Read-Only Format (BD-ROM).........ccccceevveecrieriivennnnne
Requirements for Blu-ray Disc Rewritable Format (BD-RE).........ccccecvvviiiiiiiiiiiieeies
Requirements for Blu-ray Disc Recordable Format (BD-R)cccceveeviviiiiiecieiiieeies
Information about AV APPlICALIONSeeeviieiiieiiieeitieeieeeceeeteeeiee e eveesbeeereesreeenaee e

v

113

115

118

119
119
126

130

131
131
132
134

135
135
135
138

139
139
139
140
141
142

144
144
144
145
146

147
147
147

149
149
149

150
150
151
153
153

6.17 UDF Media Format Revision History 157

6.18 Developer Registration Form 160

1. Introduction

The OSTA Universal Disk Format (UDF®) specification defines a subset of the standard
ECMA 167 3" edition. The primary goal of the OSTA UDF is to maximize data
interchange and minimize the cost and complexity of implementing ECMA 167.

To accomplish this task this document defines a Domain. A domain defines rules and
restrictions on the use of ECMA 167. The domain defined in this specification is known
as the “OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of ECMA
167 on a per operating system basis:

Given some ECMA 167 structure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading this field: If the operating system supports the data in
this field then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in
this field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the
data for this field then to what value should the field be set?

For some structures of ECMA 167 the answers to the above questions were self-
explanatory and therefore those structures are not included in this document.

In some cases additional information is provided for each structure to help clarify the
standard.

This document should help make the task of implementing the ECMA 167 standard
easier.

To be informed of changes to this document please fill out and return the OSTA UDF
Developer Registration Form located in appendix 6.18.

upr2.60 DRAFTI12z DRAFT12z 1 DRAFT12z DRAFT12z February 28, 2005

1.1 Document Layout

This document presents information on the treatment of structures defined under standard
ECMA 167.
This document is separated into the following 4 basic sections:

® Basic Restrictions and Requirements - defines the restrictions and
requirements that are operating system independent.

o System Dependent Requirements - defines the restrictions and requirements
that are operating system dependent.

o User Interface Requirements - defines the restrictions and requirements that
are related to the user interface.

e [nformative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard
ECMA 167. The following areas are covered:

&” Interpretation of a structure/field upon reading from media.

&5 Contents of a structure/field upon writing to media. Unless specified otherwise
writing refers only to creating a new structure on the media. When it applies to
updating an existing structure on the media it will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with
respect to the categories listed above. In certain cases, one or more fields of a structure
are not described if the semantics associated with the field are obvious.

A word on terminology: in common with ECMA 167, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optional action or

requirement, and should to indicate a preferred, but still optional action or requirement.

Also, special comments associated with fields and/or structures are prefaced by the
notification: "NOTE:". Notes may be numbered “NOTE 1:”, etc.

upr2.60 DRAFTI12z DRAFT12z 2 DRAFT12z DRAFT12z February 28, 2005

1.2 Compliance

This document requires conformance to parts 1, 2, 3 and 4 of ECMA 167. Compliance to
part 5 of ECMA 167 is not supported by this document. Part 5 may be supported in a
later revision of this document.

For an implementation to claim compliance to this document the implementation shall
meet all the requirements (indicated by the word shall) specified in this document.

The following are a few points of clarification in regards to compliance:

UDF 2.60

Multi-Volume support is optional. An implementation can claim compliance
and only support single volumes.

Multi-Partition support is optional. An implementation can claim compliance
without supporting the special multi-partition case on a single volume defined
in this specification.

Media support. An implementation can claim compliance and support a
single media type or any combination. All implementations should be able to
read any media that is physically accessible.

Multisession support. Any implementation that supports reading of CD-R
media shall support reading of CD-R Multisessions as defined in 6.10.3.

File Name Translation - Any time an implementation has the need to
transform a filename to meet operating system restrictions it shall use the
algorithms specified in this document.

Extended Attributes - All compliant implementations shall preserve existing
extended attributes encountered on the media. Implementations shall create
and maintain the extended attributes for the operating systems they support.
For example, an implementation that supports Macintosh shall preserve any
0OS/2 extended attributes encountered on the media. An implementation that
supports Macintosh shall also create and maintain all Macintosh extended
attributes specified in this document.

Backwards Read Compatibility — An implementation compliant to this version
of the UDF specification shall be able to read all media written under
previous versions of the UDF specification.

Backwards Write Compatibility — UDF 2.xx structures shall not be written to
media that contain UDF 1.50 or UDF 1.02 structures. UDF 1.50 and UDF
1.02 structures shall not be written to media that contain UDF 2.xx structures.
These two requirements prevent media from containing different versions of
the UDF structures.

DRAFTI12z DRAFTI12z 3 DRAFTI12z DRAFTI12z February 28,2005

1.3 General References

1.3.1 References

1S0O 9660:1988 Information Processing - Volume and File Structure of CD-ROM for Information
Interchange
1EC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data Interchange on Read-Only 120mm optical data
discs (CD-ROM based on the Philips/Sony “Yellow Book™)

Orange Book part-11 Recordable Compact Disc System Part-II, N.V. Philips and Sony Corporation
Orange Book part-IIl Recordable Compact Disc System Part-II1, N.V. Philips and Sony Corporation

ISO/IEC 13346:1995 Volume and File Structure of Write-Once and Rewritable media using non-
sequential recording for information interchange. This ISO standard is equivalent
to ECMA 167 2™ edition.

ECMA 167 ECMA 167 3" edition is an update to ECMA 167 2™ edition that adds the
support for multiple data stream files, and is available from
http://www.ecma-international.org/. The previous edition of ECMA 167 (2™
was is equivalent to ISO/IEC 13346:1995. References enclosed in [] in this
document are references to ECMA 167 3™ edition. The references are in the form
[x/a.b.c], where x is the section number and a.b.c is the paragraph or figure

number.

1.3.2 Definitions

Audio session Audio session contains one or more audio tracks, and no data track.

Audio track Audio tracks are tracks that are designated to contain audio sectors specified in
ISO/IEC 908.

CD-R CD-Recordable. A Write-Once CD defined in Orange Book, part-I1.

CD-RW CD-Rewritable. An Overwritable CD defined in Orange Book, part-III.

Clean File System The file system on the media conforms to this specification.

Data track Data tracks are tracks that are designated to contain data sectors specified in

ISO/IEC 10149.
Dirty File System A file system that is not a clean file system.

ECC Block Size (bytes) This term refers to values defined in relevant device and/or media specifications.
The reader should consult the appropriate document — for example, the “MMC”
or “Mt. Fuji” specifications for CD/DVD class media. For media exposing no
such concept externally (e.g. hard disc) this term shall be interpreted to mean the
sector size of the media.

Fixed Packet An incremental recording method in which all packets in a given track are of a
length specified in the Track Descriptor Block. Addresses presented to a CD
drive are translated according to the Method 2 addressing specified in Orange
Book parts-II and -III.

ICB A control node in ECMA 167.

upr2.60 DRAFTI12z DRAFT12z 4 DRAFT12z DRAFT12z February 28, 2005

http://www.ecma-international.org/
http://www.ecma-international.org/

upr2.60 DRAFTI12z DRAFT12z 5 DRAFT12z DRAFT12z February 28, 2005

Logical Block Address

Media Block Address

Packet

Physical Address

Physical Block Address

physical sector

Pseudo OverWrite

A logical block number [3/8.8.1].

NOTE 1: This is not to be confused with a logical block address [4/7.1], given by
the Ib_addr structure that contains both a logical block number [3/8.8.1] and a
partition reference number [3/8.8], the latter identifying the partition [3/8.7]
which contains the addressed logical block [3/8.8.1].

NOTE 2: A logical block number [3/8.8.1] translates to a logical sector number
[3/8.1.2] according to the scheme indicated by the Partition Map [3/10.7] of the
partition [3/8.7], which contains the addressed logical block [3/8.8.1]

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] is equivalent to a logical sector number [3/8.1.2].

A recordable unit, which is an integer number of contiguous sectors [1/5.9],
which consist of user data sectors, and may include additional sectors [1/5.9]
which are recorded as overhead of the Packet-writing operation and are
addressable according to the relevant standard for recording [1/5.10].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] is equivalent to a logical sector number [3/8.1.2].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] is equivalent to a logical sector number [3/8.1.2].

A sector [1/5.9] given by a relevant standard for recording [1/5.10]. In this
specification, a sector [1/5.9] is equivalent to-a a logical sector [3/8.1.2].

Overwrite performed logically by drive on Write-Once media using sequential
recording.

Random Access File System A file system for randomly writable media, either Write-Once or

reserved track

Sequential File System

Session

Track

UDF

used track

Rewritable

A reserved track is a track that has a valid Next Writable Address (NWA). For
Pseudo OverWrite, this means that sequential write at the NWA and pseudo
overwrite until the NWA is possible for this track. See also used track.

A file system for sequentially written media (e.g. CD-R)

The tracks of a volume shall be organized into one or more sessions, e.g. for CD
see the Orange Book part-II. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending sequence.

The sectors of a volume shall be organized into one or more tracks. A track shall
be a sequence of sectors, the sector numbers of which form a contiguous
ascending sequence. No sector shall belong to more than one track.

NOTE: There may be gaps between tracks; that is, the last sector of a track need
not be adjacent to the first sector of the next track.

OSTA Universal Disk Format

A used track is a track that does not have a valid Next Writable Address. For
Pseudo OverWrite, this means that sequential write to this track is not possible.
Pseudo overwrite is still possible. See also reserved track.

upr2.60 DRAFTI12z DRAFT12z 6 DRAFT12z DRAFT12z February 28, 2005

user data blocks

user data sectors

Variable Packet

Virtual Address

virtual partition

virtual sector

VAT

VAT ICB

The logical blocks [3/8.8.1] which were recorded in the sectors [1/5.9]
(equivalent in this specification to logical sectors [3/8.1.2]) of a Packet and which
contain the data intentionally recorded by the user of the drive. This specifically
does not include the logical blocks [3/8.8.1], if any, whose constituent sectors
[1/5.9] were used for the overhead of recording the Packet, even though those
sectors [1/5.9] are addressable according to the relevant standard for recording
[1/5.10]. Like any logical blocks [3/8.8.1], user data blocks are identified by
logical block numbers [3/8.8.1].

The sectors [1/5.9] of a Packet which contain the data intentionally recorded by
the user of the drive, specifically not including those sectors [1/5.9] used for the
overhead of recording the Packet, even though those sectors [1/5.9] may be
addressable according to the relevant standard for recording [1/5.10]. Like any
sectors [1/5.9], user data sectors are identified by sector numbers [3/8.1.1]. In
this specification, a sector number [3/8.1.1] is equivalent to-a a logical sector
number [3/8.1.2].

An incremental recording method in which each packet in a given track is of a
host determined length. Addresses presented to a CD drive are as specified in
Method 1 addressing in Orange Book parts II and III.

A logical block number [3/8.8.1] of a logical block [3/8.8.1] in a virtual partition.
Such a logical block [3/8.8.1] is recorded using the space of a logical block
[3/8.8.1] of a corresponding non-virtual partition. The Nth Uint32 in the VAT
represents the logical block number [3/8.8.1] in a non-virtual partition used to
record logical block number N of its corresponding virtual partition. The first
virtual address is 0.

A partition of a logical volume [3/8.8] identified in a logical volume descriptor
[3/10.6] by a Type 2 Partition Map [3/10.7.3] recorded according section 2.2.8 of
this specification. The Virtual Partition Map contains a partition number that is
the same as the partition number [3/10.7.2.4] in a Type 1 Partition Map [3/10.7.2]
in the same logical volume descriptor [3/10.6]. Each logical block [3/8.8.1] in the
virtual partition is recorded using the space of a logical block [3/8.8.1] of that
corresponding non-virtual partition. A VAT lists the logical blocks [3/8.8.1] of
the non-virtual partition, which have been used to record the logical blocks
[3/8.8.1] of its corresponding virtual partition.

A logical block [3/8.8.1] in a virtual partition. Such a logical block [3/8.8.1] is
recorded using the space of a logical block [3/8.8.1] of a corresponding non-
virtual partition. A virtual sector should not be confused with a sector [1/5.9] or a
logical sector [3/8.1.2].

A file [4/8.8] recorded in the space of a non-virtual partition which has a
corresponding virtual partition, and whose data space [4/8.8.2] is structured
according to section 2.2.11 of this specification. This file provides an ordered list
of Uint32s, where the Nth Uint32 represents the logical block number [3/8.8.1] of
a non-virtual partition used to record logical block number N of its corresponding
virtual partition. This file [4/8.8] is not necessarily referenced by a File Identifier
Descriptor [4/14.4] of a directory [4/8.6] in the file set [4/8.5] of the logical
volume [3/8.8].

A File Entry ICB that describes a file containing a Virtual Allocation Table.

upr2.60 DRAFTI12z DRAFT12z 7 DRAFT12z DRAFT12z February 28, 2005

1.3.3 Terms

May
Optional

Shall
Should

Reserved

Indicates an action or feature that is optional.

Describes a feature that may or may not be implemented. If implemented, the

feature shall be implemented as described.

Indicates an action or feature that is mandatory and must be implemented to claim

compliance to this standard.

Indicates an action or feature that is optional, but its implementation is strongly

recommended.

A reserved field is reserved for future use and shall be set to zero. A reserved

value is reserved for future use and shall not be used.

1.3.4 Acronyms

Acronym Definition
AD Allocation Descriptor
AVDP Anchor Volume Descriptor Pointer
EA Extended Attribute
EFE Extended File Entry
FE File Entry
FID File Identifier Descriptor
FSD File Set Descriptor
ICB Information Control Block
IUVD Implementation Use Volume Descriptor
LV Logical Volume
LVD Logical Volume Descriptor
LVID Logical Volume Integrity Descriptor
NWA Next Writable Address in a track
PD Partition Descriptor
POW Pseudo OverWrite as described in appendix 6.15
PVD Primary Volume Descriptor
SBD Space Bitmap Descriptor
USD Unallocated Space Descriptor
VAT Virtual Allocation Table
VDS Volume Descriptor Sequence
VRS Volume Recognition Sequence
upr2.60 DRAFTI12z DRAFT12z 8 DRAFT12z DRAFT12z February 28, 2005

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined
in this specification. These restrictions & requirements as well as additional ones are
described in detail in the following sections of this specification.

Item

Restrictions & Requirements

Logical Sector Size

The Logical Sector Size for a specific volume shall be the same as
the physical sector size of the specific volume.

Logical Block Size

The Logical Block Size for a Logical Volume shall be set to the
logical sector size of the volume or volume set on which the
specific logical volume resides.

Volume Sets

All media within the same Volume Set shall have the same physical
sector size. Rewritable/Overwritable media and WORM media
shall not be mixed in/ be present in the same volume set.

First 32K of Volume Space

The first 32768 bytes of the Volume space shall not be used for the
recording of ECMA 167 structures. This area shall not be
referenced by the Unallocated Space Descriptor or any other
ECMA 167 descriptor. This is intended for use by the native
operating system.

Volume Recognition Sequence

The Volume Recognition Sequence as described in part 2 of
ECMA 167 shall be recorded.

Timestamp

All timestamps shall be recorded in local time. Time zones shall be
recorded on operating systems that support the concept of a time
zone.

Entity Identifiers

Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification the
Entity Identifiers shall contain a value that uniquely identifies the
implementation.

Descriptor CRCs

CRC:s shall be supported and calculated for all Descriptors. There
are exception rules for the Descriptor CRC Length of exeeptfor-the

Space Bitmap Descriptor and —Fhere-is-a-CRClength-speeial-case
for-the Allocation Extent Descriptor.

5 . .

SR ot regquireds

File Name Length

Maximum of 255 bytes

Extent Length

Maximum Extent Length shall be 2°° — 1 rounded down to the
nearest integral multiple of the Logical Block Size. Maximum
Extent Length for extents in virtual space shall be the Logical
Block Size.

Primary Volume Descriptor

There shall be exactly one prevailing Primary Volume Descriptor
recorded per volume. The media where the
VolumeSequenceNumber of this descriptor is equal to 1 (one) must
be part of the logical volume defined by the prevailing Logical
Volume Descriptor.

Anchor Volume Descriptor Pointer

Shall be recorded in at least 2 of the following 3 locations: 256, N-

256, or N, where N is the last addressable sector of a volume. See
also 2.2.3.

upr2.60 DRAFTI12z DRAFT12z 9 DRAFT12z DRAFT12z February 28, 2005

Item

Restrictions & Requirements

Partition Descriptor

A Partition Descriptor Access Type of read-only, rewritable,
overwritable-and, write-once and pseudo-overwritable shall be
supported. There shall be exactly one prevailing Partition
Descriptor recorded per volume, with one exception. For Volume
Sets that consist of single volume, the volume may contain 2 non-
overlapping Partitions with 2 prevailing Partition Descriptors only
if one has an Access Type of read-only and the other has an Access
Type of rewritable, overwritable, or write-once. The Logical
Volume for this volume would consist of the contents of both
partitions.

Logical Volume Descriptor

There shall be exactly one prevailing Logical Volume Descriptor
recorded per Volume Set.

The LogicalVolumeldentifier field shall not be null and should
contain an identifier that aids in the identification of the logical
volume. Specifically, software generating volumes conforming to
this specification shall not set this field to a fixed or trivial value.
Duplicate disks, which are intended to be identical, may contain the
same value in this field. This field is extremely important in logical
volume identification when multiple media are present within a
jukebox. This name is typically what is displayed to the user.

The Logical Volume Descriptor recorded on the volume where the
Primary Volume Descriptor’s VolumeSequenceNumber field is
equal to 1 (one) must have a NumberofPartitionMaps value and
PartitionMaps structure(s) that represent the entire logical volume.
For example, if a volume set is extended by adding partitions, then
the updated Logical Volume Descriptor written to the last volume
in the set must also be written (or rewritten) to the first volume of
the set.

Logical Volume Integrity Descriptor

Shall be recorded. The Logical Volume Integrity Sequence extent
of LVIDs may be terminated by the extent length.

Partition Integrity Entry

Shall not be recorded, see 2.3.9.

Unallocated Space Descriptor

A single prevailing Unallocated Space Descriptor shall be recorded
per volume.

File Set Descriptor

There shall be exactly one File Set Descrlptor recorded per Loglcal

Fesmeﬁenﬁ—deﬁﬂed—m—thﬁ—deeumem— The sole exceptlon is for non-
sequential Write-Once media (WORM), see 2.3.2. The FSD extent
may be terminated by the extent length.

ICB Tag

Only ICB Strategy Types 4 or 4096 shall be recorded.

File Identifier Descriptor

The total length of a File Identifier Descriptor shall not exceed the
size of one Logical Block.

File Entry

The total length of a File Entry shall not exceed the size of one
Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shall be recorded.

Allocation Extent Descriptors

The length of any single extent of allocation descriptors shall not
exceed the Logical Block Size.

Unallocated Space Entry

The total length of an Unallocated Space Entry shall not exceed the
size of one Logical Block.

upr2.60 DRAFTI12z DRAFT12z 10 DRAFT12z DRAFT12z February 28, 2005

Item

Restrictions & Requirements

Volume Descriptor Sequence Extent

Both the main and reserve volume descriptor sequence extents shall
each have a minimum length of 16 logical sectors. The VDS
Extent may be terminated by the extent length.

Record Structure

Record structure files, as defined in part 5 of ECMA 167, shall not
be created.

Minimum UDF Read Revision

The Minimum UDF Read Revision value shall be at most #0250
for all media with a UDF 2.60 file system. This indicates that a
UDF 2.50 implementation can read all UDF 2.60 media. Media
that do not have a Metadata Partition may use a value lower than
#250.

upr2.60 DRAFTI12z DRAFT12z 11 DRAFT12z DRAFT12z February 28, 2005

2.1 Part 1 - General

2.1.1 Character Sets
The character set used by UDF for the structures defined in this document is the
CSO0 character set. The OSTA CSO0 character set is defined as follows:

OSTA CSO shall consist of the d-characters specified in The Unicode Standard,
Version 2.0 (ISBN 0-201-48345-9 from Addison-Wesley Publishing Company
http://www.awl.com/, see also http://www.unicode.org/), excluding #FEFF and
#FFFE, stored in the OSTA Compressed Unicode format which is defined as

follows:
OSTA Compressed Unicode format
RBP | Length Name Contents
1 Compression 1D Uint8
1 ?? Compressed Bit Stream Byte

The CompressionID shall identify the compression algorithm used to compress
the CompressedBitStream field. The following algorithms are currently

UDF 2.60

supported:
Compression Algorithm
Value Description
0-7 Reserved
8 Value indicates there are 8 bits per character
in the CompressedBitStream.
9-15 Reserved
16 Value indicates there are 16 bits per
character in the CompressedBitStream.
17-253 | Reserved
254 Value indicates the CSO expansion is empty
and unique. Compression Algorithm 8 is
used for compression.
255 Value indicates the CSO expansion is empty
and unique. Compression Algorithm 16 is
used for compression.

For a CompressionID of 8 or 16, the value of the CompressionID shall specify the
number of BitsPerCharacter for the d-characters defined in the
CharacterBitStream field. Each sequence of CompressionlD bits in the
CharacterBitStream field shall represent an OSTA Compressed Unicode d-
character. The bits of the character being encoded shall be added to the
CharacterBitStream from most- to least-significant-bit. The bits shall be added to

DRAFTI12z DRAFTI12z

12

DRAFT12z DRAFT12z February 28, 2005

http://www.awl.com/
http://www.unicode.org/

the CharacterBitStream starting from the most significant bit of the current byte
being encoded into.

NOTE: This encoding causes characters written with a CompressionID of 16 to
be effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 2.0 standard.

Refer to appendix 6.4 on OSTA Compressed Unicode for sample C source code to
convert between OSTA Compressed Unicode and standard Unicode 2.0.

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

Compression IDs 254 and 255 shall only be used in FIDs where the Deleted bit is |
set to ONE.

When uncompressing File Identifiers with Compression IDs 254 and 255, the |
resulting name is to be considered empty and unique.

2.1.2 OSTA CS0 Charspec

struct charspec { /* ECMA 167 1/7.2.1 */
Uint8 CharacterSetType;
byte CharacterSetInfo[63];
}

The CharacterSetType field shall have the value of 0 to indicate the CS0 coded
character set.

The CharacterSetinfo field shall contain the following byte values with the
remainder of the field set to a value of 0.

#AF, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #73, #65,
#64, #20, #55, #6E, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode”

2.1.3 Dstrings

The ECMA 167 standard, as well as this document, has normally defined byte positions
relative to 0. In section 1/7.2.12 of ECMA 167, dstrings are defined in terms of being |
relative to 1. Since this offers an opportunity for confusion, the following shows what the
definition would be if described relative to 0.

upr2.60 DRAFTI12z DRAFT12z 13 DRAFT12z DRAFT12z February 28, 2005

7.2.12 Fixed-length character fields

A dstring of length # is a field of n bytes where d-characters (1/7.2) are recorded. The number of
bytes used to record the characters shall be recorded as a Uint8 (1/7.1.1) in byte n-1, where 7 is the
length of the field. The characters shall be recorded starting with the first byte of the field, and any
remaining byte positions after the characters up until byte n-2 inclusive shall be set to #00.

If the number of d-characters to be encoded is zero, the length of the dstring shall be zero.
NOTE: The length of a dstring includes the compression code byte (2.1.1) except for the

case of a zero length string. A zero length string shall be recorded by setting the
entire dstring field to all zeros.

2.1.4 Timestamp

struct timestamp { /* ECMA 167 1/7.3 */
Uint16 TypeAndTimezone;
Intl6 Year;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 HundredsofMicroseconds;
Uint8 Microseconds;
H

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions 7ype refers to the most significant 4 bits of this
field, and TimeZone refers to the least significant 12 bits of this field, which is
interpreted as a signed 12-bit number in two’s complement form.

¢~ The time within the structure shall be interpreted as Local Time since Type
shall be equal to ONE for OSTA UDF compliant media.

¥t Type shall be set to ONE to indicate Local Time.

e~ TimeZone shall be interpreted as specifying the time zone for the location
when this field was last modified. If this field contains -2047 then the time
zone has not been specified.

¥t For operating systems that support the concept of a time zone, the offset of
the time zone (in 1 minute increments), from Coordinated Universal Time,
shall be inserted in the TimeZone field. Otherwise the TimeZone shall be
set to —2047.

upr2.60 DRAFTI12z DRAFT12z 14 DRAFT12z DRAFT12z February 28, 2005

NOTE 1: Time zones West of Coordinated Universal Time have negative |
offsets. For example, Eastern Standard Time is -300 minutes; Eastern
Daylight Time is -240 minutes.

NOTE 2: Implementations on systems that support time zones should interpret |
unspecified time zones as Coordinated Universal Time. Although not a
requirement, this interpretation has the advantage that files generated on
systems that do not support time zones will always appear to have the
same timestamps on systems that do support time zones, irrespective of
the interpreting system's local time zone.

2.1.5 Entity Identifier

struct EntitylD { /* ECMA 167 1/7.4 */
Uint8 Flags;
char Identifier[23];
char IdentifierSuffix|8];

b

NOTE: UDF uses EntityID for the structure that is called regid in ECMA 167.

UDF classifies Entity Identifiers into 4 separate types. Each type has its own
Suffix Type for the Identifier Suffix field. The 4 types are: |

Domain Entity Ildentifiers with a Domain Identifier Suffix
UDF Entity Identifiers with a UDF Identifier Suffix

Implementation Entity Identifiers with an Implementation Identifier Suffix
Application Entity Identifiers with an Application Identifier Suffix

The following sections describe the format and use of Entity Identifiers based
upon the different types mentioned above. For all UDF descriptor fields
containing an EntitylD structure, the value of the Identifier field and the Suffix
Type for the Identifier Suffix field are defined in the Entity Identifiers table of
2.1.5.2. The interpretation of the Identifier Suffix field for each Suffix Type is
defined in 2.1.5.3.

2.1.5.1 Uint8 Flags
¢ Self-explanatory.

& Shall be set to ZERO.

upr2.60 DRAFTI12z DRAFT12z 15 DRAFT12z DRAFT12z February 28, 2005

2.1.5.2 char Identifier|23]

Unless stated otherwise in this document this field shall be set to an identifier that
uniquely identifies the implementation. This methodology will allow for identification of
the implementation responsible for creating structures recorded on media interchanged
between different implementations.

If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the /dentifier field to a value that
uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the ECMA 167
standard and this document and shows to what values they shall be set.

Entity Identifiers
Descriptor Field ID Value Suffix Type

Primary Volume Implementation ID “*Developer ID” Implementation

Descriptor Identifier Suffix

Primary Volume Application ID “*Application ID” Application Identifier

Descriptor Suffix

Implementation Use Implementation “*UDF LV Info” UDF Identifier Suffix

Volume Descriptor Identifier

Implementation Use Implementation ID “*Developer ID” Implementation

Volume Descriptor (in Implementation Identifier Suffix

Use field)

Partition Descriptor Implementation ID “*Developer ID” Implementation
Identifier Suffix

Partition Descriptor Partition Contents “+NSR03” Application Identifier
Suffix

Logical Volume Implementation ID “*Developer ID” Implementation

Descriptor Identifier Suffix

Logical Volume Domain ID "*OSTA UDF Compliant" Domain Identifier |

Descriptor Suffix

File Set Descriptor Domain ID "*OSTA UDF Compliant" Domain Identifier |
Suffix

File Identifier Descriptor | Implementation Use | “*Developer ID” Implementation

(optional) Identifier Suffix

(optional)

File Entry Implementation ID “*Developer ID” Implementation
Identifier Suffix

Device Specification Implementation Use | “*Developer ID” Implementation

Extended Attribute Identifier Suffix

UDF Implementation Implementation ID | See 3.3.4.5 UDF Identifier Suffix

Use Extended Attribute

Non-UDF Implementation ID “*Developer ID” Implementation

Implementation Use Identifier Suffix

Extended Attribute

UDF Application Use Application ID See 3.3.4.6 UDF Identifier Suffix

Extended Attribute

upr2.60 DRAFTI12z DRAFT12z 16 DRAFT12z DRAFT12z February 28, 2005

Non-UDF Application Application ID “*Application ID” Application Identifier
Use Extended Attribute Suffix
UDF Unique ID Implementation ID “*Developer ID” Implementation
Mapping Data Identifier Suffix
Power Calibration Table | Implementation ID “*Developer ID” Implementation
Stream Identifier Suffix
Logical Volume Integrity | Implementation ID “*Developer ID” Implementation
Descriptor (in Implementation Identifier Suffix
Use field)
Partition Integrity Entry | Implementation ID | N/A, see 2.3.9 N/A
Virtual Partition Map Partition Type “*UDF Virtual Partition” UDF Identifier Suffix
Identifier
Virtual Allocation Table | Implementation Use | “*Developer ID” Implementation
(optional) Identifier Suffix
(optional)
Sparable Partition Map Partition Type “*UDF Sparable Partition” UDF Identifier Suffix
Identifier
Sparing Table Sparing Identifier “*UDF Sparing Table” UDF Identifier Suffix
Metadata Partition Map Partition Type “*UDF Metadata Partition” | UDF Identifier Suffix
Identifier

The Suffix Type column in the above table defines the format of the suffix to be used with
the corresponding Entity Identifier. These different suffix types are defined in the
following section 2.1.5.3.

NOTE 1: The value of the Entity Identifier field is interpreted as a sequence of bytes, and |
not as a dstring specified in CS0. For ease of use the values used by UDF for this
field are specified in terms of ASCII character strings. The actual sequence of
bytes used for the Entity Identifiers defined by UDF are specified in section 6.2.

In the ID Value column in the above table “*Developer ID” refers to an Entity Identifier
that uniquely identifies the current implementation. The value specified should be used
when a new descriptor is created. Also, the value specified should be used for an existing
descriptor when anything within the scope of the specified EntitylD field is modified.

NOTE 2: The value chosen for a “*Developer ID” should contain enough information to |
identify the company and product name for an implementation. For example, a
company called XYZ with a UDF product called DataOne might choose “*XYZ
DataOne” as their Developer ID. Also in the suffix of their Developer ID they |
may choose to record the current version number of their DataOne product. This
information is extremely helpful when trying to determine which implementation
wrote a bad structure on a piece of media when multiple products from different
companies have been recording on the media.

In the ID Value column in the above table “*Application ID” refers to an identifier that
uniquely identifies the writer’s application.

upr2.60 DRAFTI12z DRAFT12z 17 DRAFT12z DRAFT12z February 28, 2005

NOTE 3: All Identifiers defined in this document (appendix 6.1) shall be registered by
OSTA as UDF Identifiers.

2.1.5.3 char IdentifierSuffix[8]

UDF 2.60

The format of the Identifier Suffix tield is dependent on the type of the Identifier. |
In regard to OSTA Domain Entity Identifiers specified in this document (see
2.1.5.2 and appendix 6.1), the Identifier Suffix field shall be constructed as |

follows:

Domain Identifier Suffix field-format |

RBP | Length Name Contents
0 2 UDF Revision Uintl6 (=
#02500260) |
2 1 Domain Flags Uint8
3 5 Reserved bytes (= #00)

The UDF Revision field shall contain #0250-0260 to indicate revision 2.58-60 of |
this document. This field will allow an implementation to detect changes made in
newer revisions of this document. The OSTA Domain Identifiers are only used in
the Logical Volume Descriptor and the File Set Descriptor. The DomainFlags

field defines the following bit flags:

Domain Flags

Bit Description
0 Hard-Write-Protect |
1 Soft-Write-Protect |
2-7 | Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or

file system-structures within the scope of the descriptor in which it resides are |
write protected. A SoftWriteProtect flag value of ONE shall indicate user write
protected structures. This flag may be set or reset by the user.

The HardWriteProtect flag is an implementation settable flag that indicates that

the scope of the descriptor in which it resides is permanently write protected. A
HardWriteProtect flag value of ONE shall indicate a permanently write protected
structure. Once set this flag shall not be reset. The HardWriteProtect flag

overrides the SoftWriteProtect flag.

The write protect flags appear in the Logical Volume Descriptor and in the File
Set Descriptor. They shall be interpreted as follows:

DRAFTI12z DRAFTI12z 18 DRAFTI12z DRAFTI12z February 28,2005

is_fileset write protected = LVD.HardWriteProtect || LVD.SoftWriteProtect ||
FSD.HardWriteProtect || FSD.SoftWriteProtect

is_fileset hard protected = LVD.HardWriteProtect || FSD.HardWriteProtect

is_fileset soft protected = (LVD.SoftWriteProtect | FSD.SoftWriteProtect) &&
lis_fileset hard protected

is_vol write protected = LVD.HardWriteProtect || LVD.SoftWriteProtect

is_vol hard protected = LVD.HardWriteProtect

is_vol soft protected = LVD.SoftWriteProtect && !LVD.HardWriteProtect

For Implementationuse-UDF Entity Identifiers as defined by UDF (see 2.1.5.2
and appendix 6.1), the Identifier Suffix field shall be constructed as follows:

UDF Identifier Suffix format

RBP | Length Name Contents
0 2 UDF Revision Uintl6 (=
#02500260)
2 1 OS Class Uint8
3 1 OS Identifier Uint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in Appendix
6.3 on Operating System Identifiers.

For implementationuse-Implementation Entity Identifiers not defined by UDF
(see 2.1.5.2), the Identifier Suffix field shall be constructed as follows:

Implementation Identifier Suffix format

RBP | Length Name Contents
0 1 OS Class Uint8
1 1 OS Identifier Uint8
2 6 Implementation Use Area bytes

NOTE: It is important to understand the intended use and importance of the OS Class
and OS Identifier fields. The main purpose of these fields is to aid in debugging when
problems are found on a UDF volume. The fields also provide useful information that
could be provided to the end user. When set correctly these two fields provide an
implementation with information such as the following:

e Identify under which operating system a particular structure was last modified.

e Identify under which operating system a specific file or directory was last
modified.

e Ifadeveloper supports multiple operating systems with their implementation,
it helps to determine under which operating system a problem may have
occurred.

upr2.60 DRAFTI12z DRAFT12z 19 DRAFT12z DRAFT12z February 28, 2005

For an Application Entity Identifier not defined by UDF (see 2.1.5.2), the
Identifier Suffix field shall be constructed as follows, unless specified otherwise.

Application Identifier Suffix format |

RBP | Length Name Contents
0 8 ImplementApplication Use Area bytes |

2.1.6 Descriptor Tag Serial Number at Formatting Time

In order to support disaster recovery, the Tag Serial Number value of all UDF descriptors
that will be recorded at formatting time, shall be set to a value that differs from ones
previously recorded, upon volume re-initialization.

If no disaster recovery will be supported, a value zero (#0000) shall be used for the Tag
Serial Number field of all UDF descriptors that will be recorded at formatting time, see
2.2.1.1,2.3.1.1 and ECMA 167 3/7.2.5 and 4/7.2.5.

If disaster recovery is supported, the value to be used depends on the state of the volume
prior to formatting. There are only two states in which a volume can be formatted such
that disaster recovery will be possible in the future. These states are:

1) The volume is completely erased. Only after this action, and where disaster recovery
is to be supported then a value of one (#0001) shall be used as the Tag Serial Number |
value.

2) The volume is a clean UDF volume that supports disaster recovery for Tag Serial ’
Number values, and the Tag Serial Number values of at least two Anchor Volume
Descriptor Pointers are both equal to X, where X is not equal to zero. If disaster
recovery is to be supported then a value X+1 shall be used as the Tag Serial Number |
value. If X+1 wraps to zero then keep it as zero to indicate that disaster recovery is
not supported.

NOTE 1: The reason for this is that if X+1 wraps to zero then the uniqueness of any
Tag Serial Number value unequal to zero can no longer be guaranteed on
the volume.

NOTE 2: By ‘erased’ in the above paragraphs, we mean that the sectors are made non- |
valid for UDF - for example by writing zeroes to the sectors.

2.1.7 Volume Recognition Sequence
The following rules shall apply when writing the volume recognition sequence:

& The Volume Recognition Sequence (VRS) as described in part 2 and part 3 of
ECMA 167 shall be recorded. There shall be exactly one NSR descriptor in the
VRS. The NSR and BOOT2 descriptors shall be in the Extended Area. There shall
be only one Extended Area with one BEAO1 and one TEAO1. All other VSDs are
only allowed before the Extended Area. The first sector after the VRS shall be
unrecorded or contain all #00 bytes.

upr2.60 DRAFTI12z DRAFTI12z 20 DRAFTI12z DRAFTI12z February 28, 2005 |

&~ Implementers should expect that media recorded by UDF 2.00 and lower revisions
do not have the requirement mentioned above concerning the first sector after the
VRS.

NOTE: Currently, no BOOT2 descriptor is defined for UDF, see 5.3. Further, see
ECMA 167 part 2, 3/3.1, 3/3.2 and 3/9.1.

upr2.60 DRAFTI12z DRAFT12z 21 DRAFT12z DRAFT12z February 28, 2005

2.2 Part 3 - Volume Structure
2.2.1 Descriptor Tag

struct tag { /* ECMA 167 3/7.2 */
Uint16 Tagldentifier;
Uint16 DescriptorVersion;
Uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uintl6 DescriptorCRC;
Uint16 DescriptorCRCLength;
Uint32 TaglLocation;

}

NOTE: The value zero for Tagldentifier is not defined by ECMA 167, but it is
used by UDF for the Sparing Table.

2.2.1.1 Uint16 TagSerialNumber
& Ignored. Intended for disaster recovery.

& Shall be set to the Tag Serial Number value of the Anchor Volume |
Descriptor Pointers on this volume.

In order to preserve disaster recovery support, the Tag Serial Number must be set |
to a value that differs from ones previously recorded, upon volume re-

initialization. This value is determined at volume formatting time and may

depend on the state of the volume prior to formatting. See 2.1.6 for further

details.

2.2.1.2 Uint16 DescriptorCRCLength
Descriptor CRCs shall be supported and calculated for each descriptor. Unless
otherwise specified, the Fhe-value of the DescriptorCRCLength this-field shall be
set to the minimum of the following two values: ((Size of the Descriptor) -
(Length of Descriptor Tag)); 65535. When reading a descriptor, the Descriptor
CRC should be validated.

NOTE: The DescriptorCRCLength tield must not be used to determine the actual
length of the descriptor or the number of bytes to be read. These lengths
do not match in all cases because of possible DescriptorCRCLength
truncation to 65535 and other DescriptorCRCLength exceptions as

specified in this standard.;-there-are-exeeptionsin-the-standard-where-the

De 1t [2 enoth n

upr2.60 DRAFTI12z DRAFT12z 22 DRAFT12z DRAFT12z February 28, 2005

2.2.2 Primary Volume Descriptor

struct PrimaryVolumeDescriptor { /* ECMA 167 3/10.1 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
Uint32 PrimaryVolumeDescriptorNumber;
dstring Volumeldentifier[32];
Uintl6 VolumeSequenceNumber;
Uint16 MaximumVolumeSequenceNumber;
Uint16 InterchangeLevel;
Uint16 MaximumlInterchangeLevel,
Uint32 CharacterSetList;
Uint32 MaximumCharacterSetList;
dstring VolumeSetldentifier[128];

struct charspec ~ DescriptorCharacterSet;
struct charspec ~ ExplanatoryCharacterSet;
struct extent ad VolumeAbstract;

struct extent ad VolumeCopyrightNotice;
struct EntityID ~ Applicationldentifier;
struct timestamp RecordingDateandTime;
struct EntityID ~ Implementationldentifier;

byte ImplementationUse[64];

Uint32 PredecessorVolumeDescriptorSequencelLocation;
Uint16 Flags;

byte Reserved[22];

}

2.2.2.1 Uint16 InterchangeLevel
s~ Interpreted as specifying the current interchange level (as specified in
ECMA 167 3/11), of the contents of the associated volume and the
restrictions implied by the specified level.

& If this volume is part of a multi-volume Volume Set then the level shall be
set to 3, otherwise the level shall be set to 2.

ECMA 167 requires an implementation to enforce the restrictions associated with
the specified current Interchange Level. The implementation may change the
value of this field as long as it does not exceed the value of the Maximum
Interchange Level field.

2.2.2.2 Uintl6 MaximumlInterchangeLevel
e~ Interpreted as specifying the maximum interchange level (as specified in
ECMA 167 3/11), of the contents of the associated volume.

& This field shall be set to level 3 (No Restrictions Apply), unless
specifically given a different value by the user.

upr2.60 DRAFTI12z DRAFT12z 23 DRAFT12z DRAFT12z February 28, 2005

NOTE: This field is used to determine the intent of the originator of the volume.
If this field has been set to 2 then the originator does not wish the volume to
be included in a multi-volume set (interchange level 3). The receiver may
override this field and set it to a 3 but the implementation should give the
receiver a strict warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 CharacterSetList
¢~ Interpreted as specifying the character set(s) in use by any of the structures
defined in Part 3 of ECMA 167 (3/10.1.9).

& Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.2.4 Uint32 MaximumCharacterSetList
e~ Interpreted as specifying the maximum supported character sets (as
specified in ECMA 167) which may be specified in the CharacterSetList
field.

& Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetldentifier[128]
s~ Interpreted as specifying the identifier for the volume set .

& The first 16 characters of this field should be set to a unique value. The
remainder of the field may be set to any allowed value. Specifically,
software generating volumes conforming to this specification shall not set
this field to a fixed or trivial value. Duplicate disks which are intended to
be identical may contain the same value in this field.

NOTE: The intended purpose of this is to guarantee Volume Sets with
unique identifiers. The first 8 characters of the unique part should
come from a CSO hexadecimal representation of a 32-bit time value.
The remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec DescriptorCharacterSet
e~ Interpreted as specifying the character sets allowed in the Volume
Identifier and Volume Set Identifier fields.
& Shall be set to indicate support for CSO as defined in 2.1.2.

2.2.2.7 struct charspec ExplanatoryCharacterSet
s~ Interpreted as specifying the character sets used to interpret the contents of
the VolumeAbstract and VolumeCopyrightNotice extents.

& Shall be set to indicate support for CSO as defined in 2.1.2.

upr2.60 DRAFTI12z DRAFT12z 24 DRAFT12z DRAFT12z February 28, 2005

2.2.2.8 struct EntityID Implementationldentifier
For more information on the proper handling of this field see section 2.1.5.

2.2.2.9 struct EntityID Applicationldentifier
e~ This field either specifies a valid Entity Identifier (section 2.1.5)
identifying the application that last wrote this field, or the field is filled
with all #00 bytes, meaning that no application is identified.

& Either all #00 bytes or a valid Entity Identifier (section 2.1.5) shall be
recorded in this field.

2.2.3 Anchor Volume Descriptor Pointer
struct AnchorVolumeDescriptorPointer { /* ECMA 167 3/10.2 */
struct tag DescriptorTag;
struct extent ad MainVolumeDescriptorSequenceExtent;
struct extent ad ReserveVolumeDescriptorSequenceExtent;
byte Reserved[480];

}

NOTE 1: An Anchor Volume Descriptor Pointer structure shall be recorded in at |
least 2 of the following 3 locations on the media:

e Logical Sector 256.
e Logical Sector (N - 256).
e N

NOTE 2: Closed media shall conform to the above rules. As specified in section
6.11.2s610-and—6-13, unclosed sequential Write-Once media may have a
single AVDP present at either sector 256 or 512. If on an unclosed disc a
single AVDP is recorded on sector 256, any AVDP recorded on sector 512
must be ignored.-Clesed-media-shall-conformto-the-abeverules: |

2.2.3.1 struct MainVolumeDescriptorSequenceExtent
The Main Volume Descriptor Sequence Extent shall have a minimum length of 16
logical sectors.

2.2.3.2 struct ReserveVolumeDescriptorSequenceExtent
The Reserve Volume Descriptor Sequence Extent shall have a minimum length of
16 logical sectors.

NOTE: The Main VDS extent and the Reserve VDS extent shall be recorded in
different ECC blocks. The locations of these extents on the volume should be
as far apart as physically possible. Typically this is achieved by maximizing
the difference between the start LSNs of the extents. Care should be taken in
case of special LSN address schemes, e.g. for multiple layer media.

upr2.60 DRAFTI12z DRAFT12z 25 DRAFT12z DRAFT12z February 28, 2005

2.2.4 Logical Volume Descriptor

struct LogicalVolumeDescriptor { /* ECMA 167 3/10.6 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
struct charspec ~ DescriptorCharacterSet;
dstring LogicalVolumeldentifier[128];
Uint32 LogicalBlockSize,
struct EntityID ~ Domainldentifier;
byte LogicalVolumeContentsUse[16];
Uint32 MapTableLength;
Uint32 NumberofPartitionMaps;
struct EntityID Implementationldentifier;
byte ImplementationUse[128];
extent_ad IntegritySequenceExtent,
byte PartitionMaps]];

}

2.2.4.1 struct charspec DescriptorCharacterSet

¢~ Interpreted as specifying the character set allowed in the
LogicalVolumeldentifier tield.

& Shall be set to indicate support for CSO as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize

&

Interpreted as specifying the Logical Block Size for the logical volume
identified by this Logical Volume Descriptor.

This field shall be set to the largest logical sector size encountered
amongst all the partitions on media that constitute the logical volume
identified by this Logical Volume Descriptor. Since UDF requires that all
Volumes within a Volume Set have the same logical sector size, the
Logical Block Size will be the same as the logical sector size of the
Volume.

2.2.4.3 struct EntityID Domainldentifier

&

Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If this field is all zero then
it is ignored, otherwise the Entity Identifier rules are followed.

NOTE 1: If the field does not contain “*OSTA UDF Compliant” then an
implementation may deny the user access to the logical volume.

upr2.60 DRAFTI12z DRAFT12z 26 DRAFT12z DRAFT12z February 28, 2005

& This field shall indicate that the contents of this logical volume conforms
to the domain defined in this document, therefore the Domain Identifier 1D
value shall be set to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the Identifier Suffix field of |
this EntityID shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see section 2.1.5.

NOTE 2: The Identifier Suffix field of this EntityID contains |
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.5.3.

2.2.4.4 byte LogicalVolumeContentsUse[16] |

This field contains the extent location of the File Set Descriptor. This is described
in 4/3.1 of ECMA 167 as follows:

“If the volume is recorded according to Part 3, the extent in which the first File Set Descriptor
Sequence of the logical volume is recorded shall be identified by a long_ad (4/14.14.2) recorded
in the Logical Volume Contents Use field (see 3/10.6.7) of the Logical Volume Descriptor
describing the logical volume in which the File Set Descriptors are recorded.”

This field can be used to find the File Set Descriptor, and from the File Set
Descriptor the root directory can be found.

2.2.4.5 struct EntityID Implementationldentifier;
For more information on the proper handling of this field see section 2.1.5.

2.2.4.6 struct extent_ad IntegritySequenceExtent
A value in this field is required for the Logical Volume Integrity Descriptor. For
Rewriteable or Overwriteable media this shall be set to a minimum of 8K bytes.

WARNING: For WORM media this field should be set to an extent of some
substantial length. Once the WORM volume on which the Logical
Volume Integrity Descriptor resides is full a new volume must be added to
the volume set since the Logical Volume Integrity Descriptor must reside
on the same volume as the prevailing Logical Volume Descriptor.

2.2.4.7 byte PartitionMaps|]

For the purpose of interchange, Partition Maps shall be limited to Partition Map |
type 1, except type 2 maps as described in this document (2.2.8, 2.2.9 and 2.2.10).

upr2.60 DRAFTI12z DRAFT12z 27 DRAFT12z DRAFT12z February 28, 2005

2.2.5 Unallocated Space Descriptor

struct UnallocatedSpaceDesc { /* ECMA 167 3/10.8 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
Uint32 NumberofAllocationDescriptors;
extent_ad AllocationDescriptors[];
}

This descriptor shall be recorded, even if there is no free volume space. The first
32768 bytes of the Volume space shall not be used for the recording of ECMA
167 structures. This area shall not be referenced by the Unallocated Space
Descriptor or any other ECMA 167 descriptor.

2.2.6 Logical Volume Integrity Descriptor

struct LogicalVolumelntegrityDesc { /* ECMA 167 3/10.10 */
struct tag DescriptorTag,
Timestamp RecordingDateAndTime,
Uint32 IntegrityType,
struct extentd _ad NextIntegrityExtent,
byte LogicalVolumeContentsUse[32],
Uint32 NumberOfPartitions,
Uint32 LengthOflmplementationUse, /* =1L U */
Uint32 FreeSpaceTable[],
Uint32 SizeTable|[],
byte ImplementationUse|]
}

The Logical Volume Integrity Descriptor is a structure that shall be written any
time the contents of the associated Logical Volume is modified. Through the
contents of the Logical Volume Integrity Descriptor an implementation can easily
answer the following useful questions:

1) Are the contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
Volume was modified?

3) What is the total Logical Volume free space in logical blocks?
4) What is the total size of the Logical Volume in logical blocks?

5) What is the next available UniquelD for use within the Logical
Volume?

6) Has some other implementation modified the contents of the logical
volume since the last time that the original implementation, which
created the logical volume, accessed it.

upr2.60 DRAFTI12z DRAFT12z 28 DRAFT12z DRAFT12z February 28, 2005

2.2.6.1 byte LogicalVolumeContentsUse[32]

See section 3.2.1 for information on the contents of this field.

2.2.6.2 Uint32 FreeSpaceTable[]

Since most operating systems require that an implementation provides the true
free space of a Logical Volume at mount time it is important that the Free Space
Table these-values be maintained for all ren—virtaal-partitions, except for the
following two cases:

1. For a virtual partition and for a partition with Access Type pseudo-
overwritable, the Free Space Table value shall be set to #FFFFFFFF.

2. For a partition with Access Type read-only, the Free Space Table value
shall be set to zero.

In all other cases, Fthe optional value of #FFFFFFFF, which indicates that the
amount of avallable free space is not known, shall not be used.-ferren—virtual

NOTE: The Free Space Table is guaranteed to be correct only when the Logical |
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable|]

Since most operating systems require that an implementation provide the total size
of a Logical Volume at mount time it is important that these values be maintained
for all non-virtual partitions. The optional value of #FFFFFFFF, which indicates
that the partition size is not known, shall not be used for non-virtual partitions.
For virtual partitions the SizeTable value shall be set to #FFFFFFFF.

2.2.6.4 byte ImplementationUse[]

UDF 2.60

The ImplementationUse area for the Logical Volume Integrity Descriptor shall be
structured as follows:

ImplementationUse format

RBP | Length Name Contents

0 32 ImplementationID EntitylD

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uint16

42 2 Minimum UDF Write Revision Uintl6

44 2 Maximum UDF Write Revision Uint16

46 L IU- Implementation Use byte ‘

4622

DRAFTI12z DRAFTI12z 29 DRAFTI12z DRAFTI12z February 28,2005

UDF 2.60

NOTE: For a Sequential File System using a VAT, all field values above will be
overruled by the corresponding VAT fields, except for the
ImplementationID and Implementation Use fields, see 2.2.11.

Implementation ID - The implementation identifier EntityID of the
implementation which last modified anything within the scope of this EntityID.
The scope of this EntityID is the Logical Volume Descriptor, and the contents of
the associated Logical Volume. This field allows an implementation to identify
which implementation last modified the contents of a Logical Volume.

Number of Files - The current number of files in the Logical Volume, including
hard links. The count includes all FIDs in the directory hierarchy for which the
Directory bit, Parent bit and Deleted bit are all ZERO. FIDs identifying a Named
Stream are not included in the count. This information is needed by the Macintosh
OS. All implementations shall maintain this information.

Number of Directories - The current number of directories in the Logical Volume,
plus the root directory. The count includes the root directory and all FIDs in the
directory hierarchy for which the Directory bit is ONE and the Parent bit and
Deleted bit are both ZERO. FIDs identifying a Stream Directory are not included
in the count. This information is needed by the Macintosh OS. All
implementations shall maintain this information.

Minimum UDF Read Revision - Shall indicate the minimum recommended
revision of the UDF specification that an implementation is required to support to
successfully be able to read all potential structures on the media. This number
shall be stored in binary coded decimal format, for example #6+0250 would
indicate revision +2.50 of the UDF specification. See further requirements in the
Basic Restrictions & Requirements section.

Minimum UDF Write Revision - Shall indicate the minimum revision of the UDF
specification that an implementation is required to support to successfully be able
to modify all structures on the media. This number shall be stored in binary coded
decimal format, for example #04+0250 would indicate revision +2.50 of the UDF
specification.

Maximum UDF Write Revision - Shall indicate the maximum revision of the UDF
specification that an implementation that has modified the media has supported.
An implementation shall update this field only if it has modified the media and
the level of the UDF specification it supports is higher than the current value of
this field. This number shall be stored in binary coded decimal format, for
example #64500260 would indicate revision +-502.60 of the UDF specification.

Implementation Use - Contains implementation specific information unique to the
implementation identified by the Implementation ID.

DRAFTI12z DRAFTI12z 30 DRAFTI12z DRAFTI12z February 28,2005

2.2.7 Implementation Use Volume Descriptor

struct ImpUseVolumeDescriptor { /* ECMA 167 3/10.4 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
struct EntityID ~ Implementationldentifier;
byte ImplementationUse[460];
b

This section defines an UDF Implementation Use Volume Descriptor. This
descriptor shall be recorded on every Volume of a Volume Set. The Volume may
also contain additional Implementation Use Volume Descriptors that are
implementation specific. The intended purpose of this descriptor is to aid in the
identification of a Volume within a Volume Set that belongs to a specific Logical
Volume.

NOTE: An implementation may still record an additional Implementation Use
Volume Descriptor in its own format on the media. The UDF Implementation
Use Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 EntityID Implementationldentifier
The Identifier field of this EntityID shall specify “*UDF LV Info”. Refer to
section 2.1.5 on Entity Identifier.

2.2.7.2 bytes ImplementationUse[460]
The implementation use area shall contain the following structure:

struct LVInformation {
struct charspec ~ LVICharset,

dstring LogicalVolumeldentifier[128],
dstring LVInfol[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

struct EntityID ~ ImplementationID,

bytes ImplementationUse[128];

}

2.2.7.2.1 charspec LVICharset
s~ Interpreted as specifying the character sets allowed in the
LogicalVolumeldentifier and LVInfo fields.

& Shall be set to indicate support for CSO only as defined in 2.1.2.

upr2.60 DRAFTI12z DRAFT12z 31 DRAFT12z DRAFT12z February 28, 2005

2.2.7.2.2 dstring LogicalVolumeldentifier[128]
Identifies the Logical Volume referenced by this descriptor.

2.2.7.2.3 dstring L.VInfo1[36], LVInfo2[36] and LVInfo3[36]
The fields LVInfol, LVInfo2 and LVInfo3 should contain additional information
to aid in the identification of the media. For example the LVInfo fields could
contain information such as Owner Name, Organization Name, and Contact
Information.

2.2.7.2.4 struct EntityID ImplementationID
Refer to section 2.1.5 on Entity Identifier.

2.2.7.2.5 bytes ImplementationUse[128]

This area may be used by the implementation to store any additional
implementation specific information.

upr2.60 DRAFTI12z DRAFT12z 32 DRAFT12z DRAFT12z February 28, 2005

2.2.8 Virtual Partition Map

This is an extension of ECMA 167 to expand its scope to include sequentially written
media (eg. CD-R). This extension is for a Partition Map entry to describe a virtual space.

The Logical Volume Descriptor contains a list of partitions that make up a given volume.
As the virtual partition cannot be described in the same manner as a physical partition, a
Type 2 Partition Map defined below shall be used.

If a Virtual Partition Map is recorded, then the Logical Volume Descriptor shall contain
at least two Partition Maps. One Partition Map shall be recorded as a Type 1 Partition
Map. One Partition Map shall be recorded as a Type 2 Partition Map. The format of this
Type 2 Partition Map shall be as specified in the following table.

Layout of Type 2 Partition Map for virtual partition

RBP | Length Name Contents
0 1 Partition Map Type Uint8 =2

1 1 Partition Map Length Uint8 = 64

2 2 Reserved 1 #00 bytes

4 32 Partition Type Identifier EntitylD

36 2 Volume Sequence Number Uint16

38 2 Partition Number Uint16

40 24 Reserved 2 #00 bytes

e Partition Type Identifier:
e Flags=0
e Identifier = *UDF Virtual Partition
e Identifier Suffix is recorded as defined in section 2.1.5
e Volume Sequence Number = volume upon which the VAT and Partition is recorded

e Partition Number = the partition number in the Type 1 Partition Map in the same logical
volume descriptor.

2.2.9 Sparable Partition Map

Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide
an apparent defect-free space for these systems, a partition of type 2 is used. The
Partition Map defines the partition number, packet size (see section 1.3.2), and size and
locations of the Sparing Tables. This type 2 map is intended to replace the type 1 map
normally found on the media. There should not be a type 1 map recorded if a Sparable
Partition Map is recorded. The Sparable Partition Map identifies not only the partition
number and the volume sequence number, but also identifies the Packet Length and the
Sparing Tables. A Sparable Partition Map shall not be recorded on disk/drive systems
that perform defect management.

upr2.60 DRAFTI12z DRAFT12z 33 DRAFT12z DRAFT12z February 28, 2005

Layout of Type 2 Partition Map for sparable partition

RBP Length Name Contents
0 1 Partition Map Type Uint§ =2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved | #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 Volume Sequence Number Uintl6
38 2 Partition Number Uintl6
40 2 Packet Length Uintl6
42 1 Number of Sparing Tables (=N _ST) Uint8
43 1 Reserved 2 #00 byte
44 4 Size of each Sparing Table Uint32
48 4*N ST Locations of Sparing Tables Uint32
48+4*N ST |16-4*N ST |Pad #00 bytes

e Partition Type Identifier:
e Flags=0
e Identifier = *UDF Sparable Partition
e Identifier Suffix is recorded as defined in section 2.1.5.

e Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition.

e Packet Length = the number of user data blocks per fixed packet. This value is specified in
the medium specific sections of the Appendices in section 6. Appendix-6-

e Number of Sparing Tables = the number of redundant tables recorded. This shall be a value in
the range of 1 to 4.

e Size of each Sparing Table = Length, in bytes, allocated for each Sparing Table.

e Locations of Sparing Tables = the start locations of each Sparing Table specified as a media
block address. Implementations should align the start of each Sparing Table with the
beginning of a packet. Implementations should record at least two Sparing Tables in
physically distant locations.

2.2.10 Metadata Partition Map

FhispA Metadata Partition Map shall be recorded for volumes that contain a single
Partition Descriptor having an Access Type of 0 (pseudo-overwritable), 1 (read-only) or 4
(overwritable) and do not have a Virtual Partition Map recorded in the LVD. For the
special case of two non-overlapping Partitions on one volume, one with an Access Type
of read-only and one with an Access Type overwritable, there shall be a Metadata
Partition Map associated with the overwritable partition.

A Metadata Partition Map ¥-shall not be recorded in all other cases.

See section 2.2.13 for further description of the Metadata Partition.

upr2.60 DRAFTI12z DRAFT12z 34 DRAFT12z DRAFT12z February 28, 2005

Layout of Type 2 Partition Map for metadata partition

RBP Length Name Contents

Partition Map Type Uint§ =2

Partition Map Length Uint8 = 64

N ==

Reserved | #00 bytes

(98]
[\)

Partition Type Identifier EntitylD

Volume Sequence Number Uint16

Partition Number Uint16

Metadata File Location Uint32

Metadata Mirror File Location Uint32

Metadata Bitmap File Location Uint32

Allocation Unit Size (blocks) Uint32

Alignment Unit Size (blocks) Uintl6

Flags Uint8

(L0 el [NS Ny (R SN [SN S NS R ()

Reserved 2 #00 bytes

UDF 2.60

Partition Type Identifier:
e Flags=0
e Identifier = *UDF Metadata Partition
o Identifier Suffix is recorded as in section 2.1.5.

Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition. This shall match the partition number in the Type 1 Partition
Map or Type 2 Sparable Partition Map, one and only one of which shall also be recorded as
appropriate to the media type.

Metadata File Location = address of the block containing the File Entry for the Metadata File.
This address shall be interpreted as a logical block number within the physical or sparable
partition associated with this Partition Map (see above “Partition Number” field).

Metadata Mirror File Location = address of block containing the File Entry for the metadata
file mirror. This address shall be interpreted as a logical block number within the physical or
sparable partition associated with this Partition Map (see above “Partition Number” field).

Metadata Bitmap File Location = the address of ef-the block containing the File Entry for the
Metadata Bitmap File. This address shall be interpreted as a logical block number within the
physical or sparable partition associated with this Partition Map (see above “Partition
Number” field). If the value of the Metadata Bitmap File Location field is equal to
#FFFFFFFF, no File Entry for the Metadata Bitmap File is defined.

Allocation Unit Size = the number of logical blocks per Allocation Unit for the metadata file
(and mirror file) associated with this Partition Map. This value shall be an integer multiple of
the larger of the following three values: (media ECC Block Size (divided by) logical block
size); Packet Length (if a type 2 Sparable Partition Map is recorded); 32.

Alignment Unit Size (blocks) = all extents allocated to the Metadata File (or Mirror File) must
have a starting Lbn which is an integer multiple of this value. This value shall be an integer
multiple of the larger of the following: (media ECC Block Size (divided by) logical block
size); Packet Length (if a type 2 Sparable Partition Map is recorded).

Flags:
e Bit 0:— “Duplicate Metadata Flag”: When set, indicates that the Metadata Mirror
File has its own unique allocation (i.e. it duplicates the data in the Metadata File).
When clear indicates that the Metadata Mirror File allocation descriptors describe the
same allocation as the Metadata File allocation descriptors (i.e. the data is not
duplicated, and the data blocks are shared between both main and mirror files, but
each File Entry and its associated allocation descriptors are unique and distinct).

DRAFTI12z DRAFTI12z 35 DRAFTI12z DRAFTI12z February 28,2005

e Bits 1-7: Reserved. Shall be set to zero on write, and ignored on read.

NOTE 1: The Metadata Partition shall have an entry in the LVID Size Table and Free
Space Tables (see 2.2.6).

NOTE 2: The Metadata File Location, Metadata Mirror File Location and Metadata |
Bitmap File Location Uint32 fields define File Entry locations. The number of
blocks allocated for each File Entry shall be one logical block.

2.2.11 Virtual Allocation Table

The Virtual Allocation Table (VAT) is used on sequentially written media (eg. CD-R) to
give the appearance of randomly writable media to the system. The existence of this
partition is identified in the Partition Maps. The VAT shall only be recorded on |
sequentially written media (eg. CD-R).

The VAT is a map that translates Virtual Addresses to logical addresses. It shall be
recorded as a file identified by a File Entry ICB (VAT ICB) that allows great flexibility in
building the table. The VAT ICB is the last sector recorded in any transaction. The VAT
itself may be recorded at any location.

The VAT shall be identified by a File Entry ICB with a file type of 248. This ICB shall be
the last valid data sector recorded. Error recovery schemes can find the last valid VAT by
finding ICBs with file type 248.

This file, when small, can be embedded in the ICB that describes it. If it is larger, it can
be recorded in a sector or sectors preceding the ICB. The sectors do not have to be
contiguous, which allows writing only new parts of the table if desired. This allows small
incremental updates, even on disks with many directories.

When the VAT is small (a small number of directories on the disk), the VAT is updated
by writing a new file ICB with the VAT embedded. When the VAT becomes too large to
fit in the ICB, writing a single sector with the VAT and a second sector with the ICB is
required. Beyond this point, more than one sector is required for the VAT. However, as
multiple extents are supported, updating the VAT may consist of writing only the sector
or sectors that need updating and writing the ICB with pointers to all of the pieces of the
VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the
proper logical location. The indirection provided by this table provides the appearance of
direct overwrite capability. For example, the ICB describing the root directory could be
referenced as virtual sector 1. A virtual sector is contained in a partition identified by a
Virtual Partition Map entry. Over the course of updating the disk, the root directory may |
change. When it changes, a new sector describing the root directory is written, and its
Logical Block Address is recorded as the Logical Block Address corresponding to virtual
sector 1. Nothing that references virtual sector 1 needs to change, as it still points to the

upr2.60 DRAFTI2z DRAFTI12z 36 DRAFTI12z DRAFTI12z February 28, 2005 |

most current virtual sector 1 that exists, even though it exists at a new Logical Block
Address.

The use of virtual addressing allows any desired structure to become effectively
Rewritable. The structure is Rewritable when every pointer that references it does so only
by its Virtual Address. When a replacement structure is written, the virtual reference does
not need to change. The proper entry in the VAT is changed to reflect the new Logical
Block Address of the corresponding Virtual Address and all virtual references then
indirectly point to the new structure. All structures that require updating, such as directory
ICBs, shall be referenced by a Virtual Address. As each structure is updated, its
corresponding entry in the VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entries in a file. Each entry shall be
the offset, in sectors, into the physical partition in which the VAT is located. The first
entry shall be for the virtual partition sector 0, the second entry for virtual partition sector
1, etc. The Uint32 entries shall follow the VAT header. The entry for the previous VAT
ICB allows for viewing the file system as it appeared in an earlier state. If this field is
#FFFFFFFF, then no such ICB is specified.

Virtual Allocation Table structure

Offset Length Name Contents
0 2 Length of Header (=L HD) Uint16
2 2 Length of Implementation Use (=L IU) Uint16
4 128 Logical Volume Identifier dstring
132 4 Previous VAT ICB location Uint32
136 4 Number of Files Uint32
140 4 Number of Directories Uint32
144 2 Minimum UDF Read Revision Uintl6
146 2 Minimum UDF Write Revision Uint16
148 2 Maximum UDF Write Revision Uintl6
150 2 Reserved #00 bytes
152 L IU Implementation Use bytes
152+L 1U |4 VAT entry 0 Uint32
156+L 1U |4 VAT entry 1 Uint32
Information | 4 VAT entry n Uint32
Length - 4

Length of Header - Indicates the amount of data preceding the VAT entries. This value
shall be 152 + L TU.

Length of Implementation Use - Shall specify the number of bytes in the Implementation
Use field. If this field is non-zero, the value shall be at least 32 and be an integral
multiple of 4.

upr2.60 DRAFTI12z DRAFT12z 37 DRAFT12z DRAFT12z February 28, 2005

Logical Volume Identifier - Shall identify the logical volume. This field shall be used by
implementations instead of the corresponding field in the Logical Volume Descriptor.
The value of this field should be the same as the field in the LVD until changed by the
user.

Previous VAT ICB Location - Shall specify the logical block number of an earlier VAT
ICB in the partition identified by the Partition Map entry. If this field is #FFFFFFFF, no
such ICB is specified.

Number of Files - Defined in 2.2.6.4. The contents of this field shall be used instead of
the corresponding LVID field.

Number of Directories - Defined in 2.2.6.4. The contents of this field shall be used

instead of the corresponding LVID field.

Minimum UDF Read Revision - Defined in 2.2.6.4. The contents of this field shall be
used instead of the corresponding LVID field.

Minimum UDF Write Revision - Defined in 2.2.6.4. The contents of this field shall be
used instead of the corresponding LVID field.

Maximum UDF Write Revision - Defined in 2.2.6.4. The contents of this field shall be
used instead of the corresponding LVID field.

Implementation Use - If non-zero in length, shall begin with an EntitylD identifying the
usage of the remainder of the Implementation Use area.

VAT Entry - VAT entry n shall identify the logical block number of the virtual block .
An entry of #FFFFFFFF indicates that the virtual sector is currently unused. The LBN
specified is located in the partition identified by the Partition Map entry. The number of
entries in the table can be determined from the VAT file size in the ICB:

Number of entries (N} = (Information Length - L HD) / 4.

2.2.12 Sparing Table

Certain disk/drive systems do not perform defect management (eg. CD-RW). A Sparing
Table is used to provide an apparent defect-free space for these systems. Certain media
can only be written in groups of sectors (“packets”), further complicating relocation: a
whole packet must be relocated rather than only the sectors being written. To address this
issue a sparable partition is identified in the Partition Map, which further identifies the
location of the Sparing Tables. The Sparing Table identifies relocated areas on the
media. Sparing Tables are identified by a Sparable Partition Map. Sparing Tables shall
not be recorded on disk/drive systems that perform defect management.

upr2.60 DRAFTI12z DRAFT12z 38 DRAFT12z DRAFT12z February 28, 2005

Sparing Tables point to space allocated for sparing and contains a list of mappings of
defective sectors to their replacements. Separate copies of the Sparing Tables shall be
recorded in separate packets. All instances of the Sparing Table shall be kept up to date.

Partitions map logical space to physical space. Normally, this is a linear mapping where
an offset and a length are specified. A sparable partition is based on this mapping, where
the offset and length of a partition within physical space is specified by a Partition
Descriptor (see 2.2.14). A sparable partition shall begin and end on a packet boundary.
The Sparing Table further specifies an exception list of logical to physical mappings. All
mappings are one fixed packet or ECC block in length. The-paeketsize Packet Length (in
blocks) is specified in the Sparable Partition Map.

Available sparing areas and instances of the Sparing Table may be anywhere on the
media, either inside or outside of a partition. If overlapping with a partition, the
overlapping part Hleeated-inside-apartition;sparable-space-shall be marked as allocated
and shall be included in the Non-Allocatable Space Stream. The mapped locations
should be filled in at format time; the original locations are assigned dynamically as
errors occur. Each Sparing Table shall be structured as shown below.

Sparing Table layout

BP | Length Name Contents
0 16 Descriptor Tag tag=0

16 32 Sparing Identifier EntitylD
48 2 Reallocation Table Length (=RT L) Uintl6
50 2 Reserved #00 bytes
52 4 Sequence Number Uint32
56 8*RT L Map Entry Map Entries

This structure may be larger than a single sector if necessary.

e Descriptor Tag
Contains a Tag Identifier of 0, which indicates that the format of the Descriptor Tag is not
specified by ECMA 167. All other fields of the Descriptor Tag shall be valid, as if the Tag
Identifier were one of the values defined by ECMA 167.

e Sparing Identifier:
e Flags=0
e Identifier = *UDF Sparing Table
e Identifier Suffix is recorded as defined in 2.1.5

e Reallocation Table Length
Indicates the number of entries in the Map Entry table.

e Sequence Number
Contains a number that shall be incremented each time the Sparing Table is updated.

e Map Entry
A map entry is described in the table below. Maps shall be sorted in ascending order by the
Original Location field.

upr2.60 DRAFTI12z DRAFT12z 39 DRAFT12z DRAFT12z February 28, 2005

Map Entry description

RBP Length Name Contents
0 4 Original Location Uint32
4 4 Mapped Location Uint32

e Original Location
Logical Block Address of the packet to be spared. The address of a packet is the address of
the first user data block of a packet. If this field is #FFFFFFFF, then this entry is available for
sparing. If this field is #FFFFFFFO, then the corresponding mapped location is marked as
defective and should not be used for mapping. Original Locations of #FFFFFFF1 through
#FFFFFFFE are reserved.

e Mapped Location
Physical Block Address of active data. Requests to the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFF0, #FFFFFFFF, or reserved. If the
mapped location overlaps a partition, that partition shall have that space marked as allocated
and that space shall be part of the Non-Allocatable Space Stream.

2.2.13 Metadata Partition

The files and policies defined in this section facilitate rapid location of all metadata in the
volume, promote clustering of ICBs / directory information, and optionally facilitate
duplication of all metadata. This will, in most cases, greatly speed file system repair
operations by eliminating the need to perform an exhaustive media scan, or directory
traversal, solely for the purpose of locating ICBs. The clustering of metadata will also
significantly improve performance of metadata intensive implementation operations.
When the metadata duplication option is chosen, file system robustness to media damage
is increased, at some cost to performance.

When a Type 2 Metadata Partition Map is recorded, the Metadata File, Metadata Mirror
File and Metadata Bitmap File shall also be recorded and maintained. The exception is
that a Metadata Bitmap File shall not be recorded for a read-only partition and for a
pseudo-overwritable partition.

The allocation descriptors of the Metadata Mirror File File Entry shall either:

e reference the same extents in the physical/sparable partition as referenced by the
allocation descriptors of the Metadata File - in this case the Duplicate Metadata
Flag in the Metadata Partition Map Flags field shall not be set.
OR
e reference different extents thus duplicating all metadata.- in this case the
Duplicate Metadata Flag in the Metadata Partition Map Flags field shall be set.

The File Entries for the Metadata, Metadata Mirror and Metadata Bitmap files shall not
be referenced by any structure other than the Metadata Partition Map and shall have a File |

upr2.60 DRAFTI2z DRAFTI12z 40 DRAFTI12z DRAFTI12z February 28, 2005 |

Link Count of 0. These files, when present, shall be recorded in the physical/sparable
partition referenced by the Metadata Partition Map.

The Metadata Partition Map (see 2.2.10) defines a partition space in which all metadata
(FSD, ICBs, Allocation Descriptors, and directory data) shall be recorded, with the sole
exception of the ICBs and data comprising the Metadata, Metadata Mirror, and Metadata
Bitmap files as described above.

File Entries describing directories or Stream Directories shall use either “immediate” ‘
allocation (i.e. the data is embedded in the File Entry - see ECMA 167 4/14.6.8 flag bits
0-2) or SHORT ADs to describe the data space of the directory, since this data resides in
the Metadata Partition along with the File Entry itself. |

File Entries describing any other type of file data (including Named Streams) shall use
either “immediate” allocation, or LONG_ADs that shall reference the physical or sparable
partition referenced by the Metadata Partition Map, to describe the data space of the file.
In the special two partitions case mentioned in 2.2.10, with a read-only partition and an
overwritable partition on one volume, the data space of the file or Named Stream may
also be located in the read-only partition.

The Extent Location field of any Allocation Descriptor referencing data recorded in the |
Metadata Partition shall be interpreted as a block offset into the Metadata File. For

example logical block 40 in the Metadata Partition corresponds to byte offset (40 *

logical block size) in the Metadata File, which in turn (through the Allocation Descriptors
for the Metadata File) corresponds to some logical block in the associated

physical/sparable partition.

Implementations shall support both the duplicate and shared allocation modes for the
Metadata Mirror File (see above and 2.2.10, Metadata Partition Map, Flags field). The
File Entry for the Metadata Mirror shall be actively maintained along with the Metadata
File File Entry, but should be updated after the Metadata File File Entry.

If the Duplicate Metadata Flag is set in the Metadata Partition Map Flags field, the
Metadata Mirror File shall be maintained dynamically so that it contains identical
contents data-to the Metadata File at all times. Unused logical blocks in the Metadata File
and Metadata Mirror File may not be identical. In this case blocks in the Metadata
Partition may be read from the same offset in either the Metadata Mirror File or the
Metadata File. Data should be written first to the Metadata File and second to the
Metadata Mirror File.

When the Duplicate Metadata Flag in the Metadata Partition Map Flags field is set,
implementations and repair utilities should consider the Metadata File content to be
primary over that of the Metadata Mirror File. For example, a repair utility could repair
the volume based on metadata read from the Metadata File (excepting unreadable

upr2.60 DRAFTI12z DRAFT12z 41 DRAFT12z DRAFT12z February 28, 2005

portions which would be read from the Mirror) and then replace the contents of the
Metadata Mirror File with that of the (now consistent) Metadata File.

Logical blocks allocated to the Metadata or Metadata Mirror File shall be marked as
allocated in the partition Unallocated Space Bitmap, therefore a mechanism to determine
available blocks within the Metadata Partition is needed. This is accomplished through
the Metadata Bitmap File. A Metadata Bitmap File shall not be recorded is-netrequired
for a read-only partition and for a pseudo-overwritable partition.

LVD METADATA FILE METADATA MIRROR FSD (D)
, FILE ENTRY (A) FILE ENTRY (C)
FSD (1,0) Allocation Descriptors Allocation Descriptors Root Dir ICB (1,1

Type 1 map (ref 0)

Type 2 map (ref 1)
Metadata Partition.

(0,16,64)
(0,256,32)

(0,X+1,96)

Sys. Stream Dir ICB (1,2)

MD BITMAP FILE

FILE ENTRY (B)
Allocation Descriptors

Duplicate MD Flag 1 Extent addresses shown in form

M’E)Mi/lm:r'l::EE <‘8 Q; (immediate) (part ref, start Ibn)
MD Bitmap FE (0.1) or... (part ref, start Ibn, length (blocks))
Partition
unallocated
space | | | 0 | | 0 | 1 (unallocated) 0 | |
bitmap.
o © § «
& P4
3 g g g
Physical
Partition
(ref 0)
AB A
Metadata
o — (Metadata
Partition (ref 1) - Mirtor File
(Metadata File) i ile)

D

NOTE: Because the “Duplicate Metadata
Flag” is set in the metadata partition map,

LBN 0O
LBN 95

Metadata | s the mirror file has it's own unique
Bitmap B allocation. If this flag was not set, the Mirror
File olo 1 (unallocated) File FE ADs would reference the same
blocks as the Metadata File ADs.
Ec z
[sajyan] o

NOTE: The LBN values used in the diagram above are for illustrative purposes only and
are not fixed. The partition reference numbers used are determined by the order

of the Partition Maps in the LVD.sused-are-fixed-as-aconsequence-of the
Lta Partition o] o

A more detailed description of these files and how they are used follows in section
2.2.13.1.

DRAFTI12z DRAFTI12z 42

UDF 2.60 DRAFT12z DRAFT12z February 28, 2005

2.2.13.1 Metadata File (and Metadata Mirror File)

These files shall have the values of 250 (main) and 251 (Mirror) recorded in the ICB Tag |
File Type fields of their File Entries. The UniquelD field of these File Entries shall have a
value of zero.

The Allocation Descriptors (see 2.3.10) of these files shall at all times:

e Be SHORT_ ADs (referencing space in the same physical/sparable partition in
which the ICB resides).

e Not specify an extent of type “not recorded but allocated” Either-be-oftype

(13 2 (13 2

e Extents of type “recorded and allocated” or “not allocated” shall have an extent
length that is an integer multiple of (4/location Unit Size multiplied by logical
block size). The Allocation Unzt Size i is spemﬁed in the Metadata Partltlon
Map.Havean $ e § 1 Uini

i od in the Metadata Partition Man.
e Extents of type “recorded and allocated” shall have a starting logical block

number that Have-a-startinglogical bloeknumber-whieh-s an integer multiple of
the Alignment Unit Size specified in the Metadata Partition Map.

The Information Length field of the File Entries for these files shall be equal to ((number
of blocks described by the ADs) ferthisstream—*multiplied by logical block size).

The Allocation Descriptors for this file shall describe only logical blocks which contain
one of the below data types. No user data or other metadata may be referenced.

e FSD

e Terminating Descriptor

e ICB

e Extent of Allocation Descriptors (see 2.3.11)
e Directory or Stream Directory data (i.e. FIDs)

e An unused block that is available for usemarkedfree-nthe Metadata BitmapFile-

NOTE: The File Entry and possible Allocation Extent Descriptors of the Metadata File
should be recorded as far apart (physically) as possible from those of the Metadata Mirror
File. The same counts for the allocated extents of these two files in the case that the
Duplicate Metadata Flag in the Metadata Partition Map is set. Typically, recording far
apart is achieved by maximizing the difference between the start LBNs of the descriptors

and extents belonging to the file and its mirror. In-the-ease-where-the Duplicate Metadata

£&F&p&1ﬂt—as—pessrbl%80me drlve/medla combmatlons support “background phys1ca1
formatting” (see 6.13 and 6.14) or “incremental formatting”, and implementations using

upr2.60 DRAFTI2z DRAFTI12z 43 DRAFTI12z DRAFTI12z February 28, 2005 |

such features should consider this when locating the Metadata Files and data. In such |
cases it may be practically impossible to position the files far apart without impacting the
early eject time / media readability.

The Access Time and Modification Time fields of the Metadata File and Mirror File File
Entries shall be set to legal values at format time but need not be updated by a file system.

The File Entries for the Metadata File and Metadata Mirror File shall have NULL Stream
Directory ICB and Extended Attribute ICB fields.

2.2.13.2 Metadata Bitmap File

This file shall have a value of 252 recorded in the ICB Tag File Type field of its File |
Entry. The UniquelD field of this File Entry shall have a value of zero.

This file contains a Space Bitmap Descriptor describing the utilization of blocks allocated
to the Metadata File (i.e. this is a bitmap describing allocated space for the Metadata
Partition). Bit zero of the bitmap corresponds to the first block in the aforementioned
file, bit one to the second, and so on. This also applies to the Metadata Mirror File since
contents of the two files are identical (regardless of the Duplicate Metadata Flag in the
Metadata Partition Map Flags field).

If a bit in this bitmap is set (one) then the corresponding blocks within the Metadata File
and Metadata Mirror File are available for use by new metadata.

NOTE: When the Duplicate Metadata Flag in the Metadata Partition Map Flags field is
not set, these blocks are one and the same, since the Allocation Descriptors for
the Metadata Mirror File reference the same blocks as those of the Metadata File. |

If a bit in this bitmap is clear (zero) then the corresponding blocks are not available for
use — i.e. they are either in use, or fall within an unallocated region of the Metadata File.

Other requirements for the Metadata Bitmap File:

e The descriptor tag fieldsDeseriptorCRC-and-DescriptorCRCLength field for this
SBD shall be set to zero or 8. The value of 8 is recommended.

e The Allocation Descriptors for the Metadata Bitmap File shall not include any
Allocation Descriptors of type “not allocated”.

e The Information Length field of the File Entry for this file shall equal the size of
the SBD (NOTE: SBD size includes the bitmap portion).

e There shall be one bit in the bitmap for every block in the Metadata Partition.

e The Access Time and Modification Time fields of the Metadata Bitmap File File
Entry shall be set to legal values at format time but need not be updated by a file
system.

upr2.60 DRAFTI12z DRAFT12z 44 DRAFT12z DRAFT12z February 28, 2005

e The Metadata Bitmap File File Entry shall have NULL Stream Directory ICB (if
extended FE) and Extended Attribute ICB fields.

e The descriptor Tag Location field of this SBD shall be set to the logical block
number of the first block allocated to the Metadata Bitmap File.

2.2.13.3 Procedure for allocating blocks for new metadata.

Search for a set (one) bit in the Metadata Bitmap File, and clear it. The corresponding
block within the Metadata Partition (Metadata and Metadata Mirror (if duplicate mode)
files) may then be used for the new data. If there are no set (one) bits then the Metadata
File (and Mirror if duplicate) must be extended as described in section 2.2.13.5 below.

2.2.13.4 Procedure for de-allocating metadata blocks.

Set (to one) the bit(s) in the Metadata Bitmap File corresponding to the block number(s)
of the data within the Metadata Partition that is being de-allocated.

2.2.13.5 Recommended procedure for extending the Metadata Partition

These changes should be written to the device before the new blocks are allocated for use
by metadata. It would be undesirable for such changes to sit in an implementation’s write
cache for so long that new metadata assigned to the blocks being described by the
changes was written to the media first.

1. Verify that there is enough space in the Metadata File and Metadata Mirror File
Allocation Descriptor chains for a new Allocation Descriptor. If not then allocate
a new Allocation Descriptor extent.

2. Verify that the Metadata Bitmap File file allocation is large enough to extend the
bitmap to describe the additional blocks added to the Metadata File, and if not
then allocate block(s) for the Metadata Bitmap file.

3. Allocate a new extent of blocks (for the Metadata File) observing the size and
alignment requirements specified in 2.2.13.1.

4. If the Duplicate Metadata Flag in the Metadata Partition Map Flags field is set,
allocate a second extent of blocks observing the size and alignment requirements

specified in 2.2.13.1, ideally as far away as possible from the first allocation (for
the Metadata Mirror File).

5. Add a new Allocation Descriptor to the Metadata File, or modify existing
descriptors, to reference the first newly allocated extent. If the Duplicate

Metadata Flag in the Metadata Partition Map Flags field is not set, modify the
Metadata Mirror File ADs to reference the same extent.

6. If a second extent of blocks was allocated above, add to the Metadata Mirror File
a new Allocation Descriptor, or modify existing ADs, to reference this second
extent.

7. 1If the new extents were added at the end of the Metadata File then increase the FE
Information Length for the Metadata File, and Mirror, to include the new blocks.

upr2.60 DRAFTI12z DRAFT12z 45 DRAFT12z DRAFT12z February 28, 2005

8. If the Metadata Bitmap File was extended, increase its FE Information Length
field to include the bits describing the additional blocks allocated to the Metadata
Files.

9. Set (set to one) the bits in the Metadata Bitmap File which correspond to the
extent just added to the Metadata File, to indicate the blocks are available for use
by new metadata.

upr2.60 DRAFTI12z DRAFT12z 46 DRAFT12z DRAFT12z February 28, 2005

2.2.13.6 Recommended procedure for reclaiming space from the Metadata

Partition

Blocks allocated to the Metadata File, and its mirror, shall only be returned to the volume
in one of the following two ways:

Truncation of the Metadata File and its mirror.

Marking the AD(s) for a region of the Metadata File, and it’s mirror, as sparse
(not allocated) and setting the corresponding bits in the Metadata Bitmap File to
zero, indicating these blocks are not available for use.

Any region to be removed shall:

Currently contain no referenced metadata (i.e. all corresponding bits in the
Metadata Bitmap File shall already be set (one)). |

Match the size/alignment restrictions laid down in section 2.2.13.1.

In the truncation case (Metadata Partition being truncated): |

1.
2.

In the mark sparse case (region in middle of Metadata Partition being removed):
1.
2.

UDF 2.60

Update the SBD in the Metadata Bitmap File to reduce the bitmap size.

Update the Metadata Bitmap File File Entry Information Length to reflect the ’
decreased bitmap size.

Update the Metadata File, and mirror, File Entry Information Length fields to |
‘remove’ the region.

Mark the de-allocated blocks as available in the partition Unallocated Space
Bitmap.

Clear the corresponding bits in the Metadata Bitmap File to zero.

Generate sparse (not allocated) Allocation Descriptor(s) in the Metadata File (and
its mirror) for the region being de-allocated.

Mark the de-allocated blocks as available in the partition Unallocated Space
Bitmap.

DRAFTI12z DRAFTI12z 47 DRAFTI12z DRAFTI12z February 28,2005

2.2.14 Partition Descriptor

2.2.14.

2.2.14.

UDF 2.60

struct PartitionDescriptor { /* ECMA 167 3/10.5 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
Uint16 PartitionFlags;
Uint16 PartitionNumber;
struct EntitylD PartitionContents;
byte PartitionContentsUse[128];
Uint32 AccessType;
Uint32 PartitionStartingLocation;
Uint32 PartitionLength;
struct EntitylD Implementationldentifier;
byte ImplementationUse[128];
byte Reserved[156];
}
1 Struct EntityID PartitionContents

For more information on the proper handling of this field see section 2.1.5 on
Entity Identifier.

2 Uint32 AccessType

Besides the values for Access Type as defined in ECMA 167 3/10.5.7, UDF
defines that the value zero shall be used for an Access Type named pseudo-
overwritable. This Access Type value shall be used for partitions that support the
Pseudo OverWrite Method as described in appendix 6.15.

A partition with Access Type 3 (rewritable) shall define a Freed Space Bitmap or
a Freed Space Table, see 2.3.3. All other partitions shall not define a Freed Space
Bitmap or a Freed Space Table.

For some Rewritable/Overwritable media types there may be confusion between
partition Access Types 3 (rewritable) and 4 (overwritable).

Rewritable partitions media-are used on media that require some form of
preprocessing before re- wrltmg data (for exarnple legacy MO). Such partltlons
media-shall haveaF = 2 ¢ an use
Access Type 3.

Overwritable partitions media-are used on media that do not require preprocessing
before overwriting data (for example: CD-RW, DVD-RW, DVD+RW, DVD-
RAM, BD-RE, HD DVD-Rewritable). Such partitions sedia-shall net-have-a

Freed Space Bitmap or a Freed Space Table and shall use Access Type 4.

If the value of Access Type is not equal to any of the defined Access Type values
or if the combination of the medium and drive is not capable of performing the

DRAFTI12z DRAFTI12z 48 DRAFTI12z DRAFTI12z February 28,2005

write action denoted by the Access Type value, the partition shall be handled as a
read-only partition (e.g. an overwritable partition on a Write-Once medium or in a
Read-Only drive).

NOTE: The above rule is important in order to enable read-only access by a UDF
2.50 implementation for media with a higher UDF revision (e.g. UDF
2.60) using a pseudo-overwritable partition and a Minimum UDF Read
Revision value of 2.50.

2.2.14.3 Uint32 PartitionStartingLocation
For a Sparable Partition, the value of this field shall be an integral multiple of the
Packet Length. The Packet Length is defined in the Sparable Partition Map.

For a physical partition, the value of this field shall be an integral multiple of
(“ECC Block Size” (divided by) sector size) for the media (See 1.3.2 for
definition of ECC Block Size).

2.2.14.4 Uint32 PartitionLength
For a Sparable Partition, the value of this field shall be an integral multiple of the
Packet Length. The Packet Length is defined in the Sparable Partition Map.

2.2.14.5 Struct EntityID Implementationldentifier
For more information on the proper handling of this field see section 2.1.5 on
Entity Identifier.

2.2.14.6 byte PartitionContentsUse[128]
The Partition Contents Use field contains the Partition Header Descriptor as
defined in 2.3.3.

upr2.60 DRAFTI12z DRAFT12z 49 DRAFT12z DRAFT12z February 28, 2005

2.3 Part 4 - File StructureSystem
2.3.1 Descriptor Tag

struct tag { /* ECMA 167 4/7.2 */
Uint16 Tagldentifier;
Uint16 DescriptorVersion;
Uint8 TagChecksum;
byte Reserved;
Uint16 TagSerialNumber;
Uint16 DescriptorCRC;
Uint16 DescriptorCRCLength;
Uint32 TaglLocation,;

}

NOTE: The value zero for Tagldentifier is not defined by ECMA 167, but it is
used by UDF for the Sparing Table.

2.3.1.1 Uint16 TagSerialNumber
& Ignored. Intended for disaster recovery.

& Shall be set to the Tag Serial Number value for the Anchor Volume |
Descriptor Pointers on this volume.

The same applies as for volume structure 7Tag Serial Number values, see 2.2.1.1 |
and 2.1.6.

2.3.1.2 Uint16 DescriptorCRCLength
The same applies as for volume structure DescriptorCRCLength values, see

2.2.1.2.CRCs shall be supported and calculated for cach deseriptor, unless

2.3.1.3 Uint32 TagLocation
For structures referenced via a virtual address (i.e. referenced through the VAT),
this value shall be the virtual address, not the physical or logical address.

upr2.60 DRAFTI12z DRAFT12z 50 DRAFT12z DRAFT12z February 28, 2005

2.3.2

UDF 2.60

File Set Descriptor
struct FileSetDescriptor { /* ECMA 167 4/14.1 */

struct tag DescriptorTag;

struct timestamp RecordingDateandTime;
Uint16 InterchangeLevel;

Uint16 MaximumlInterchangeLevel,
Uint32 CharacterSetList;

Uint32 MaximumCharacterSetList;
Uint32 FileSetNumber;

Uint32 FileSetDescriptorNumber;
struct charspec ~ LogicalVolumeldentifierCharacterSet;
dstring LogicalVolumeldentifier[128];
struct charspec FileSetCharacterSet;

dstring FileSetldentifier[32];

dstring CopyrightFileldentifier[32];
dstring AbstractFileldentifier[32];

struct long ad ~ RootDirectoryICB;

struct EntityID ~ Domainldentifier;

struct long ad ~ NextExtent;

struct long_ad SystemStreamDirectorylCB,;
byte Reserved[32];

}

Only one File Set Descriptor shall be recorded. On WORM media, multiple File
Sets may be recorded.

The UDF provision for multiple File Sets is as follows:
e Multiple File Sets are only allowed on WORM media.
e The default File Set shall be the one with the highest FileSetNumber.

e Only the default File Set may be flagged as writable. All other File
Sets in the sequence shall be flagged HardWriteProtect (see 2.1.5.3).

e No writable File Set shall reference any metadata structures which are
referenced (directly or indirectly) by any other File Set. Writable File
Sets may, however, reference the actual file data extents.

Within a File Set on WORM, if all files and directories have been recorded with
ICB Strategy Type 4, then the Domain Identifier of the corresponding File Set
Descriptor shall be marked as HardWriteProtected.

The intended purpose of multiple File Sets on WORM is to support the ability to
have multiple archive images on the media. For example one File Set could
represent a backup of a certain set of information made at a specific point in time.
The next File Set could represent another backup of the same set of information
made at a later point in time.

DRAFTI12z DRAFTI12z 51 DRAFTI12z DRAFTI12z February 28,2005

2.3.2.1 Uint16 InterchangeLevel
s~ Interpreted as specifying the current interchange level (as specified in
ECMA 167 4/15), of the contents of the associated file set and the
restrictions implied by the specified level.

& Shall be set to a level of 3.

An implementation shall enforce the restrictions associated with the specified
current Interchange Level.

2.3.2.2 Uint16 MaximumlInterchangeLevel
e~ Interpreted as specifying the maximum interchange level of the contents of
the associated file set. This value restricts to what the current Interchange
Level field may be set.

& Shall be set to level 3.

2.3.2.3 Uint32 CharacterSetList
s~ Interpreted as specifying the character set(s) specified by any field, whose
contents are specified to be a charspec, of any descriptor specified in Part 4
of ECMA 167 and recorded in the file set described by this descriptor.

& Shall be set to indicate support for CSO only as defined in 2.1.2.

2.3.2.4 Uint32 MaximumCharacterSetList
a~ Interpreted as specifying the maximum supported character set in the
associated file set and the restrictions implied by the specified level.

& Shall be set to indicate support for CSO only as defined in 2.1.2.

2.3.2.5 struct charspec LogicalVolumeldentifierCharacterSet
s Interpreted as specifying the d-characters allowed in the Logical Volume
Identifier field.

& Shall be set to indicate support for CS0O as defined in 2.1.2.

2.3.2.6 struct charspec FileSetCharacterSet
e~ Interpreted as specifying the d-characters allowed in dstring fields defined
in Part 4 of ECMA 167 that are within the scope of the File Set Descriptor.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.3.2.7 struct EntityID Domainldentifier
¢ Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If this field is NULL then
it is ignored, otherwise the Entity Identifier rules are followed.

upr2.60 DRAFTI12z DRAFT12z 52 DRAFT12z DRAFT12z February 28, 2005

& This field shall indicate that the scope of this File Set Descriptor conforms
to the domain defined in this document, therefore the
tmplementationDomain Identifier 1D value shall be set to: |

"*OSTA UDF Compliant"

As described in section 2.1.5 on Entity Identifier the Identifier Suffix field |
of this EntitylID shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on
the proper handling of this field see section 2.1.5.

NOTE: The Identifier Suffix field of this EntityID contains |
SoftWriteProtect and HardWriteProtect flags.

2.3.3 Partition Header Descriptor

struct PartitionHeaderDescriptor { /* ECMA 167 4/14.3 */
struct short ad UnallocatedSpaceTable;
struct short ad UnallocatedSpaceBitmap;
struct short ad PartitionIntegrityTable;
struct short ad FreedSpaceTable;
struct short ad FreedSpaceBitmap;
byte Reserved[88];

}

The Partition Header Descriptor is recorded in the Partition Contents Use field of
the Partition Descriptor.

As a point of clarification the logical blocks represented as Unallocated are blocks
that are ready to be written without any preprocessing. In the case of Rewritable
media this would be a write without an erase pass. The logical blocks represented
as Freed are blocks that are not ready to be written, and require some form of
preprocessing. In the case of Rewritable media this would be a write with an
erase pass. See section 2.2.14.2 for further detail regarding media classification.

NOTE 1: The use of Space Tables or Space Bitmaps shall be consistent across a |
Logical Volume. Space Tables and Space Bitmaps shall not both be
used at the same time within a Logical Volume.

NOTE 2: NeA Space Table or Space Bitmap shall not be recorded for a read-only
partition, a pseudo-overwritable partition or for a file system using a
VAT.

2.3.3.1 struct short_ad PartitionIntegrityTable
Shall be set to all zeros since PartitionIntegrityEntrys are not used.

upr2.60 DRAFTI12z DRAFT12z 53 DRAFT12z DRAFT12z February 28, 2005

2.3.4 File Identifier Descriptor

struct FileldentifierDescriptor { /* ECMA 167 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileldentifier;
struct long ad ICB;
Uint16 LengthOfImplementationUse;
byte ImplementationUse|[];
char Fileldentifier|];
byte Padding([];
}

The File Identifier Descriptor shall be restricted to the length of at most one
Logical Block.

NOTE 1: All UDF directories shall include a File Identifier Descriptor that |
indicates the location of the parent directory. The File Identifier Descriptor
describing the parent directory shall be the first File Identifier Descriptor
recorded in the directory. The parent directory of the Root Directory shall be
the Root Directory, as stated in ECMA 167 4/8.6

NOTE 2: On logical volumes where a Metadata Partition Map is recorded, all
directory and stream directory data shall be recorded in the Metadata
Partition (see 2.2.10), however the data space of Named Streams shall |
be recorded in physical space.

2.3.4.1 Uint16 FileVersionNumber
s~ There shall be only one version of a file as specified below with the value
being set to 1.

& Shall be set to 1.

2.3.4.2 Uint8 FileCharacteristics

2.3.4.2.1 Deleted bit
The Deleted bit may be used to mark a file or directory as deleted instead of
removing the FID from the directory, which requires rewriting the directory from
that point to the end. If the space for the file or directory is deallocated, the
implementation shall set the ICB field to zero, as all fields in a FID must be valid
even if the Deleted bit is set. See fECMA 167 4/14.4.3%; note 21 and {4/14.4.51. |

ECMA 167 4/8.6 requires that the File Identifiers (and File Version Numbers,
which shall always be 1) of all FIDs in a directory shall be unique. While the
standard is silent on whether FIDs with the Deleted bit set are subject to this
requirement, the intent is that they are not. FIDs with the Deleted bit set are not
subject to the uniqueness requirement, as interpreted by UDF

upr2.60 DRAFTI12z DRAFTI12z 54 DRAFTI12z DRAFTI12z February 28, 2005 |

In order to assist a UDF implementation that may have read the standard without
this interpretation, implementations shall follow these rules when a FID’s Deleted
bit is set:

If the compression ID of the File Identifier is 8, rewrite the compression ID to
254. 1f the compression ID of the File Identifier is 16, rewrite the compression ID
to 255. Leave the remaining bytes of the File Identifier unchanged

In this way a utility wishing to undelete a file or directory can recover the original
name by reversing the rewrite of the compression ID.

NOTE: Implementations should re-use FIDs that have the Deleted bit set to one
and ICBs set to zero in order to avoid growing the size of the directory
unnecessarily.

2.3.4.2.2 Parent bit and Directory bit

There is a flaw in the following statement in ECMA 167 4/14.4.3, below figure
13:
“If the Parent bit is set to ONE, then the Directory bit shall be set to ONE.”

In spite of this statement, the Directory bit in a parent FID shall only be set to
ONE if the FID identifies a directory or the System Stream Directory. If the parent
FID identifies a file, the Directory bit shall be set to ZERO. The latter is the case
for a parent FID in a Stream Directory that is attached to a file.

2.3.4.3 structlong_ad ICB

The Implementation Use bytes of the long ad in all File Identifier Descriptors
shall be used to store the UDF UniquelD for the file and directory namespace.

The Implementation Use bytes of a long_ad hold an ADImpUse structure as
defined by 2.3.10.1. The four impUse bytes of that structure will be interpreted as
a Uint32 holding the UDF UniquelD.

ADImpUse structure holding UDF UniquelD

RBP | Length Name Contents
0 2 Flags (see 2.3.10.1) Uint16
2 4 UDF UniquelD Uint32

Section 3.2.1 Logical Volume Header Descriptor describes how UDF UniquelD
field in Implementation Use bytes of the long_ad in the File Identifier Descriptor
and the UniquelD field in the File Entry and Extended File Entry are set.

2.3.4.4 Uint16 LengthofImplementationUse

UDF 2.60

e Shall specify the length of the ImplementationUse field.

DRAFTI12z DRAFTI12z 55 DRAFTI12z DRAFTI12z February 28,2005

& Shall specify the length of the ImplementationUse field. This field may
contain zero, indicating that the ImplementationUse field has not been
used. Otherwise, this field shall contain at least 32 as required by 2.3.4.5.

When writing a File Identifier Descriptor to Write-Once media, to ensure that the
Descriptor Tag field of the next FID will never span a block boundary, if there are
less than 16 bytes remaining in the current block after the FID, the length of the
FID shall be increased (using the Implementation Use field) enough to prevent
this. Remember that in the latter case, the Implementation Use field shall be at
least 32 bytes.

2.3.4.5 byte ImplementationUse|]
¢ If the LengthoflmplementationUse field is non ZERO then the first 32
bytes of this field shall be interpreted as specifying the implementation
identifier EntityID of the implementation which last modified the File
Identifier Descriptor.

& If the LengthoflmplementationUse field is non ZERO then the first 32
bytes of this field shall be set to the implementation identifier EntitylD of
the current implementation.

NOTE: For additional information on the proper handling of this field refer to
section 2.1.5 on Entity Identifier.

This field allows an implementation to identify which implementation last created
and/or modified a specific File Identifier Descriptor.

2.3.4.6 char Fileldentifier[]
Contains a File Identifier stored in the OSTA Compressed Unicode format, see
2.1.1. The byte length of this field shall be greater than 1 with the sole exception
of 0 for a parent FID. If the Deleted bit is set in the File Characteristics field of
this File Identifier Descriptor, then see 2.3.4.2.1 for additional rules. If the Deleted
bit is not set, then the Unicode representation of the File Identifier shall be unique
in this directory. This requires not only byte-wise uniqueness as required by
ECMA 167 4/8.6, but also uniqueness of the Unicode identifier resulting from
uncompress of the OSTA Compressed Unicode format.

upr2.60 DRAFTI12z DRAFT12z 56 DRAFT12z DRAFT12z February 28, 2005

2.3.5 ICB Tag

struct icbtag { /* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uintl6 MaximumNumberofEntries;
byte Reserved;
Uint8 FileType;
Lb addr ParentICBLocation;
Uint16 Flags;
}

2.3.5.1 Uint16 StrategyType
s~ The content of this field specifies the ICB Strategy Type used. For the
purposes of read access an implementation shall support ICB Strategy

Types 4 and 4096.

& Shall be set to 4 or 4096, see NOTE.

NOTE: ICB Strategy Type 4096, defined in section 6.6, is intended for use on
WORM media. ICB Strategy Type 4096 is allowed only for ICBs in a partition
with Access Type write-once recorded on non-sequential Write-Once media.

2.3.5.2 Uint8 FileType
As a point to clarification a value of 5 shall be used for a standard byte
addressable file, not 0. The value of 248 shall be used for the VAT (refer to
2.2.11). The value of 249 shall be used to indicate a Real-Time file (see
Appendix 6.11.1). File types 250, 251 and 252 shall be used for the Metadata
File, Metadata Mirror File and Metadata Bitmap File respectively. See section
2.2.13 for more details. File types 253 to 255 shall not be used.

2.3.5.2.1 File Type 249
Files with File Type 249 require special commands to access the data space of this |
file. To avoid possible damage, if an implementation does not support these
commands it shall not issue any command that would access or modify the data

space of this file. This includes but is not limited to reading, writing and deleting
the file.

2.3.5.3 ParentICBLocation
For ICB Strategy Type 4 this field shall not be used and contain all zero bytes. For
ICB Strategy Type 4096 the use of this field is optional.

NOTE: In ECMA 167-4/14.6.7 it states, “If this field contains 0, then no such
ICB is specified.” This is a flaw in the ECMA 167 standard in that an |
implementation could store an ICB at logical block address 0. Therefore, if
you decide to use this field, do not store an ICB at logical block address 0.

upr2.60 DRAFTI12z DRAFTI12z 57 DRAFTI12z DRAFTI12z February 28, 2005 |

2.3.5.4 Uint16 Flags

UDF 2.60

Bits 0-2: These bits specify the type of allocation descriptors used. Refer to
section 2.3.10 on Allocation Descriptors for the guidelines on choosing which
type of allocation descriptor to use.

Bit 3 (Sorted):
& For OSTA UDF compliant media this bit shall indicate (ZERO) that
directories may be unsorted.

& Shall be set to ZERO.

Bit 4 (Non-relocatable):

s For OSTA UDF compliant media this bit shall indicate (ONE) if the file is
non-relocatable. If ONE, an implementation shall set the bit to ZERO if a
modification will contravene the definition of this bit in ECMA 167
4/14.6.8.

& Should be set to ZERO unless required.

NOTE: This flag is not a lock on the file in any way. It is used to indicate that an
implementation has arranged the allocation of the file to satisfy specific
application requirements. In these cases, any remapping of a written
block (see UDF sparable partitions) or defragmentation of the file might
not be desired. If a file with this flag set to ONE is copied, then the new
copy of the file should have this bit set to ZERO.

Bit 9 (Contiguous):

s~ For OSTA UDF compliant media this bit may indicate (ONE) that the file
is contiguous. An implementation may reset this bit to ZERO to indicate
that the file may be non-contiguous if the implementation can not assure
that the file is contiguous.

& Should be set to ZERO.

Bit 11 (Transformed):
& For OSTA UDF compliant media this bit shall indicate (ZERO) that no
transformation has taken place.

& Shall be set to ZERO.

The methods used for data compression and other forms of data transformation
might be addressed in a future OSTA document.

Bit 12 (Multi-versions):
s For OSTA UDF compliant media this bit shall indicate (ZERO) that multi-
versioned files are not present.

& Shall be set to ZERO.

DRAFTI12z DRAFTI12z 58 DRAFTI12z DRAFTI12z February 28,2005

2.3.6 File Entry

struct FileEntry { /* ECMA 167 4/14.9 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Uid;
Uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFormat;
Uint8 RecordDisplayAttributes;
Uint32 RecordLength;
Uint64 InformationLength;
Uint64 LogicalBlocksRecorded,;

struct timestamp AccessTime;

struct timestamp ModificationTime;

struct timestamp ~ AttributeTime;

Uint32 Checkpoint;

struct long_ad ExtendedAttributeICB;
struct EntityID ~ Implementationldentifier;

Uint64 UniquelD,
Uint32 LengthofExtendedAttributes;
Uint32 LengthofAllocationDescriptors;
byte ExtendedAttributes[];
byte AllocationDescriptors[];
}
NOTE 1: The total length of a File Entry shall not exceed the size of one logical |
block.

NOTE 2: If a Metadata Partition Map is recorded in a volume then all File |
Entries, Allocation Descriptor Extents and directory data shall be
recorded in the Metadata Partition — i.e. in logical blocks allocated to
the Metadata and/or Metadata Mirror File (see section 2.2.13 for
details including exceptions).

2.3.6.1 Uint8 RecordFormat;
¢ For OSTA UDF compliant media a value of zero shall indicate that the
structure of the information recorded in the file is not specified by this
field.

& Shall be set to ZERO.

upr2.60 DRAFTI12z DRAFT12z 59 DRAFT12z DRAFT12z February 28, 2005

2.3.6.2 Uint8 RecordDisplayAttributes;

¢ For OSTA UDF compliant media a value of zero shall indicate that the

structure of the information recorded in the file is not specified by this
field.

& Shall be set to ZERO.

2.3.6.3 Uint32 RecordLength;

¢~ For OSTA UDF compliant media a value of zero shall indicate that the

structure of the information recorded in the file is not specified by this
field.

& Shall be set to ZERO.

2.3.6.4 Uint64 InformationLength

Only the last extent of the file body may have an extent length that is not a
multiple of the block size, see ECMA 167 4/12.1 and 4/14.14.1.1.

2.3.6.5 Uint64 LogicalBlocksRecorded

For files and directories with embedded data the value of this field shall be ZERO.

2.3.6.6 struct EntityID Implementationldentifier;

Refer to section 2.1.5 on Entity Identifier.

2.3.6.7 Uint64 UniquelD

For the root directory of a file set this value shall be set to ZERO.

Section 3.2.1 Logical Volume Header Descriptor describes how the UDF
UniquelD field in the Implementation Use bytes of the long ad in the File
Identifier Descriptor and the UniquelD field in the File Entry and Extended File
Entry are set.

2.3.6.8 FileLinkCount

UDF 2.60

Hard links to a directory are not allowed. A directory File Entry shall be identified

by:

e for non-root directories: exactly one FID defining the directory name

e zero or more parent FIDs if appropriate. One parent FID in each immediate
child directory, if any.

For Named Stream and Stream Directory hard link restrictions, see 3.3.5.1.

DRAFTI12z DRAFTI12z 60 DRAFTI12z DRAFTI12z February 28,2005

2.3.7 Unallocated Space Entry

struct UnallocatedSpaceEntry { /* ECMA 167 4/14.11 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 LengthofAllocationDescriptors;
byte AllocationDescriptors|];
}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical
Block.

2.3.7.1 byte AllocationDescriptors|]
Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in allocation descriptors specify
an extent type (ECMA 167 4/14.14.1.1). For the allocation descriptors
specified for the UnallocatedSpaceEntry the type shall be set to a value of 1 to
indicate extent allocated but not recorded, or shall be set to a value of 3 to
indicate the extent is the next extent of allocation descriptors. This next extent
of allocation descriptors shall be limited to the length of one Logical Block.

AllocationDescriptors shall be ordered sequentially in ascending location order.
No overlapping AllocationDescriptors shall exist in the table. For example,
ad.location = 2, ad.length = 2048 (logical block size = 1024) then

nextad.location = 3 is not allowed. Adjacent AllocationDescriptors shall not be
contiguous. For example ad.location = 2, ad.length = 1024 (logical block size =
1024), nextad.location = 3 is not allowed and would instead be a single
AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where
adjacent AllocationDescriptors may be contiguous is when the ad.length of one of
the adjacent AllocationDescriptors is equal to the maximum
AllocationDescriptors length.

upr2.60 DRAFTI12z DRAFT12z 61 DRAFT12z DRAFT12z February 28, 2005

2.3.8 Space Bitmap Descriptor
struct SpaceBitmap { /* ECMA 167 4/14.12 */

struct Tag DescriptorTag;
Uint32 NumberOfBits;
Uint32 NumberOfBytes;
byte Bitmap[];

}

2.3.8.1 struct Tag DescriptorTag
There are exception rules for the SBD DescriptorCRCLength. If the default value
for the DescriptorCRCLength as defined by 2.3.1.2 is not used, then
DescriptorCRCLength shall be either zero or 8—er—zere. The value of 8 is

2.3.9 Partition Integrity Entry

(See ECMA 167 4/14.13). With the functionality of the Logical Volume Integrity
Descriptor (see section 2.2.6) this descriptor is not needed, and therefore this
descriptor shall not be recorded.

2.3.10 Allocation Descriptors

When constructing the data area of a file an implementation has several types of
allocation descriptors from which to choose. The following guidelines shall be
followed in choosing the proper allocation descriptor to be used:

Short Allocation Descriptor - For a Logical Volume that resides on a single
Volume with no intent to expand the Logical Volume beyond the single
volume Short Allocation Descriptors should be used. For example a
Logical Volume created for a standalone drive.

NOTE 1: Refer to section 2.2.2.2 on the MaximumlinterchangeLevel.

Long Allocation Descriptor - For a Logical Volume that resides on a single
Legieal- Volume with intent to later expand the Logical Volume beyond the
single Volume, or a Logical Volume that resides on multiple Volumes Long
Allocation Descriptors should be used. For example a Logical Volume
created for a jukebox.

NOTE 2: There is a benefit of using Long Allocation Descriptors even on a
single volume, which is the support of tracking erased extents on
Rewritable media. See section 2.3.10.1 for additional information.

upr2.60 DRAFTI12z DRAFT12z 62 DRAFT12z DRAFT12z February 28, 2005

For both Short and Long Allocation Descriptors, if the 30 least significant bits of
the ExtentLength field is 0, then the 2 most significant bits shall be 0.

NOTE 3: For volumes in which a Virtual Partition Map is recorded:

e Allocation Descriptors identifying virtual space shall have an
extent length of one block size or less. Allocation Descriptors
identifying file data, directories, or stream data shall identify
physical space. ICBs recorded in virtual space shall use long_ad
Allocation Descriptors to identify physical space. The use of
short_ad Allocation Descriptors would identify file data in virtual
space if the ICB were in virtual space.

e Descriptors recorded in virtual space shall have the virtual logical
block number recorded in the Tag Location field.

NOTE 4: For volumes in which a Metadata Partition Map is recorded:

e Allocation Descriptors identifying directory or stream directory
data shall identify metadata space.

e Allocation Descriptors identifying file or stream data shall identify
physical space.

e Allocation Descriptors recorded in metadata space shall use
SHORT _ADs when identifying extents also in metadata space.

e Allocation Descriptors having an extent type of 3 (continuation)
shall identify an extent in the same partition in which the type 3
descriptor itself is recorded.

e Descriptors recorded in metadata space shall have their metadata
space logical block number recorded in their descriptor tag 7Tag
Location field, if applicable.

2.3.10.1 Long Allocation Descriptor

UDF 2.60

struct long_ad { /* ECMA 167 4/14.14.2 */
Uint32 ExtentLength;
Lb addr ExtentLocation;
byte ImplementationUse[6];

b

To allow wuse of the ImplementationUse field by UDF and also by
implementations the following structure shall be recorded within the 6-byte
Implementation Use field.

struct ADImpUse
Uintlé flags;
byte impUsel[4];

/*
* ADImpUse Flags (NOTE: bits 1-15 reserved for future use by UDF)
*/

DRAFTI12z DRAFTI12z 63 DRAFTI12z DRAFTI12z February 28,2005

2.3.11

#define EXTENTErased (0x01)

In the interests of efficiency on Rewritable media that benefits from
preprocessing, the EXTENTErased flag shall be set to ONE to indicate an erased
extent. This applies only to extents of type not recorded but allocated.

Allocation Extent Descriptor
struct AllocationExtentDescriptor { /* ECMA 167 4/14.5 */
struct tag DescriptorTag;
Uint32 PreviousAllocationExtentLocation;
Uint32 LengthOfAllocationDescriptors;

}

The Allocation Extent Descriptor does not contain the Allocation Descriptors
itself. UDF will interpret ECMA 167, 4/14.5 in such a way that the Allocation
Descriptors will start on the first byte following the
LengthOfAllocationDescriptors field of the Allocation Extent Descriptor. The
Allocation Extent Descriptor together with its Allocation Descriptors constitutes
an extent of Allocation Descriptors. The length of an extent of Allocation
Descriptors shall not exceed the logical block size. Unused bytes following the
Allocation Descriptors till the end of the logical block shall have a value of #00.

2.3.11.1 Struct tag DescriptorTag

The DescriptorCRCLength of the Descriptor Tag should include the Allocation
Descriptors following the Allocation Extent Descriptor. The
DescriptorCRCLength shall be either 8 or 8 + LengthOfAllocationDescriptors.

2.3.11.2 Uint32 PreviousAllocationExtentLocation

UDF 2.60

¢~ The previous allocation extent location shall not be used.

& Shall be set to 0.

DRAFTI12z DRAFTI12z 64 DRAFTI12z DRAFTI12z February 28,2005

2.3.12 Pathname

2.3.12.1 Path Component
struct PathComponent { /* ECMA 167 4/14.16.1 */

Uint8 ComponentType;

Uint8 LengthofComponentldentifier;
Uint16 ComponentFileVersionNumber;
char Componentldentifier|];

}

2.3.12.1.1 Uint16 ComponentFileVersionNumber
s~ There shall be only one version of a file as specified below with the value
being set to ZERO.

& Shall be set to ZERO.

2.4 Part 5 - Record Structure

Record structure files shall not be created. If they are encountered on the media and they
are not supported by the implementation they shall be treated as an uninterpreted stream
of bytes.

upr2.60 DRAFTI12z DRAFT12z 65 DRAFT12z DRAFT12z February 28, 2005

3. System Dependent Requirements

3.1 Part1 - General
3.1.1 Timestamp

struct timestamp { /* ECMA 167 1/7.3 */
Uintl6 TypeAndTimezone;
Intl6 Year;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 HundredsofMicroseconds;
Uint8 Microseconds;

§

3.1.1.1 Uint8 Centiseconds;

&~ For operating systems that do not support the concept of
centiseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of
centiseconds the implementation shall set this field to ZERO.

3.1.1.2 Uint8 HundredsofMicroseconds;
&~ For operating systems that do not support the concept of hundreds
of Microseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set this field to
ZERO.

3.1.1.3 Uint8 Microseconds;
&~ For operating systems that do not support the concept of

microseconds the implementation shall ignore this field.

& For operating systems that do not support the concept of
microseconds the implementation shall set this field to ZERO.

upr2.60 DRAFTI12z DRAFT12z 66 DRAFT12z DRAFT12z February 28, 2005

3.2 Part 3 - Volume Structure
3.2.1 Logical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { /* ECMA 167 4/14.15 */
Uint64 UniquelD,
bytes Reserved[24]

}

This structure is in the LVID Logical Volume Contents Use field.

3.2.1.1 Uint64 UniquelD
This field contains the Next UniquelD value to be used for the next new objects in
the UDF UniquelD Mapping Data Stream, see 3.3.7.1. The Next UniquelD value
is initialized to 16 because the value 0 is reserved for the root directory and
System Stream Directory objects and the values 1-15 are reserved for use in |
Macintosh implementations. The Next UniquelD value monotonically increases
with each assignment of a new UDF UniquelD value for a newly created object as
described below. Whenever the lower 32-bits of the Next UniquelD value reach
#FFFFFFFF, the next increment is performed by incrementing the upper 32-bits
by 1, as would be expected for a 64-bit value, but the lower 32-bits “wrap” to 16
(the initialization value). After such a “wrap”, the uniqueness of a 32-bits FID
UDF UniquelD value can no longer be guaranteed. Therefore the UDF UniquelD
Mapping Data Stream shall be removed altogether if the value of Next UniquelD
is higher than #FFFFFFFF.

UniquelD is used whenever a new file or directory is created, or another name is
linked to an existing file or directory. During a rename or move operation, the FID
UniquelD value of an object shall not be changed and the values in the
corresponding UDF Unique ID Mapping Entry shall remain consistent, see
3.3.7.1.2. The parent references of this mapping entry shall be updated when an
object is moved to a different directory. When a FID is deleted, the mapping entry
corresponding to the now unused UDF UniquelD shall not be re-used but be
deleted or marked invalid. The File Identifier Descriptors and File
Entries/Extended File Entries used for a Stream Directory and Named Streams
associated with a file or directory do not use UniquelD; rather, the unique ID
fields in these structures take their value from the UniquelD of the File
Entry/Extended File Entry of the file/directory they are associated with. The same
counts for File Entries/Extended File Entries used to define an Extended
Attributes Space. A parent FID takes its Unique ID value from the 32 lower bits
of the File Entry/Extended File Entry that is identified by the parent FID.

FIDs and File Entries of the System Stream Directory and of streams associated
with the System Stream Directory shall use a UniquelD value of zero.

When a file or directory is created, this UniquelD is assigned to the UniquelD

field of the File Entry/Extended File Entry, the lower 32-bits of UniquelD are
assigned to UDF UniquelD in the Implementation Use bytes of the ICB field in |

upr2.60 DRAFTI2z DRAFTI12z 67 DRAFTI12z DRAFTI12z February 28, 2005 |

the File Identifier Descriptor (see 2.3.4.3), and UniquelD is incremented by the
policy described above.

When a name is linked to an existing file or directory, the lower 32-bits of Next
UniquelD are assigned to UDF UniquelD in the Implementation Use bytes of the
ICB field in the File Identifier Descriptor (see 2.3.4.3), and UniquelD is
incremented by the policy described above.

The lower 32-bits shall be the same in the File Entry/Extended File Entry and its
first File Identifier Descriptor, but they shall differ in subsequent FIDs.

All UDF implementations shall maintain the UDF UniquelD in the FID and
UniquelD in the FE/EFE as described in this section. The LVHD in a closed
Logical Volume Integrity Descriptor shall have a valid UniquelD.

For file systems using a VAT, the function of the LVHD UniquelD field in the
LVID is taken over by the VAT ICB File Entry UniquelD field with the addition
that the first UniquelD value to be used for newly created objects will be the VAT
ICB UniquelD value incremented once according to the incrementing policy
described for Next UniquelD above in this section. In this way, no other object
will have the same UniquelD value as the VAT ICB File Entry.

upr2.60 DRAFTI12z DRAFT12z 68 DRAFT12z DRAFT12z February 28, 2005

3.3 Part 4 - File StructureSystem
3.3.1 File Identifier Descriptor

struct FileldentifierDescriptor { /* ECMA 167 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileldentifier;
struct long ad ICB;
Uint16 LengthoflmplementationUse;
byte ImplementationUse[];
char Fileldentifier[];
byte Padding([];
}

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics under various
operating systems.

3.3.1.1.1 MS-DOS, OS/2, Windows 95, Windows NT, Macintosh
& If Bit 0 1s set to ONE, the file shall be considered a "hidden" file.
If Bit 1 is set to ONE, the file shall be considered a "directory."
If Bit 2 1is set to ONE, the file shall be considered "deleted."
If Bit 3 is set to ONE, the ICB field within the associated File
Identifier strueture—Descriptor shall be considered as identifying the
"parent" directory of the directory that this descriptor is recorded in.

& If the file is designated as a "hidden" file, Bit 0 shall be set to ONE.
If the file is designated as a "directory," Bit 1 shall be set to ONE.
If the file is designated as "deleted," Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX and OS/400
Under UNIX and OS/400 these bits shall be processed the same as
specified in 3.3.1.1.1, except for hidden files which will be processed as
normal non-hidden files.

upr2.60 DRAFTI12z DRAFT12z 69 DRAFT12z DRAFT12z February 28, 2005

3.3.2 ICB Tag

struct icbtag { /* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uintl6 MaximumNumberofEntries;
byte Reserved;
Uint8 FileType;
Lb addr ParentICBLocation;
Uint16 Flags;
}

3.3.2.1 Uint16 Flags

3.3.2.1.1 MS-DOS, OS/2, Windows 95, Windows NT
Bits 6 & 7 (Setuid & Setgid):
s Ignored.

& In the interests of maintaining security under environments which do
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true :

o A file is created.

o The attributes/permissions associated with a file, are modified .

e A file is written to (the contents of the data associated with a file
are modified).

o An Extended Attribute associated with the file is modified.

e A Named Stream associated with a file is modified.

Bit 8 (Sticky):
s Ignored.

& Shall be set to ZERO.

Bit 10 (System):
& Mapped to the MS-DOS / OS/2 system bit.

& Mapped from the MS-DOS / OS/2 system bit.

3.3.2.1.2 Macintosh
Bits 6 & 7 (Setuid & Setgid):
s~ Ignored.

& In the interests of maintaining security under environments, which do
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true:

o A file is created.
o The attributes/permissions associated with a file, are modified.

upr2.60 DRAFTI12z DRAFTI12z 70 DRAFTI12z DRAFTI12z February 28, 2005 |

e A file is written to (the contents of the data associated with a file
are modified).

e An Extended Attribute associated with the file is modified.

e A Named Stream associated with a file is modified.

Bit 8 (Sticky):
&~ lgnored.

& Shall be set to ZERO.

Bit 10 (System):
e~ lgnored.

& Shall be set to ZERO.

3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system bits.
Bit 10 (System):
e~ lgnored.

¥t Shall be set to ZERO upon file creation only, otherwise maintained.

3.3.2.1.4 0S/400
Bits 6 & 7 (Setuid & Setgid):
e~ lgnored.

& In the interests of maintaining security under environments, which do
support these bits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true:

o A fileis created.

o The attributes/permissions associated with a file, are modified.

e A file is written to (the contents of the data associated with a file
are modified).

* An Extended Attribute associated with the file is modified.

e A Named Stream associated with a file is modified.

Bit 8 (Sticky):

e~ lgnored.

& Shall be set to ZERO.
Bit 10 (System):

e~ lgnored.

¥t Shall be set to ZERO upon file creation only, otherwise maintained.

upr2.60 DRAFTI12z DRAFT12z 71 DRAFT12z DRAFT12z February 28, 2005

3.3.3 File Entry

struct FileEntry { /* ECMA 167 4/14.9 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Uid;
Uint32 Gid;
Uint32 Permissions;
Uint16 FileLinkCount;
Uint8 RecordFormat;
Uint8 RecordDisplayAttributes;
Uint32 RecordLength;
Uint64 InformationLength;
Uint64 LogicalBlocksRecorded;

struct timestamp AccessTime;

struct timestamp ModificationTime;

struct timestamp ~ AttributeTime;

Uint32 Checkpoint;

struct long_ad ExtendedAttributeICB;
struct EntityID Implementationldentifier;

Uint64 UniquelD,
Uint32 LengthofExtendedAttributes;
Uint32 LengthofAllocationDescriptors;
byte ExtendedAttributes|];
byte AllocationDescriptors[];
}
NOTE: The total length of a File Entry shall not exceed the size of one logical |
block.

3.3.3.1 Uint32 Uid
¢~ For operating systems that do not support the concept of a user identifier
the implementation shall ignore this field. For operating systems that do
support this field a value of 2% - 1 shall indicate an invalid UID, otherwise
the field contains a valid user identifier.

& For operating systems that do not support the concept of a user identifier
the implementation shall set this field to 2% - 1 to indicate an invalid UID,
unless otherwise specified by the user.

3.3.3.2 Uint32 Gid
¢~ For operating systems that do not support the concept of a group identifier
the implementation shall ignore this field. For operating systems that do
support this field a value of 2% - 1 shall indicate an invalid GID, otherwise
the field contains a valid group identifier.

upr2.60 DRAFTI12z DRAFT12z 72 DRAFT12z DRAFT12z February 28, 2005

3.3.3.3 Uint32 Permissions

UDF 2.60

& For operating systems that do not support the concept of a group identifier
the implementation shall set this field to 2*2 - 1 to indicate an invalid GID,
unless otherwise specified by the user.

/* Defin
/* Bit

/* Exec
/* Writ
/* Read
/* ChAt
/* Dele

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

itions: */

for a File
ute May
e May

May
tr May
te May
OTHER_Execute

OTHER Write

OTHER_Read

OTHER ChAttr
OTHER Delete

GROUP_Execute
GROUP_Write

GROUP_Read

GROUP_ChAttr
GROUP_Delete

OWNER_Execute
OWNER_Write

OWNER_Read

OWNER_ ChAttr
OWNER Delete

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010

0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000400
0x00000800
0x00001000
0x00002000
0x00004000

execute file
change file contents

examine file contents
change file attributes
delete file

for a Directory */
____________________________ */
May search directory */
May create and delete files */
May list files in directory */
May change dir attributes */
May delete directory */

The concept of permissions that deals with security is not completely portable
between operating systems. This document attempts to maintain consistency
among implementations in processing the permission bits by addressing the

following basic issues:

1. How should an implementation handle Owner, Group and Other

permissions when the operating system has no concept of User and

Group Ids?
How should an implementation process permission bits when

encountered, specifically permission bits that do not directly map to an
operating system supported permission bit?

What default values should be used for permission bits that do not

directly map to an operating system supported permission bit when
creating a new file?

Owner, Group and Other
In general, for operating systems that do not support User and Group Ids the
following algorithm should be used when processing permission bits:

When reading a specific permission, the logical OR of all three (owner,
group, other) permissions should be the value checked. For example a file

DRAFTI12z DRAFTI12z

73

DRAFT12z DRAFTI12Z February 28,2005 |

would be considered writable if the logical OR of OWNER_Write,
GROUP_Write and OTHER Write was equal to one.

When setting a specific permission the implementation should set all three
(owner, group, other) sets of permission bits. For example to mark a file

as writable the OWNER Write, GROUP_ Write and OTHER Write
should all be set to one.

Default P

ermission Values

For the operating systems covered by this document the following table describes
what default values should be used for permission bits that do not directly map to

an operating system supported permission bit when creating a new file.

Permissio | File/Director Description DOS 0S/2 | Win Win Mac | UNIX &
n y 95 NT 0S 0S/400
Read file The file may be read 1 1 1 1 1 U
Read directory The directory may be read, only if the 1 1 1 1 1 U
directory is also marked as Execute.
Write file The file’s contents may be modified U U U U U U
Write directory Files or subdirectories may be renamed, U U U U U U
added, or deleted, only if the directory is also
marked as Execute.
Execute file The file may be executed. 0 0 0 0 0 U
Execute directory The directory may be searched for a specific 1 1 1 1 1 U
file or subdirectory.
Attribute | file The file’s permissions may be changed. 1 1 1 1 1 Note 1
Attribute directory The directory’s permissions may be changed. 1 1 1 1 1 Note 1
Delete file The file may be deleted. Note2 | Note2 | Note | Note2 | Note 2 [Note 2
2
Delete directory The directory may be deleted. Note2 | Note2 | Note | Note2 | Note 2 [Note 2
2

U - User Specified, 1 - Set, 0 - Clear

UDF 2.60

NOTE 1: Under UNIX only the owner of a file/directory may change its
attributes. Under OS/400 if a file or directory is marked as writable
(Write permission set) then the Attribute permission bit should be set.

NOTE 2: The Delete permission bit should be set based upon the status of the
Write permission bit. Under DOS, OS/2 and Macintosh, if a file or
directory is marked as writable (Write permission set) then the file is
considered deletable and the Delete permission bit should be set. If a

Processin

file is Read-Only then the Delete permission bit should not be set.

This applies to file create as well as changing attributes of a file.

g Permissions

Implementation shall process the permission bits according to the following table

that describes how to process the permission bits under the operating systems

covered by this document. The table addresses the issues associated with

permission bits that do not directly map to an operating system supported

permission bit.

DRAFTI12z DRAFTI12z

74

DRAFT12z DRAFT12z February 28, 2005

Permission | File/Directory Description DOS 0S/2 Win Win | Mac | UNIX [OS/400
95 NT 0S

Read file The file may be read E E E E E E E

Read directory The directory may be read E E E E 1 E E

Write file The file’s contents may be modified E E E E E E E

Write directory Files or subdirectories may be created, E E E E E E E
deleted or renamed

Execute file The file may be executed. 1 1 1 1 1 E 1

Execute directory The directory may be searched for a E E E E
specific file or subdirectory.

Attribute file The file’s permissions may be E E E E E 1 I
changed.

Attribute directory The directory’s permissions may be E E E E E 1 I
changed.

Delete file The file may be deleted. E E E E E I 1

Delete directory The directory may be deleted. E E E E E 1 1

E - Enforce, I - Ignore

The Execute bit for a directory, sometimes referred to as the search bit, has special
meaning. This bit enables a directory to be searched, but not have its contents
listed. For example assume a directory called PRIVATE exists which only has the

Execute permission and does not have the Read permission bit set. The contents

of the directory PRIVATE can not be listed. Assume there is a file within the

PRIVATE directory called README. The user can get access to the README

file since the PRIVATE directory is searchable.

To be able to list the contents of a directory both the Read and Execute permission

bits must be set for the directory. To be able to create, delete and rename a file or
subdirectory both the Write and Execute permission bits must be set for the

directory. To get a better understanding of the Execute bit for a directory reference

any UNIX book that covers file and directory permissions. The rules defined by

the Execute bit for a directory shall be enforced by all implementations. The

exception to this rule applies to Macintosh implementations. A Macintosh

implementation may ignore the status of the Read bit in determining the
accessibility of a directory

NOTE 3: To be able to delete a file or subdirectory the Delete permission bit for |
the file or subdirectory must be set, and both the Write and Execute
permission bits must be set for the directory it occupies.

3.3.3.4 Uint64 UniquelD

Section 3.2.1 describes how the value for this field is set. For file systems using a
VAT, the function of the LVHD UniquelD field in the LVID is taken over by the

VAT ICB File Entry UniquelD field, see 3.2.1.1.

NOTE: For UDF 2.00 and higher, the Unique ID value used in the UDF Unique
ID Mapping Data is taken from the File Identifier Descriptor rather than

from the File Entry.

upr2.60 DRAFTI12z DRAFT12z 75

DRAFT12z DRAFT12z February 28, 2005

3.3.3.5 byte ExtendedAttributes|]
Certain extended attributes should be recorded in this field of the File Entry for |
performance reasons. Other extended attributes should be recorded in an ICB
pointed to by the field Extended Attribute ICB. In section 3.3.4 on Extended |
Attributes it will be specified which extended attributes should be recorded in this
field.

3.3.4 Extended Attributes
In order to handle some of the longer Extended Attributes (EAs) that may vary in
length, the following rules apply to the EA space.

1. All EAs with an attribute length greater than or equal to a logical block shall
be block aligned by starting and ending on a logical block boundary. The one
and only exception to this rule is the start of the first ECMA 167 EA.

2. Smaller EAs shall be constrained to an attribute length that is a multiple of 4
bytes.

3. Each Extended Attributes Space shall appear as a single contiguous logical
space constructed as follows:

ECMA 167 EAs

Non block aligned Implementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

NOTE: There may exist 2 Extended Attributes Spaces per file, one embedded in |
the File Entry or Extended File Entry and the other as a separate space
referenced by the Extended Attribute ICB address in the File Entry or
Extended File Entry. Each Extended Attributes Space, if present, must
have its own Extended Attribute Header Descriptor (see next section).

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { /* ECMA 167 4/14.10.1 */

struct tag DescriptorTag;
Uint32 ImplementationAttributesLocation,;
Uint32 ApplicationAttributesLocation,;

&~ Avalue in one of the location fields highlighted above equal to or
greater than the length of the EA space shall be interpreted as an indication
that the corresponding attribute does not exist.

& If an attribute associated with one of the location fields

highlighted above does not exist, then the value of the corresponding
location field shall be set to #FFFFFFFF.

upr2.60 DRAFTI12z DRAFTI12z 76 DRAFTI12z DRAFTI12z February 28, 2005 |

3.3.4.2 Alternate Permissions
struct AlternatePermissionsExtendedAttribute { /* ECMA 167 4/14.10.4 */

Uint32
Uint8
byte
Uint32
Uint16
Uint16
Uint16

}

AttributeType;
AttributeSubtype;
Reserved[3];
AttributeLength;
Ownerldentification;
Groupldentification;
Permission;

This structure shall not be recorded.

3.3.4.3 File Times Extended Attribute

struct FileTimesExtendedAttribute {

Uint32
Uint8
byte
Uint32
Uint32
Uint32

byte

/* ECMA 167 4/14.10.5 */
AttributeType;

AttributeSubtype;

Reserved[3];

AttributeLength;

Datalength;

FileTimeExistence;

FileTimes;

}

3.3.4.3.1 byte FileTimes

s~ If'this field contains a file creation time it shall be interpreted as
the creation time of the associated file. If the main File Entry is an
Extended File Entry, the file creation time in this structure shall be
ignored and the file creation time from the main File Entry shall be

used.

¥t If the main File Entry is an Extended File Entry, this structure shall
not be recorded with a file creation time.

If the main File Entry is not an Extended File Entry and the File Times
Extended Attribute does not exist or does not contain the file creation time
then an implementation shall use the Modification Time field of the File
Entry to represent the file creation time.

upr2.60 DRAFTI12z DRAFT12z

77

DRAFT12z DRAFT12z February 28, 2005

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute { /* ECMA 167 4/14.10.7 */

}

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint32 ImplementationUseLength; /* (=IU L) */
Uint32 MajorDeviceldentification;

Uint32 MinorDeviceldentification;

byte ImplementationUse[IU_LJ;

The following paradigm shall be followed by an implementation that creates a

Device Specification Extended Attribute associated with a file :

If and only if a file has a DeviceSpecificationExtendedAttribute associated
with it, the contents of the File Type field in the icbtag structure shall be
set to 6 (indicating a block special device file), OR 7 (indicating a
character special device file).

If the contents of the File Type field in the ichtag structure do not equal 6
or 7, the DeviceSpecificationExtendedAttribute associated with a file shall
be ignored.

In the event that the contents of the File Type field in the icbtag structure
equals 6 or 7, and the file does not have a
DeviceSpecificationExtendedAttribute associated with it, access to the file
shall be denied.

For operating system environments that do not provide for the semantics
associated with a block special device file, requests to
open/read/write/close a file that has the
DeviceSpecificationExtendedAttribute associated with it shall be denied.

3.3.4.4.1 ImplementationUse[IU_ L]

As the first structure in the ImplementationUse field, an EntityID shall be
recorded by all implementations. This EntityID uniquely identifies the current
implementation by a Developer ID, see 2.1.5.

UDF 2.60

DRAFTI12z DRAFTI12z 78 DRAFTI12z DRAFTI12z February 28,2005

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute { /* ECMA 167 4/14.10.8 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint32 ImplementationUseLength; /* (=IU L) */
struct EntityID ~ Implementationldentifier;

byte ImplementationUse[IU_LJ;

}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Implementation Use
Extended Attribute the Attribute Length field should be large enough to leave
padding space between the end of the Implementation Use field and the end of the
Implementation Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attribute
is used under various operating systems to store operating system specific
extended attributes.

The structures defined in the following sections contain a /{eader Checksum field. |
This field represents a 16-bit checksum of the Implementation Use Extended
Attribute header. The fields AttributeType through Implementationldentifier
inclusively represent the data covered by the checksum. The Header Checksum |
field is used to aid in disaster recovery of the extended attributes space. C source
code for the Header Checksum may be found in appendix 6.8. |

NOTE: All compliant implementations shall preserve existing extended
attributes encountered on the media. Implementations shall create and support
the extended attributes for the operating system they currently support. For
example, a Macintosh implementation shall preserve any OS/2 extended
attributes encountered on the media. It shall also create and support all
Macintosh extended attributes specified in this document.

3.3.4.5.1 All Operating Systems

3.3.4.5.1.1 FreeEASpace
This extended attribute shall be used to indicate unused space within the
Extended Attributes Space. This extended attributes shall be stored as an
Implementation Use Extended Attribute whose Implementationldentifier
shall be set to:

"*UDF FreeEASpace"

upr2.60 DRAFTI12z DRAFT12z 79 DRAFT12z DRAFT12z February 28, 2005

The ImplementationUse area for this extended attribute shall be structured

as follows:
FreeEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 1IU L-2 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete Extended
Attributes Space. The FreeEASpace extended attribute may be
overwritten and the space re-used by any implementation that sees a need
to overwrite it.

3.3.4.5.1.2 DVD Copyright Management Information
This extended attribute shall be used to store DVD Copyright Management
Information. This extended attribute shall be stored as an Implementation
Use Extended Attribute whose Implementationldentifier shall be set to:

"*UDF DVD CGMS Info"

The ImplementationUse area for this extended attribute shall be structured

as follows:
DVD CGMS Info format
RBP Length Name Contents
0 2 Header Checksum Uint16
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended attribute allows DVD Copyright Management Information
to be stored. The interpretation of this format shall be defined in the DVD
specification published by the DVD Format/Logo Licensing Corporation,
see 6.9.3. Support for this extended attribute is optional.

3.3.4.52 MS-DOS, Windows 95, Windows NT
e~ Ignored.

& Not supported. Extended attributes for existing files on the media shall be
preserved.

upr2.60 DRAFTI12z DRAFT12z 80 DRAFT12z DRAFT12z February 28, 2005

3.3.453 0OS/2
OS/2 supports an unlimited number of extended attributes, which shall be stored
as a Named Stream as defined in 3.3.8.2. To enhance performance the following |
Implementation Use Extended Attribute will be created.

3.3.4.5.3.1 OS2EALength
This attribute specifies the OS/2 Extended Attribute Stream (3.3.8.2)
information length. Since this value needs to be reported back to OS/2
under certain directory operations, for performance reasons it should be
recorded in the ExtendedAttributes field of the File Entry. This extended |
attribute shall be stored as an Implementation Use Extended Attribute
whose Implementationldentifier shall be set to:

"*UDF OS/2 EALength"
The ImplementationUse area for this extended attribute shall be structured
as follows:
OS2EALength format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 4 0OS/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall be
equal to the Information Length field of the File Entry for the OS2EA
stream.

3.3.4.5.4 Macintosh OS
The Macintosh OS requires the use of the following extended attributes.

3.3.4.5.4.1 MacVolumelnfo
This extended attribute contains Macintosh volume information which
shall be stored as an Implementation Use Extended Attribute whose
Implementationldentifier shall be set to:

"*UDF Mac Volumelnfo"

The ImplementationUse area for this extended attribute shall be structured

as follows:
MacVolumelnfo format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 12 Last Modification Date Timestamp
14 12 Last Backup Date Timestamp
26 32 Volume Finder Information Uint32

upr2.60 DRAFTI12z DRAFT12z 81 DRAFT12z DRAFT12z February 28, 2005

The MacVolumelnfo extended attribute shall be recorded as an extended
attribute of the root directory File Entry.

3.3.4.5.4.2 MacFinderInfo

This extended attribute contains Macintosh Finder information for the
associated file or directory. Since this information is accessed frequently,
for performance reasons it should be recorded in the ExtendedAttributes
field of the File Entry.

The MacFinderInfo extended attribute shall be stored as an

Implementation Use Extended Attribute whose Implementationldentifier

shall be set to:

"*UDF Mac FinderInfo"

The ImplementationUse area for this extended attribute shall be structured

as follows:
MacFinderInfo format for a directory
RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 2 Reserved for padding Uintl6 =0
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo
24 16 Directory Extended Information UDFDXInfo
MacFinderInfo format for a file
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 2 Reserved for padding Uintl16 =0
4 4 Parent Directory ID Uint32
8 16 File Information UDFFInfo
24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data Length Uint32
44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended
attribute of every file and directory within the Logical Volume.

The following structures used within the MacFinderInfo structure are

UDF 2.60

listed below for clarity. For complete information on these structures refer
to the Macintosh books called “Inside Macintosh”. The volume and page
number listed with each structure correspond to a specific “Inside

Macintosh” volume and page.

DRAFTI12z DRAFTI12z 82

DRAFT12z DRAFT12z February 28, 2005

UDF 2.60

UDFPoint format (Volume I, page 139)

RBP | Length Name Contents
0 2 \Y Int16
2 2 H Int16
UDFRect format (Volume I, page 141)
RBP | Length Name Contents
0 2 Top Intl6
2 2 Left Intl6
4 2 Bottom Intl6
6 2 Right Intl16
UDFDInfo format (Volume IV, page 105)
RBP | Length Name Contents
0 8 FrRect UDFRect
8 2 FrFlags Intl6
10 4 FrLocation UDFPoint
14 2 FrView Int16
UDFDXInfo format (Volume IV, page 106)
RBP | Length Name Contents
0 4 FrScroll UDFPoint
4 4 FrOpenChain Int32
8 1 FrScript Uint8
9 1 FrXflags Uint8
10 2 FrComment Intl6
12 4 FrPutAway Int32
UDFFlInfo format (Volume I, page 84)
RBP | Length Name Contents
0 4 FdType Uint32
4 4 FdCreator Uint32
8 2 FdFlags Uint16
10 4 FdLocation UDFPoint
14 2 FdFldr Int16
UDFFXlInfo format (Volume IV, page 105)
RBP | Length Name Contents
0 2 FdlconID Intl6
2 6 FdUnused bytes
8 1 FdScript Int8
9 1 FdXFlags Int8
10 2 FdComment Intl6
12 4 FdPutAway Int32

NOTE: The above-mentioned structures have their original Macintosh
names preceded by “UDF” to indicate that they are actually different

DRAFTI12z DRAFTI12z

&3

DRAFT12z DRAFTI12Z February 28,2005 |

from the original Macintosh structures. On the media the UDF
structures are stored /ittle endian as opposed to the original
Macintosh structures that are in big endian format.

3.3.4.5.5 UNIX
&~ lgnored.

& Not supported. Extended attributes for existing files on the media
shall be preserved.

3.3.4.5.6 OS/400
0S/400 requires the use of the following extended attributes.

3.3.4.5.6.1 OS400DirInfo
This attribute specifies the OS/400 extended directory information. Since
this value needs to be reported back to OS/400 for normal directory
information processing, for performance reasons it should be recorded in
the ExtendedAttributes field of the File Entry. This extended attribute shall |
be stored as an Implementation Use Extended Attribute whose
Implementationldentifier shall be set to:

“*UDF OS/400 DirInfo”.

The ImplementationUse area for this extended attribute shall be structured

as follows:
0S5400DirInfo format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 2 Reserved for padding Uintl16 =0
4 44 DirectoryInfo bytes

For complete information on the structure of the Directorylnfo field
recorded in the OS400DirInfo format, refer to the following IBM
document:

IBM OS/400 UDF Implementation

Optical Storage Solutions, Department HTT
IBM

Rochester, Minnesota

upr2.60 DRAFTI12z DRAFT12z 84 DRAFT12z DRAFT12z February 28, 2005

3.3.4.6 Application Use Extended Attribute
struct ApplicationUseExtendedAttribute { /* ECMA 167 4/14.10.9 */

Uint32 AttributeType; /*=65536 */

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint32 ApplicationUseLength; /* (=AU L) */
struct EntityID ~ Applicationldentifier;

byte ApplicationUse[AU _LJ;

}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Application Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the ApplicationUse field and the end of the Application Use
Extended Attribute.

The structures defined in the following section contain a Header Checksum field. |
This field represents a 16-bit checksum of the Application Use Extended Attribute
header. The fields A#tributeType through Applicationldentifier inclusively

represent the data covered by the checksum. The Header Checksum field is used |
to aid in disaster recovery of the extended attributes space. C source code for the
Header Checksum may be found in appendix 6.8. |

NOTE: All compliant implementations shall preserve existing extended
attributes encountered on the media. Implementations shall create and
support the extended attributes for the operating system they currently
support. For example, a Macintosh implementation shall preserve any OS/2
extended attributes encountered on the media. It shall also create and
support all Macintosh extended attributes specified in this document.

3.3.4.6.1 All Operating Systems

3.3.4.6.1.1 FreeAppEASpace
This extended attribute shall be used to indicate unused space within the
Extended Attributes Space reserved for Application Use Extended
Attributes. This extended attribute shall be stored as an Application Use
Extended Attribute whose Applicationldentifier shall be set to:

“*UDF FreeAppEASpace”

upr2.60 DRAFTI12z DRAFT12z 85 DRAFT12z DRAFT12z February 28, 2005

The ApplicationUse area for this extended attribute shall be structured as

follows:
FreeAppEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-2 | Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete Extended
Attributes Space. The FreeAppEASpace extended attribute may be
overwritten and the space re-used by any implementation who sees a need
to overwrite it.

3.3.5 Named Streams

Named Streams provide a mechanism for associating related data of a file. It is similar in
concept to extended attributes. However, Named Streams have significant advantages
over extended attributes. They are not as limited in length. Space management is much
easier as each Named Stream has its own space, rather than the common space of
extended attributes. Finding a particular Named Stream does not involve searching the
entire data space, as it does for extended attributes.

Named Streams are mainly intended for user data. For example, a database application
may store the records in the default or main stream and indices in Named Streams. The
user would then see only one file for the database rather than many, and the application
can use the various Named Streams almost as if they were independent files. |

Named Streams are identified by an Extended File Entry. Extended File Entries are
required for files with associated Named Streams. Files without Named Streams should |
use Extended File Entries. Files may have normal File Entries; normal File Entries would
be used where backward compatibility is desired, such as writing DVD Video discs.

There is a “System Stream Directory” which is the stream directory identified by the File
Set Descriptor. These streams are used to describe data related to the entire medium
instead of data that relates to a file. UDF defines several “System Streams’ that are to be
identified by the System Stream Directory.

The parent of the System Stream Directory shall be the System Stream Directory. |

It is recommended that Named Streams be used to store metadata and application data
instead of Extended Attributes in new implementations.

upr2.60 DRAFTI12z DRAFT12z 86 DRAFT12z DRAFT12z February 28, 2005

3.3.5.1 Named Streams Restrictions

ECMA 167 3" edition defines a new Extended File Entry that contains a field for
identifying a Stream Directory. This new Extended File Entry should be used in place of
the old File Entry, and should be used for describing the Named Streams themselves. File
Entries and Extended File Entries may be freely mixed. In particular, compatibility with
old reader implementations can be maintained for certain files.

Restrictions:

The Stream Directory ICB field of ICBs describing Stream Directories or Named Streams
shall be set to zero. [no hierarchical streams]

Each Named Stream shall be identified by exactly one FID in exactly one Stream
Directory. [no hard links among Named Streams or files and Named Streams]

Each Stream Directory ICB shall be identified by exactly one Stream Directory ICB field.
[no hard links to Stream Directories]. The sole exception is that the parent of the System
Stream Directory shall be the System Stream Directory.

Hard Links to files with Named Streams are allowed.

Named Streams and Stream Directories shall not have Extended Attributes.

Section 3.2.1.1 describes how the Unique ID fields of File Identifier Descriptors and File
Entries/Extended File Entries defining Named Streams and Stream Directories are set.

The UID, GID, and permissions fields of the main File Entry shall apply to all Named
Streams associated with the main stream. At the time of creation of a Named Stream the
values of the UID, GID and permissions fields of the main File Entry should be used as
the default values for the corresponding fields of the Named Stream. Implementations
are not required to maintain or check these fields in a Named Stream.

Implementations should not present Named Streams marked with the metadata bit set in
the FID to the user. Named Streams marked with the metadata bit are intended solely for
the use of the file system implementation.

The parent entry FID in a Stream Directory points to the main Extended File Entry, so its
reference must be counted in the File Link Count field of the Extended File Entry. The
sole exception is that the parent of the System Stream Directory shall be the System
Stream Directory.

NOTE: There is a potential pitfall when deleting files/directories: if the File Link Count
goes to one when a FID is deleted, implementations must check for the

upr2.60 DRAFTI12z DRAFT12z 87 DRAFT12z DRAFT12z February 28, 2005

presence of a Stream Directory. If present, there are no more FIDs pointing to |
this File Entry, so it and all associated structures must be deleted.

The modification time field of the main Extended File Entry should be updated whenever
any associated named stream is modified. The Access Time field of the main Extended
File Entry should be updated whenever any associated named stream is accessed. The
SETUID and SETGID bits of the ICB Tag flags field in the main Extended File Entry
should be cleared whenever any associated named stream is modified.

The ICB for a Named Stream directory shall have a file type of 13. All Named Streams ’
shall have a file type of 5.

All systems shall make the main data stream available, even on implementations that do
not implement Named Streams. ’

3.3.5.2 UDF Defined Named Streams (Metadata)

A set of Named Streams is defined by UDF for file system use. Some UDF Named ’
Streams are identified by the File Set Descriptor (System Stream Directory) and apply to

the entire file set. These are called UDF Defined System Streams and are defined in

section 3.3.7. Others pertain to individual files or directories and are identified by the
Stream Directory of that particular file or directory. These are called UDF Defined Non-
System Streams and are defined in 3.3.8.

All UDF Defined Named Streams shall have the Metadata bit set in the File Identifier
Descriptor in the Stream Directory, unless otherwise specified in this document. All
Named Streams not generated by the file system implementation shall have this bit set to |
Zero.

The four characters *UDF are the first four characters of all UDF defined named streams
in this document. Implementations shall not use any identifier beginning with *UDF for
named streams that are not defined in this document. All identifiers for named streams
beginning with *UDF are reserved for future definition by OSTA.

3.3.6 Extended Attributes as Named Streams

NOTE: Because conversion of some types of Extended Attributes to a Named Stream
appeared to be impossible and because it was never intended to allow automatic
conversion of any EA to a Named Stream, this section is amended for UDF revisions
after UDF 2.01. Conversion of any EA to a Named Stream is not allowed.

upr2.60 DRAFTI12z DRAFT12z 88 DRAFT12z DRAFT12z February 28, 2005

3.3.7 UDF Defined System Streams

This section contains the definition of UDF defined System Streams.

Stream Name Stream Location Metadata Flag
“*UDF Unique ID Mapping Data” | System Stream Directory (File Set Descriptor) 1
“*UDF Non-Allocatable Space” System Stream Directory (File Set Descriptor) 1
“*UDF Power Cal Table” System Stream Directory (File Set Descriptor) 1
“*UDF Backup” System Stream Directory (File Set Descriptor) 1

Since the System Streams listed above have the Metadata flag set, the implementation
shall not pass the name of the System Stream across the “plug-in file system interface” of
a platform.

3.3.7.1 Unique ID Mapping Data Stream

The Unique ID Mapping Data allows an implementation to go directly to the ICB
hierarchy for the file/directory associated with a UDF UniquelD, or to the ICB hierarchy
for the directory that contains the file/directory associated with the UDF UniquelD. Note
that for UDF release 2.00 and higher the UDF UniquelD value used for this purpose is
taken from the File Identifier Descriptor rather than from the File Entry.

Unique ID Mapping Data is stored as a Named Stream of the System Stream Directory
(associated with the File Set Descriptor). The name of this System Stream shall be set to:

“*UDF Unique ID Mapping Data”

The Metadata bit in the File Characteristics field of the File Identifier Descriptor for the
stream shall be set to 1 to indicate that the existence of this stream should not be made
known to clients of a platform’s file system interface.

Rules for the presence and consistency of the Unique ID Mapping Data Stream:

e Shall be created for Read-Only media |
e Shall be created by implementations with batch write (e.g., pre-mastering tools) a
volume on Write-Once and Rewritable media |

For implementations which perform incremental updates of volumes on Write-Once or
Rewritable media (e.g., on-line file systems), the following rules apply:

e May be created and maintained if not present
e Shall be maintained if present and volume is clean

e Should be repaired and maintained, but may be deleted, if present and volume is dirty

For these rules, a volume is clean if either a valid Close Logical Volume Integrity
Descriptor or a valid Virtual Allocation Table is recorded.

upr2.60 DRAFTI12z DRAFT12z 89 DRAFT12z DRAFT12z February 28, 2005

3.3.7.1.1 UDF Unique ID Mapping Data
The contents of the Unique ID Mapping Stream are described by the tables “UDF Unique
ID Mapping Data” and “UDF Unique ID Mapping Entry”. The mapping data contains
some header fields before an array of mapping entries. The fields of these structures are
described below their corresponding table.

UDF Unique ID Mapping Data

RBP Length Name Contents
0 32 Implementation Identifier EntitylD
32 4 Flags Uint32
36 4 Mapping Entry Count (=MEC) Uint32
40 8 Reserved Bytes (= #00)
48 16*MEC | Mapping Entries IDMappingEntry

Implementation Identifier is described in section 2.1.5.

Flags are defined as follows:

Bit 0

Index Bit

Bits 1 —31

Reserved, shall be set to ZERO

Index Bit set to ONE is called Index Mode. In Index Mode, the UDF UniquelD,
once decremented by 16 (the value Next UniquelD is initialized to), can be used
as an index into the array Mapping Entries.

Mapping Entry Count is the size, in entries, of the array Mapping Entries.

Mapping Entries is an array of UDF Unique ID Mapping Entry structures. There is one
mapping entry for every non-stream, non-parent File Identifier Descriptor. Whenever the
volume is consistent, the array is always sorted in ascending order of UDF UniquelD.

3.3.7.1.2 UDF Unique ID Mapping Entry

UDF Unique ID Mapping Entry

RBP Length Name Contents
0 4 UDF Unique ID Uint32
4 4 Parent Logical Block Number Uint32
8 4 Object Logical Block Number Uint32
12 2 Parent Partition Reference Number Uintl6
14 2 Object Partition Reference Number Uintl6

UDF Unique ID is the value found in the FID identifying the object.

Parent Logical Block Number is the logical block number of the ICB identifying

the directory that contains the FID identifying the object.

upr2.60 DRAFT12z DRAFTI12z

90 DRAFT12z DRAFT12z February 28, 2005

Object Logical Block Number is the logical block number from the long_ad ICB
field of the FID identifying the object.

Parent Partition Reference Number is the partition reference number of the ICB
identifying the directory that contains the FID identifying the object.

Object Partition Reference Number is the partition reference number from the
long_ad ICB field of the FID identifying the object.

In Index Mode, the first entry has a UDF Unique ID of 16 and subsequent entries are
required to have a UDF Unique ID value of one more than the preceding entry.

If not in Index Mode, invalid entries may be removed in order to shrink the array.
Invalid entries are represented by having a value of zero in all fields, except the UDF
Unique ID field. Invalid entries are the result of objects that were deleted from the
medium or entries at the end of the Mapping Entries array that are not yet in use.

There shall only be valid entries for non-stream, non-parent FIDs.

NOTE: The UDF Unique ID value of a mapping entry for an object needs not be equal to
the Unique ID value found in the File Entry of the object.

The correctness of a mapping entry can be verified performing the following steps:

1. Read the File Entry of the parent directory of the object using the Parent Logical
Block Number and the Parent Partition Reference Number of the mapping entry.

2. Find in the parent directory a FID with a UDF Unique ID value equal to the UDF
Unique ID of the mapping entry.

3. The long ad ICB field of this FID shall contain logical block number and partition
reference number values equal to the Object Logical Block Number and Object
Partition Reference Number values of the mapping entry respectively.

3.3.7.2 Non-Allocatable Space Stream

ECMA 167 does not provide for a mechanism to describe defective areas on media or
areas not usable due to allocation outside of the file system. The Non-Allocatable Space
Stream provides a method to describe space not usable by the file system. The Non-
Allocatable Space Stream shall be recorded only on volumes with a Sparable Partition
Map recorded.

The Non-Allocatable Space Stream shall be generated at format time. All space indicated
by the Non-Allocatable Space Stream shall also be marked as allocated in the free
Unallocated Space Bitmap or Table. The Non-Allocatable Space Stream shall be
recorded as a ramed-System Stream in the System Stream Directory of the File Set
Descriptor. The System Stream name shall be:

“*UDF Non-Allocatable Space”

upr2.60 DRAFTI12z DRAFT12z 91 DRAFT12z DRAFT12z February 28, 2005

The stream shall be marked with the attributes Metadata (bit 4 of file characteristics set to
ONE) and System (bit 10 of ICB Tag flags field set to ONE). The stream's Allocation
Descriptors shall identify all non-allocatable packets. The Allocation Descriptors shall
have allocation type 1 (allocated but not recorded). The Information Length in the File
Entry of this stream shall be zero; so all Allocation Descriptors are in the file tail. This
stream shall include both defective packets found at format time and space allocated for
sparing at format time.

3.3.7.3 Power Calibration Stream

One of the potential limitations on the effective use of the packet-write capabilities of
CD-Recordable drives is the limited number (100) of power calibration areas available on
current CD-R media. These power calibration areas are used to establish the appropriate
power calibration settings with which data can be successfully and reliably written to the
CD-R disc currently in the drive. The appropriate settings for a specific drive can vary
significantly from disc to disc, between two different drives of the same make and model,
and even using the same disc, drive and system configuration, but under different
environmental conditions.

Because of this, most current CD-R drives recalibrate themselves the first time a write is
attempted after a media change has occurred. This imposes no restriction on recording to
discs using the disc-at-once or track-at-once modes, since in each of these modes the disc
will fill (either by consuming the total available data capacity or total number of
recordable tracks) in less than 100 separate writes. When using packet-write though, the
disc could be written to thousands of times over an extended period before the disc is full.

Suppose, for instance, one wanted to incrementally back-up any new and/or modified
files at the end of each work day (though the drive might also be used intermittently to do
other projects during the day). These back-ups may require writing as little as a megabyte
(or even less) each day. If one of the power calibration areas is used to calibrate the drive
before writing to the disc every day, within five months the power calibration areas will
all have been used, but only a small fraction of the total disc capacity will have been
consumed. It is likely that such a result would be both unexpected and unacceptable to
the user of such a product.

The industry is attempting to provide ways to reduce the frequency with which the power
calibration area of a CD-Recordable disc must be used. At least one current CD-R drive
model tries to remember the power calibration values last used for recording data on each
of a small number of recently encountered discs. Most CD-Recordable drives provide a
mechanism for the host software to retrieve from the drive the most recent power
calibration settings used by the drive to record data on the current disc, and to restore and
use such information at some future time.

The Power Calibration Table described herein would be used to store on the disc the

power calibration information thus obtained for future use by compatible
implementations. The table consists of a header followed by a list of records containing

upr2.60 DRAFTI2z DRAFTI12z 92 DRAFTI12z DRAFTI12z February 28, 2005 |

power calibration settings which have been used by various drives and/or hosts, under
various conditions, to record data on this disc, as well as other relevant information which
may be used to determine which of the recorded calibration settings may be appropriate
for use in a future situation. While every effort has been made to anticipate and include
all necessary information to make effective use of the recorded power calibration
information possible, it is up to the individual implementation to determine if, when and
how such information will actually be used.

The Power Calibration Table may be recorded as a System Stream of the File Set
Descriptor according to the rules of 3.3.5. The name of the System Stream shall be as
follows:

“*UDF Power Cal Table”

Implementations that do not support the Power Calibration Table shall not delete this
System Stream. Further, any implementation which supports and/or uses the Power
Calibration Table shall not delete or modify any records from such table which the
implementation, through its use thereof, did not clearly and specifically obsolete or
update.

The stream shall be formatted as follows:

3.3.7.3.1 Power Calibration Table Stream

RBP Length Name Contents
0 32 Implementation Identifier EntityID [UDF
2.1.5]
32 4 Number of Records Uint32 [1/7.1.5]
36 * Power Calibration Table Records bytes

Implementation Identifier:
See UDF section 2.1.5.

Number of Records:
Shall specify the number of records contained in the power calibration table

Power Calibration Table Records:
A series of power calibration table records for drives which have written to this disc.
The length of this table is variable, but shall be a multiple of four bytes. Recording of
data in any unstructured field shall be left justified and padded on the right with #20
bytes.

upr2.60 DRAFTI12z DRAFT12z 93 DRAFT12z DRAFT12z February 28, 2005

Power Calibration Table Record Layout

RBP Length Name Contents
0 2 Record Length Uintl6 [1/7.1.3]
2 2 Drive Unique Area Length [DUA L] Uintl16 [1/7.1.3]
4 32 Vendor ID bytes
36 16 Product ID bytes
52 4 Firmware Revision Level bytes
56 16 Serial Number/Device Unique ID bytes
72 8 Host ID bytes
80 12 Originating TimeStamp Timestamp [1/7.3]
92 12 Updated TimeStamp Timestamp [1/7.3]
104 2 Speed Uint16 [1/7.1.3]
106 6 Power Calibration Values bytes
112 [DUA L] [Drive Unique Area bytes

Record Length — The length of this Power Calibration Table Record in bytes, including
the optional variable length Drive Unique Area. Shall be a multiple of four bytes.

Drive Unique Area Length — The length of the optional Drive Unique Area recorded at
the end of this record in bytes. Shall be a multiple of four bytes.

Vendor ID — The Vendor ID reported by the drive.
Product ID — The Product ID reported by the drive.
Firmware Revision Level — The Firmware Revision Level reported by the drive.

Serial Number/Device Unique ID — A serial number or other unique identifier for the
specific drive, of the model specified by the vendor and product Ids given, which has
successfully used the power calibration values reported herein to record data on this disc.

Host ID — The host serial number, ethernet ID, or other value (or combination of values)
used by an implementation to identify the specific host computer to which the drive was
attached when it successfully used the power calibration values reported herein to record
data on this disc. An implementation shall attempt to provide a unique value for each
host, but is not required to guarantee the value’s uniqueness.

upr2.60 DRAFTI12z DRAFT12z 94 DRAFT12z DRAFT12z February 28, 2005

Originating TimeStamp — The date and time at which the power calibration values
recorded herein were initially verified to have been successfully used.

Updated TimeStamp — The date and time at which the power calibration values recorded
herein were most recently verified to have been successfully used.

Speed — The recording speed, as reported by the drive, at which power calibration values
recorded herein were successfully used. This value is the number of kilobytes per second
(bytes per second / 1000) that the data was written to the disc by the drive (truncating any
fractions). For example, a speed of 176 means data was written to the disc at 176
Kbytes/second, which is the basic CD-DA (Digital Audio) data rate (a.k.a. “1X” for
CD-DA). A speed of 353 means data was written to the disc at 353 Kbytes/second, or
twice the basic CD-DA data rate (a.k.a. “2X” for CD-DA). CD-ROM recording rates
should be adjusted upward (roughly 15%) to the corresponding CD-DA rates to determine
the correct speed value (e.g. A “1X” CD-ROM data rate should be recorded as a “1X”
CD-DA, which is a speed of 176). Note that these are raw data rates and do not reflect all
overhead resulting from (additional) headers, error correction data, etc.

Power Calibration Values — The vendor-specific power calibration values reported by the
drive.

Drive Unique Area — Optional area for recording unrestricted information unique to the
drive (such as drive operating temperature), which certain implementations may use to
enhance the use of the recorded power calibration information or the operation of the
associated drive. The drive manufacturer shall define recording of data in this field. This
area shall be an integral multiple of four bytes in length.

3.3.7.4 UDF Backup Time
The name of this System Stream shall be set to:

“*UDF Backup”

This stream shall have the following contents, which should be embedded in the

ICB:
UDF Backup Time
RBP Length Name Contents
0 12 Backup Time Timestamp

Backup Time is the latest time that a backup of this volume was performed.

upr2.60 DRAFTI12z DRAFT12z 95 DRAFT12z DRAFT12z February 28, 2005

3.3.8 UDF Defined Non-System Streams

This section defines the following non-system streams:

Stream Name Stream Location Metadata Flag
“*UDF Macintosh Resource Fork” Any file 0
“*UDF OS/2 EA” Any file or directory 0
“*UDF NT ACL” Any file or directory 0
“*UDF UNIX ACL” Any file or directory 0

3.3.8.1 Macintosh Resource Fork Stream

Because the Resource Fork is referenced by an explicit interface, UDF implementations
are not provided the authoritative name for this stream. For the purpose of interchange,
the name shall be set to:

“*UDF Macintosh Resource Fork”

The Metadata bit in the File Characteristics field of the File Identifier Descriptor shall be
set to 0 to indicate that the existence of this file should be made known to clients of a
platform’s file system interface.

3.3.8.2 OS/2 EA Stream
All OS/2 definable extended attributes shall be stored as a Named Stream whose name

shall be set to:
“*UDF OS/2 EA”

The OS2EA Stream contains a table of OS/2 Full EAs (FEA) as shown below.

FEA format
RBP | Length Name Contents
0 1 Flags Uint8
1 1 Length of Name (=L N) Uint8
2 2 Length of Value (=L V) Uint16
4 L N Name bytes
4+L N LV Value bytes

For a complete description of Full EAs (FEA) please reference the following IBM
document:

“Installable File System for OS/2 Version 2.0
0S/2 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

upr2.60 DRAFTI12z DRAFT12z 96 DRAFT12z DRAFT12z February 28, 2005

3.3.8.3 Access Control Lists

Certain operating systems support the concept of Access Control Lists (ACLs) for
enforcing file access restrictions. In order to facilitate support for ACL’s UDF has
defined a set of system level Named Streams, whose purpose is to store the ACL
associated with a given file object.

ACLs under UDF are stored as Named Streams, following the rules of section 3.3.5. The
contents of the Named Stream ACL shall be opaque and are not defined by this
document. Interpretation of the contents of the named ACL shall be left to the operating
system for which the ACL is intended. The following names shall be used to identify the
ACLs and shall be reserved. These names shall not be used for application named
streams.

“*UDF NT ACL”

This name shall identify the named stream ACL for the Windows NT operating system.
“*UDF UNIX ACL”

This name shall identify the named stream ACL for the UNIX operating system.

upr2.60 DRAFTI12z DRAFT12z 97 DRAFT12z DRAFT12z February 28, 2005

4. User Interface Requirements
4.1 Part 3 - Volume Structure

Part 3 of ECMA 167 contains various Identifiers that - depending upon the
implementation - may have to be presented to the user.

o Volumeldentifier

o VolumeSetldentifier

e LogicalVolumeldentifier

e FileSetldentifier

These identifiers, which are stored in CS0, may have to go through some form of
translation to be displayable to the user. Therefore when an implementation must
perform an OS specific translation on the above listed identifiers the
implementation shall use the algorithms described in section 4.2.2.1.

C source code for the translation algorithms is found in appendix 6.7 of this
document.

4.2 Part 4 - File Structuressstem

4.2.1 ICB Tag

struct icbtag { /* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uint16 StrategyType;
byte StrategyParameter[2];
Uintl6 MaximumNumberofEntries;
byte Reserved; /* ==#00 */
Uint8 FileType;
Lb_addr ParentICBLocation;
Uint16 Flags;
}

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the following
values in this field shall result in an Access Denied error condition under non-
UNIX operating system environments:

File Type values — 0 (Unknown), 6 (block device), 7 (character device), 9
(FIFO), and 10 (C_ISSOCK).

Any open/close/read/write requests to a file of type 12 (Symbolic Link) shall
access the file/directory to which the symbolic link is pointing.

upr2.60 DRAFTI12z DRAFT12z 98 DRAFT12z DRAFT12z February 28, 2005

4.2.2 File Identifier Descriptor

struct FileldentifierDescriptor { /* ECMA 167 4/14.4 */
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 LengthofFileldentifier;
struct long ad ICB;
Uint16 LengthoflmplementationUse;
byte ImplementationUse[];
char Fileldentifier|];
byte Padding([];
}

4.2.2.1 char Fileldentifier[]
Since most operating systems have their own specifications as to characteristics of
a legal Fileldentifier, this becomes a problem with interchange. Therefore since
all implementations must perform some form of Fileldentifier translation it would
be to the users advantage if all implementations used the same algorithm.

The problems with Fileldentifier translations fall within one or more of the
following categories:

e Name Length - Most operating systems have some fixed limit for
the length of a File Identifier.

e Invalid Characters - Most operating systems have certain
characters considered as being illegal within a file identifier name.

e Displayable Characters - Since UDF supports the Unicode
character set standard characters within a file identifier may be
encountered which are not displayable on the receiving system.

e Case Insensitive - Some operating systems are case insensitive in
regards to file identifiers. For example OS/2 preserves the original
case of the file identifier when the file is created, but uses a case
insensitive operations when accessing the file identifier. In OS/2
“Abc” and “ABC” would be the same file name.

e Reserved Names - Some operating systems have certain names that
cannot be used for a file identifier name.

The following sections outline the Fileldentifier translation algorithm for each
specific operating system covered by this document. This algorithm shall be used
by all OSTA UDF compliant implementations. The algorithm only applies when
reading an illegal Fileldentifier. The original Fileldentifier name on the media
should not be modified. This algorithm shall be applied by any implementation
that performs some form of Fileldentifier translation to meet operating system file
identifier restrictions.

upr2.60 DRAFTI12z DRAFT12z 99 DRAFT12z DRAFT12z February 28, 2005

All OSTA UDF compliant implementations shall support the UDF translation
algorithms, but may support additional algorithms. If multiple algorithms are
supported the user of the implementation shall be provided with a method to
select the UDF translation algorithms. It is recommended that the default
displayable algorithm be the UDF defined algorithm.

The primary goal of these algorithms is to produce a unique file name that meets
the specific operating system restrictions without having to scan the entire
directory in which the file resides.

C source code for the following algorithms may be found in appendix 6.7 of this |
document.

NOTE 1: In the definition of the following algorithms anytime a d-character is |
specified in quotes, the Unicode hexadecimal value will also be specified.
The following algorithms reference “CS0 Hex representation”, which
corresponds to using the Unicode values #0030 - #0039, and #0041 - #0046
to represent a value in hex. In addition, the following algorithms reference
“CS0 Base41 representation”, which corresponds to augmenting the CS0
Hex representation to use #0047 - #005A, #0023, #005F, #007E, #002D
and #0040 to represent digits 16-40.

The following algorithms could still result in name-collisions being reported to
the user of an implementation. However, the rationale includes the need for
efficient access to the contents of a directory and consistent name translations
across logical volume mounts and file system driver implementations, while
allowing the user to obtain access to any file within the directory (through
possibly renaming a file).

Some name transformations in section 4.2.2.1 result in two namespaces being
visible at once in a given directory — the space of primary names, those which are
physically recorded in a directory; and the space of generated names, those which
are derived from the primary names. This is distinct from transformations that
take an otherwise illegal name and render it into a legal form, the illegal name not
being considered part of the namespace of the directory on that system. For UDF
implementations using such transforms, the implementation should search a
directory in two passes: pass one should match against the primary namespace and
pass two should match against the generated namespace. A match in the primary
namespace should be preferred to a match against the generated namespace.

Definitions:

A Fileldentifier shall be considered as being composed of two parts, a file name
and file extension.

upr2.60 DRAFTI12z DRAFT12z 100 DRAFT12z DRAFT12z February 28, 2005

The character .” (#002E) shall be considered as the separator for the Fileldentifier
of a file; characters appearing subsequent to the last ‘.” (#002E) shall be
considered as constituting the file extension if and only if it is less than or equal to
5 characters in length, otherwise the file extension shall not exist. Characters
appearing prior to the file extension, excluding the last . (#002E), shall be
considered as constituting the file name.

NOTE 2: Even though OS/2, Macintosh, and UNIX do not have an official

concept of a filename extension it is common file naming conventions
to end a file with “.” Followed by a 1 to 5 character extension.
Therefore the following algorithms attempt to preserve the file
extension up to a maximum of 5 characters.

4.2.2.1.1 MS-DOS

Due to the restrictions imposed by the MS DOS operating system environments
on the Fileldentifier associated with a file the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating system
environments.

UDF 2.60

Exception: Implementations on non-MS-DOS systems that may normally provide
dual namespaces (8.3 and non-8.3) using this transformation may omit or provide
a mechanism for disabling its use.

Restrictions: The file name component of the Fileldentifier shall not exceed 8
characters. The file extension component of the Fileldentifier shall not exceed 3
characters.

1.

Fileldentifier Lookup: Upon request for a “lookup” of a Fileldentifier, a case-
insensitive comparison shall be performed.

Validate Fileldentifier: If the Fileldentifier is a valid MS-DOS file identifier
then do not apply the following steps.

3. Remove Spaces: All embedded spaces within the identifier shall be removed.

Invalid Characters: A Fileldentifier that contains characters considered invalid
within a file name or file extension (as defined above), or not displayable in
the current environment, shall have them translated into “_” (#005F). (the File
Identifier on the media is NOT modified). Multiple sequential invalid or non-
displayable characters shall be translated into a single “ (#005F) character.
Reference appendix 6.7.1 on invalid characters for a complete list.

Leading Periods: In the event that there do not exist any characters prior to the
first “.” (#002E) character, leading “.”" (#002E) characters shall be
disregarded up to the first non “.” (#002E) character, in the application of this
heuristic.

«“

Multiple Periods: In the event that the Fileldentifier contains multiple “.
(#002E) characters, all characters appearing subsequent to the last “.” (#002E)

DRAFTI12z DRAFTI12z 101 DRAFTI12z DRAFTI12z February 28,2005

shall be considered as constituting the file extension if and only if it is less
than or equal to 5 characters in length, otherwise the file extension shall not
exist. Characters appearing prior to the file extension, excluding the last .’
(#002E), shall be considered as constituting the file name. All embedded “.”
(#002E) characters within the file name shall be removed.

Long Extension: In the event that the number of characters constituting the file
extension at this step in the process is greater than 3, the file extension shall be
regarded as having been composed of the first 3 characters amongst the
characters constituting the file extension at this step in the process.

Long Filename: In the event that the number of characters constituting the file
name at this step in the process is greater than 8, the file name shall be
truncated to 4 characters.

Fileldentifier CRC: Since through the above process character information
from the original Fileldentifier is lost the chance of creating a duplicate
Fileldentifier in the same directory increases. To greatly reduce the chance of
having a duplicate Fileldentifier the file name shall be modified to contain a
CRC of the original Fileldentifier. The file name shall be composed of the
first 4 characters constituting the file name at this step in the process, followed
by the separator ‘#’ (#0023), followed by the 3 digit CSO Base41
representation of the 16-bit CRC of the UNICODE expansion of the original
filename.

10. The new file identifier shall be translated to all upper case.

4.2.2.1.2 0S/2

Due to the restrictions imposed by the OS/2 operating system environment, on the
Fileldentifier associated with a file the following methodology shall be employed
to handle Fileldentifier(s) under the above-mentioned operating system
environment:

UDF 2.60

1.

Fileldentifier Lookup: Upon request for a “lookup” of a Fileldentifier, a
case-sensitive comparison may be performed. If the -case-sensitive
comparison is not done or if it fails, a case-insensitive comparison shall be
performed.

Validate Fileldentifier: If the Fileldentifier is a valid OS/2 file identifier then
do not apply the following steps.

Invalid Characters: A Fileldentifier that contains characters considered invalid
within an OS/2 file name, or not displayable in the current environment shall
have them translated into “ > (#005F). Multiple sequential invalid or non-
displayable characters shall be translated into a single “ (#005F) character.
Reference appendix 6.7.2 on invalid characters for a complete list.

Trailing Periods and Spaces: All trailing “.” (#002E) and “ * (#0020) shall be
removed.

DRAFTI12z DRAFTI12z 102 DRAFTI12z DRAFTI12z February 28,2005

5. Fileldentifier CRC: Since through the above process character information
from the original Fileldentifier is lost the chance of creating a duplicate
Fileldentifier in the same directory increases. To greatly reduce the chance of
having a duplicate Fileldentifier the file name shall be modified to contain a
CRC of the original Fileldentifier.

If there is a file extension then the new Fileldentifier shall be composed of up
to the first (254 — (length of (new file extension) + 1 (for the .”)) — 5 (for the
#CRC)) characters constituting the file name at this step in the process,
followed by the separator ‘#’ (#0023); followed by a 4 digit CSO Hex
representation of the 16-bit CRC of the original CSO Fileldentifier, followed
by ‘.” (#002E) and the file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (254 — 5 (for the #CRC)) characters constituting
the file name at this step in the process. Followed by the separator ‘#’
(#0023); followed by a 4 digit CSO Hex representation of the 16-bit CRC of
the original CSO Fileldentifier.

4.2.2.1.3 Macintosh

UDF 2.60

Due to the restrictions imposed by the Macintosh operating system environment,
on the Fileldentifier associated with a file the following methodology shall be
employed to handle Fileldentifier(s) under the above-mentioned operating system
environment:

1. Fileldentifier Lookup: Upon request for a “lookup” of a Fileldentifier, a
case-sensitive comparison may be performed. If the -case-sensitive
comparison is not done or if it fails, a case-insensitive comparison shall be
performed.

2. Validate Fileldentifier: If the Fileldentifier is a valid Macintosh file identifier
then do not apply the following steps.

3. Invalid Characters: A Fileldentifier that contains characters considered invalid
within a Macintosh file name, or not displayable in the current environment,
shall have them translated into “ ™ (#005F). Multiple sequential invalid or
non-displayable characters shall be translated into a single “ ” (#005F)
character. Reference appendix 6.7.2 on invalid characters for a complete list

4. Long Fileldentifier: In the event that the number of characters constituting the
Fileldentifier at this step in the process is greater than 31 (maximum name
length for the Macintosh operating system), the new Fileldentifier will consist
of the first 26 characters of the Fileldentifier at this step in the process.

5. Fileldentifier CRC: Since through the above process character information
from the original Fileldentifier is lost the chance of creating a duplicate
Fileldentifier in the same directory increases. To greatly reduce the chance of
having a duplicate Fileldentifier the file name shall be modified to contain a
CRC of the original Fileldentifier.

DRAFTI12z DRAFTI12z 103 DRAFTI12z DRAFTI12z February 28,2005

If there is a file extension then the new Fileldentifier shall be composed of up
to the first (31 — (length of (new file extension) + 1 (for the °.”)) — 5 (for the
#CRC)) characters constituting the file name at this step in the process,
followed by the separator ‘#’ (#0023); followed by a 4 digit CSO Hex
representation of the 16-bit CRC of the original CSO Fileldentifier, followed
by “.” (#002E) and the file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (31 — 5(for the #CRC)) characters constituting the
file name at this step in the process. Followed by the separator ‘#’ (#0023);
followed by a 4 digit CSO Hex representation of the 16-bit CRC of the original
CSO0 Fileldentifier.

4.2.2.1.4 Windows 95 & Windows NT

Due to the restrictions imposed by the Windows 95 and Windows NT operating
system environments, on the Fileldentifier associated with a file the following
methodology shall be employed to handle Fileldentifier(s) under the above-
mentioned operating system environment:

UDF 2.60

1.

Fileldentifier Lookup: Upon request for a “lookup” of a Fileldentifier, a
case-sensitive comparison may be performed. If the case-sensitive
comparison is not done or if it fails, a case-insensitive comparison shall be
performed.

Validate Fileldentifier: If the Fileldentifier is a valid file identifier for
Windows 95 or Windows NT then do not apply the following steps.

Invalid Characters: A Fileldentifier that contains characters considered invalid
within a file name of the supported operating system, or not displayable in the
current environment shall have them translated into “ ” (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into a
single “ ” (#005F) character. Reference appendix 6.7.2 on invalid characters
for a complete list.

Trailing Periods and Spaces: All trailing “.” (#002E) and “ * (#0020) shall be
removed.

Fileldentifier CRC: Since through the above process character information
from the original Fileldentifier is lost the chance of creating a duplicate
Fileldentifier in the same directory increases. To greatly reduce the chance of
having a duplicate Fileldentifier the file name shall be modified to contain a
CRC of the original Fileldentifier.

If there is a file extension then the new Fileldentifier shall be composed of up
to the first (255 — (length of (new file extension) + 1 (for the .”)) — 5 (for the
#CRC)) characters constituting the file name at this step in the process,
followed by the separator ‘#’ (#0023); followed by a 4 digit CSO Hex
representation of the 16-bit CRC of the original CSO Fileldentifier, followed
by ‘.” (#002E) and the file extension at this step in the process.

DRAFTI12z DRAFTI12z 104 DRAFTI12z DRAFTI12z February 28,2005

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (255 — 5 (for the #CRC)) characters constituting
the file name at this step in the process. Followed by the separator ‘#’
(#0023); followed by a 4 digit CSO Hex representation of the 16-bit CRC of
the original CSO Fileldentifier.

4.2.2.1.5 UNIX

Due to the restrictions imposed by UNIX operating system environments, on the
Fileldentifier associated with a file the following methodology shall be employed
to handle Fileldentifier(s) under the above-mentioned operating system
environment:

UDF 2.60

1.

Fileldentifier Lookup: Upon request for a “lookup” of a Fileldentifier, a case-
sensitive comparison shall be performed.

Validate Fileldentifier: If the Fileldentifier is a valid UNIX file identifier for
the current system environment then do not apply the following steps.

Invalid Characters: A Fileldentifier that contains characters considered invalid
within a UNIX file name for the current system environment, or not
displayable in the current environment shall have them translated into
(#005E). Multiple sequential invalid or non-displayable characters shall be
translated into a single “ ” (#005E) character. Reference appendix 6.7.2 on
invalid characters for a complete list

(1A

Long Fileldentifier: In the event that the number of characters constituting the
Fileldentifier at this step in the process is greater than MAXNameLength
(maximum name length for the specific UNIX operating system), the new
Fileldentifier will consist of the first MAXNameLength-5 characters of the
Fileldentifier at this step in the process.

Fileldentifier CRC: Since through the above process character information
from the original Fileldentifier is lost the chance of creating a duplicate
Fileldentifier in the same directory increases. To greatly reduce the chance of
having a duplicate Fileldentifier the file name shall be modified to contain a
CRC of the original Fileldentifier.

If there is a file extension then the new Fileldentifier shall be composed of up
to the first (MAXNameLength — (length of (new file extension) + 1 (for the °.))
— 5 (for the #CRC()) characters constituting the file name at this step in the
process, followed by the separator ‘#’ (#0023); followed by a 4 digit CSO Hex
representation of the 16-bit CRC of the original CSO Fileldentifier, followed
by ‘.” (#002E) and the file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (MAXNameLength — 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘#’ (#0023); followed by a 4 digit CSO Hex representation of ef-the
16-bit CRC of the original CSO Fileldentifier.

DRAFTI12z DRAFTI12z 105 DRAFTI12z DRAFTI12z February 28,2005

4.2.2.1.6 0S/400
Due to the restrictions imposed by OS/400 operating system environments, on the
Fileldentifier associated with a file the following methodology shall be employed
to handle Fileldentifier(s) under the above mentioned operating system
environment.

1.

Fileldentifier Lookup: Upon request for a “lookup” of a Fileldentifier, a case-
sensitive comparison may be performed. If the case-sensitive comparison is
not done or if it fails, a case-insensitive comparision shall be performed.

Validate Fileldentifier: If the Fileldentifier is a valid file identifier for OS/400
then do not apply the following steps.

Invalid Characters: A Fileldentifier that contains characters considered invalid
within an OS/400 file name, or not displayable in the current environment
shall have them translated into “ (#005F). Multiple sequential invalid or
non-displayable characters shall be translated into a single “ ” (#005F)
character.

Trailing Spaces: All trailing “ “(#0020) shall be removed.

Fileldentifier CRC: Since through the above process character information
from the original Fileldentifier is lost the chance of creating a duplicate
Fileldentifier in the same directory increases. To greatly reduce the chance of
having a duplicate Fileldentifier the filename shall be modified to contain a
CRC of the original Fileldentifier.

If there is a file extension then the new Fileldentifier shall be composed of up
to the first (255 — (length of (new file extension) + 1 (for the °.”)) — 5 (for the
#CRC)) characters constituting the file name at this step in the process,
followed by the separator “#” (#0023); followed by a 4 digit CSO Hex
representation of the 16-bit CRC of the original CSO Fileldentifier, followed
by “.” (#002E) and the file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be
composed of up to the first (255 — 5 (for the new #CRC)) characters
constituting the file name at this step in the process. Followed by the separator
“#” (#0023); followed by a 4 digit CSO hex representation of the 16-bit CRC
of the original CS0 Fileldentifier.

NOTE: Invalid characters for OS/400 are only the forward slash “/” (#002F)

UDF 2.60

character. Non-displayable characters for OS/400 are any characters
that do not translate to code page 500 (EBCDIC Multilingual).

DRAFTI12z DRAFTI12z 106 DRAFTI12z DRAFTI12z February 28,2005

5. Informative

5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors
described in ECMA 167.

Descriptor Length in bytes
Anchor Volume Descriptor Pointer 512
Volume Descriptor Pointer 512
Implementation Use Volume Descriptor 512
Primary Volume Descriptor 512
Partition Descriptor 512
Logical Volume Descriptor no max
Unallocated Space Descriptor no max
Terminating Descriptor 512
Logical Volume Integrity Descriptor no max
File Set Descriptor 512
File Identifier Descriptor Maximum of a
Logical Block Size
Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36
File Entry Maximum of a
Logical Block Size
Extended File Entry Maximum of a
Logical Block Size
Extended Attribute Header Descriptor 24
Unallocated Space Entry Maximum of a
Logical Block Size
Space Bitmap-Map Descriptor no max
Partition Integrity Entry N/A
Sparing Table no max

5.2 Using Implementation Use Areas

5.2.1 Entity Identifiers

Refer to section 2.1.5 on Entity Identifiers defined earlier in this document.

upr2.60 DRAFTI12z DRAFT12z 107 DRAFT12z DRAFT12z February 28, 2005

5.2.2 Orphan Space

Orphan space may exist within a logical volume, but it is not recommended since
some type of logical volume repair facility may reallocate it. Orphan space is
defined as space that is not directly or indirectly referenced by any of the non-
implementation use descriptors defined in ECMA 167.

NOTE: Any allocated extent for which the only reference resides within an
implementation use field is considered orphan space.

5.3 Boot Descriptor
T.B.D.

5.4 Clarification of Unrecorded Sectors
ECMA 167 section 3/8.1.2.2 states

Any unrecorded constituent sector of a logical sector shall be interpreted as containing all
#00 bytes. Within the sector containing the last byte of a logical sector, the interpretation
of any bytes after that last byte is not specified by this Part.

A logical sector is unrecorded if the standard for recording allows detection that a sector
has been unrecorded and all of the logical sector’s constituent sectors are unrecorded. A
logical sector should either be completely recorded or unrecorded.

For the purposes of interchange, UDF must clarify the correct interpretation of
this section.

This part specifies that an unrecorded sector logically contains #00 bytes.

However, the converse argument that a sector containing only #00 bytes is
unrecorded is not implied, and such a sector is not an “unrecorded” sector for the
purposes of ECMA 167. Only the standard governing the recording of sectors on |
the media can provide the rule for determining if a sector is unrecorded. For
example, a blank check condition would provide correct determination for a
WORM device.

The following additional ECMA 167 sections reference the rule defined 3/8.1.2.2:
3/8.4.2,3/8.8.2,4/3.1,4/8.3.1 and 4/8.10. By derivation, paragraph 6.6 (ICB
Strategy Type 4096) is also affected. Since unrecorded sectors/blocks are
terminating conditions for sequences of descriptors, an implementation must be
careful to know that the underlying storage media provides a notion of unrecorded
sectors before assuming that not writing to a sector is detectable. Otherwise,

reliance on the incorrect converse argument mentioned above may result. Explicit
terminating descriptors must be used when an appropriate unrecorded sector |
would be undetectable.

upr2.60 DRAFTI12z DRAFT12z 108 DRAFT12z DRAFT12z February 28, 2005

6. Appendices

6.1 UDF Entity Identifier Definitions

Entity Identifier Description

“*OSTA UDF Compliant” Indicates the contents of the specified logical volume or file set
is compliant with domain defined by this document.

“*UDF LV Info” Contains additional Logical Volume identification information.

“*UDF FreeEASpace” Contains free unused space within the implementation extended
attributes space.

“*UDF FreeAppEASpace” Contains free unused space within the application extended
attributes space.

“*UDF DVD CGMS Info” Contains DVD Copyright Management Information

“*UDF OS/2 EALength” Contains OS/2 extended attribute length.

“*UDF Mac Volumelnfo” Contains Macintosh volume information.

“*UDF Mac FinderInfo” Contains Macintosh finder information.

“*UDF Virtual Partition”

Describes UDF Virtual Partition

“*UDF Sparable Partition”

Describes UDF Sparable Partition

UDF 2.60

“*UDF OS/400 DirInfo” 08S/400 Extended directory information
“*UDF Sparing Table” Contains information for handling defective areas on the media
“*UDF Metadata Partition” Describes UDF Metadata Partition

DRAFTI12z DRAFTI12z 109 DRAFTI12z DRAFTI12z February 28,2005

6.2 UDF Entity Identifier Values

Entity Identifier Byte Value

"*OSTA UDF Compliant" #2A, #4F, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,
#6D, #70, #6C, #69, #61, #6E, #74

“*UDF LV Info” #2A, #55, #44, #46, #20, #4C, #56, #20, #49, #6E, #66, #6F

"*UDF FreeEASpace" #2A, #55, #44, #46, #20, #46, #72, #65, #65, #45, #41, #53,
#70, #61, #63, #65

"*UDF FreeAppEASpace" #2A, #55, #44, #46, #20,
#46, #72, #65, #65, #41, #70, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info” #2A, #55, #44, #46, #20, #44, #56, #44, #20,
#43, #47, #4D, #53, #20, #49, #6E, #66, #6F

“*UDF OS/2 EALength” #2A, #55, #44, #46, #20, #4F, #53, #2F, #32, #20, #45, #41,
#4C, #65, #6E, #67, #74, #68

“*UDF 0S/400 DirInfo” #2A, #55, #44, #46, #20, #4F, #53, #2F, #34, #30, #30, #20,
#44, #69, #72, #49, #6E, #66, #6F

"*UDF Mac Volumelnfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,
#75, #6D, #65, #49, #6E, #66, #6F

"*UDF Mac FinderInfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69, #6E,

#64, #65, #72, #49, #6E, #66, #6F

“*UDF Virtual Partition”

#2A, #55, #44, #46, #20, #56, #69, #12, #74, #75, #61, #6C,
#20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparable Partition”

#2A, #55, #44, #46, #20, #53, #70, #61, #72, #61, #62, #6C,
#0635, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparing Table”

#H2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #6E, #67,
#20, #54, #61, #62, #6C, #65

“*UDF Metadata Partition”

#2A, #55, #44, #46, #20, #4D, #65, #74, #61, #64, #61, #74,
#61, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

UDF 2.60

DRAFTI12z DRAFTI12z

110 DRAFT12z DRAFT12z February 28, 2005

6.3 Operating System Identifiers

The following tables-sections define the current allowable values for the OS Class and OS
Identifier fields in the Identifier Suffix of Entity Identifiers, see 2.1.5.3.

For the most up to date list of values for OS Class and OS Identifier please see the most
recent UDF specification. On the OSTA web site, information provided by ISVs who
have sent a Developer Registration Form to OSTA can be found, see 6.18.

NOTE: If you wish to add to the OS Class and OS Identifier definitions in the next
sections, please contact the OSTA UDF Committee Chairman or post your
proposal on the OSTA UDF email reflector, see the OSTA address information
listed in POINTS OF CONTACT on the first page of this document.

6.3.1 OS Class

The OS Class field will identify under which class of operating system the specified
descriptor was recorded. The valid values for this field are as follows:

Value Operating System Class
0 Undefined
1 DOS
2 0S/2
3 Macintosh OS
4 UNIX
5 Windows 9x
6 Windows NT
7 0S/400
8 BeOS
9 Windows CE
10-255 | Reserved

upr2.60 DRAFTI12z DRAFT12z 111 DRAFT12z DRAFT12z February 28, 2005

6.3.2 OS Identifier

The OS Identifier field will identify under which operating system the specified descriptor

was recorded. The valid values for this field are as follows:

OS OS Operating System Identified
Class | Identifier

0 AnyValue | {Jndefined

1 0 DOS/Windows 3.x

2 0 0S/2

3 0 Macintosh OS 9 and older.

3 1 Macintosh OS X and later releases.

4 0 UNIX - Generic

4 1 UNIX - IBM AIX

4 2 UNIX - SUN OS / Solaris

4 3 UNIX - HP/UX

4 4 UNIX - Silicon Graphics Irix

4 5 UNIX - Linux

4 6 UNIX - MKLinux

4 7 UNIX - FreeBSD

4 8 UNIX - NetBSD

5 0 Windows 9x — generic (includes Windows 98/ME)

6 0 Windows NT — generic (includes Windows
2000,XP,Server 2003, and later releases based on the
same code base)

7 0 0S/400

8 0 BeOS - generic

9 0 Windows CE - generic

upr2.60 DRAFTI12z DRAFT12z 112 DRAFT12z DRAFT12z February 28, 2005

6.4 OSTA Compressed Unicode Algorithm

/***
* OSTA compliant Unicode compression, uncompression routines.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/
#include <stddef.h>

/***
* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode t needs to be
* unsigned 16-bit.
*
typedef unsigned short unicode t;
typedef unsigned char byte;

/***
* Takes an OSTA CSO compressed unicode name, and converts

it to Unicode.

The Unicode output will be in the byte order

that the local compiler uses for 16-bit values.

NOTE: This routine only performs error checking on the compID.

It is up to the user to ensure that the unicode buffer is large
enough, and that the compressed unicode name is correct.

RETURN VALUE

F ook o ok F F X X E

The number of unicode characters which were uncompressed.
A -1 is returned if the compression ID is invalid.

*

*/
int UncompressUnicode (
int numberOfBytes, /* (Input) number of bytes read from media. */
byte *UDFCompressed, /* (Input) bytes read from media. */
unicode t *unicode) /* (Output) uncompressed unicode characters. */

unsigned int compID;
int returnValue, unicodeIndex, byteIndex;

/* Use UDFCompressed to store current byte being read. */
compID = UDFCompressed[0];

/* First check for valid compID. */
if (compID != 8 && compID != 16)

returnvValue = -1;

else

{

unicodeIndex = 0;
byteIndex = 1;

/* Loop through all the bytes. */
while (byteIndex < numberOfBytes)

if (compID == 16)
/*Move the first byte to the high bits of the unicode char. */
unicode [unicodeIndex] = UDFCompressed [byteIndex++] << 8;
else
unicode [unicodeIndex] = 0;

if (byteIndex < numberOfBytes)

/*Then the next byte to the low bits. */
unicode [unicodeIndex] |= UDFCompressed [byteIndex++];

upr2.60 DRAFTI12z DRAFT12z 113 DRAFT12z DRAFT12z February 28, 2005

unicodeIndex++;

returnValue = unicodeIndex;

}

return (returnvalue) ;

R e e R LR ey
* DESCRIPTION:

* Takes a string of unicode wide characters and returns an OSTA CSO

* compressed unicode string. The unicode MUST be in the byte order of

* the compiler in order to obtain correct results. Returns an error

* if the compression ID is invalid.

*

* NOTE: This routine assumes the implementation already knows, by

* the local environment, how many bits are appropriate and

* therefore does no checking to test if the input characters fit

* into that number of bits or not.

*

* RETURN VALUE

*

* The total number of bytes in the compressed OSTA CSO string,

* including the compression ID.

* A -1 is returned if the compression ID is invalid.

*/

int CompressUnicode (

int numberOfChars, /* (Input) number of unicode characters. */
int compID, /* (Input) compression ID to be used. */
unicode t *unicode, /* (Input) unicode characters to compress. */
byte *UDFCompressed) /* (Output) compressed string, as bytes. */

int byteIndex, unicodeIndex;
if (compID != 8 && compID != 16)
byteIndex = -1; /* Unsupported compression ID ! */

else

{

/* Place compression code in first byte. */
UDFCompressed [0] = compID;

byteIndex = 1;
unicodeIndex = 0;
while (unicodelIndex < numberOfChars)

if (compID == 16)

/* First, place the high bits of the char
* into the byte stream.
*/
UDFCompressed [byteIndex++] =
(unicode [unicodeIndex] & OxXFF00) >> 8;

/*Then place the low bits into the stream. */

UDFCompressed [byteIndex++] = unicode[unicodeIndex] & 0xO00FF;
unicodeIndex++;

}

return (byteIndex) ;

upr2.60 DRAFTI12z DRAFT12z 114 DRAFT12z DRAFT12z February 28, 2005

6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum
used in the TAG descriptors of ECMA 167.

/*
* CRC 010041
*/
static unsigned short crc_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, O0x50A5, 0x60C6, O0x70E7,
0x8108, 0x9129, O0xAl4A, 0xBleB, 0xCl8C, 0xD1AD, OxE1CE, OXF1lEF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, O0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, O0xA35A, 0xD3BD, 0xC39C, OxF3FF, OXE3DE,
0x2462, 0x3443, 0x0420, 0x1401, Ox64E6, 0x74C7, O0x44A4, 0x5485,
OxA56A, 0xB54B, 0x8528, 0x9509, OxXES5EE, OxXF5CF, OxC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, O0xA77A, 0x9719, 0x8738, OxF7DF, OxXE7FE, 0xD79D, O0xC7BC,
0x48C4, Ox58E5, 0x6886, O0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, OxD9ED, OXE98E, OxF9AF, 0x8948, 0x9969, O0xA90A, 0xB92B,
Ox5AF5, Ox4AD4, 0x7AB7, O0x6A96, O0x1A71, O0xO0A50, Ox3A33, O0x2Al2,
O0xDBFD, O0xCBDC, OxXFBBF, OxEB9E, 0x9B79, 0x8B58, O0xBB3B, O0xABlA,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0Ce60, 0x1C41,
OxEDAE, OxFD8F, OxCDEC, 0xDDCD, OxAD2A, 0xBDOB, 0x8D68, 0x9D49,
0x7E97, Ox6EB6, O0xX5ED5, O0x4EF4, Ox3E13, 0x2E32, Ox1E51, O0xO0E70,
OxFF9F, OXEFBE, OxXDFDD, OxCFFC, OxBF1B, OxAF3A, O0x9F59, O0x8F78,
0x9188, O0x81A9, 0xB1CA, OxAlEB, 0xD10C, 0xCl2D, OxF14E, OxXEl6F,
0x1080, 0x00Al1l, 0x30C2, O0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, OxA3FB, O0xB3DA, 0xC33D, 0xD31C, OxE37F, OxXF35E,
0x02B1l, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
OxB5EA, OxA5CB, 0x95A8, 0x8589, OxF56E, O0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
OxA7DB, OxB7FA, 0x8799, 0x97B8, OxE75F, OxF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, OxXF90E, OxE92F, 0x99C8, 0x89E9, O0xB98A, O0xASAB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0O, O0x08El, 0x3882, 0x28A3,
0xCB7D, O0xDB5C, OxXEB3F, OxFB1lE, Ox8BF9, 0x9BD8, OxABBB, O0xBBSA,
0x4A75, O0x5A54, 0x6A37, O0x7Alé, O0xO0AFl, O0x1ADO, Ox2AB3, 0x3A92,
OxFD2E, OxEDOF, 0xDDé6C, 0xCD4D, OxBDAA, O0xAD8B, O0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5Ce64, 0x4C45, 0x3CA2, 0x2C83, O0x1CEO, 0x0CC1,
OxEF1F, OxFF3E, O0xCF5D, O0xDF7C, OxAF9B, OxBFBA, O0x8FD9, O0xO9FF8,
0x6E17, O0x7E36, 0x4E55, Ox5E74, O0x2E93, 0x3EB2, OxO0ED1l, OX1EFO

Vi

unsigned short

cksum (s, n)
register unsigned char *s;
register int n;

register unsigned short crc=0;
while (n-- > 0)
crc = crc_table[(crc>>8 * *s++) & Oxff] * (crc<<8);
return crc;
}

/* UNICODE Checksum */

unsigned short

unicode cksum(s, n)
register unsigned short *s;
register int n;

register unsigned short crc=0;
while (n-- > 0) {
/* Take high order byte first--corresponds to a big endian byte stream. */
crc = crc_table[(crc>>8 * (*s>>8) & Oxff] * (crc<<8);
crc = crc_table[(crc>>8 * (*s++ & Oxff)) & Oxff] * (crc<<8);

}

return crc;

upr2.60 DRAFTI12z DRAFT12z 115 DRAFT12z DRAFT12z February 28, 2005

#ifdef MAIN
unsigned char bytes[] = { 0x70, 0x6A, 0x77 };

main ()
{
unsigned short x;
x = cksum(bytes, sizeof bytes);
printf ("checksum: calculated=%4.4x, correct=%4.4x\en", x, 0x3299);
exit (0) ;

1
#endif

upr2.60 DRAFTI12z DRAFT12z 116 DRAFT12z DRAFT12z February 28, 2005

The CRC table in the previous listing was generated by the following program:

#include <stdio.h>

/*
y

main (argc, argv)
int argc; char *argvl|];
{

a.out 010041 for CRC-CCITT

unsigned long crc, poly;
int n, 1i;

sscanf (argv[1l], "%lo", &poly);
if (poly & Oxf£££0000) {
fprintf (stderr, "polynomial is too large\en") ;

exit (1) ;
!
printf ("/*\en * CRC 0%o\en */\en", poly);
printf ("static unsigned short crc_table[256] = {\en”);
for(n = 0; n < 256; n++){
if(n % 8 == 0)
printf (" ")
crc = n << 8;
for(i = 0; i < 8; i++){
if (crc & 0x8000)
crc = (crc << 1) * poly;
else
crc <<= 1;
} crc &= OXFFFF;
if (n == 255)
printf ("0x%04X ", crc);
else
printf ("0x%04X, ", crc);
if(n % 8 == 7)

printf ("\en") ;

printf ("};\en");
exit (0) ;

All the above CRC code was devised by Don P. Mitchell of AT&T Bell Laboratories and

Ned W. Rhodes of Software Systems Group.

It has been published in "Design and Validation of Computer Protocols,"
Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.
Copyright is held by AT&T.

AT&T gives permission for the free use of the above source code.

upr2.60 DRAFTI12z DRAFT12z 117 DRAFT12z DRAFT12z February 28, 2005

6.6 Algorithm for ICB Strategy Type 4096

This section describes a strategy for constructing an ICB hierarchy. For ICB Strategy
Type 4096 the root ICB hierarchy shall contain 1 direct entry and 1 indirect entry. To
indicate that there is 1 direct entry a 1 shall be recorded as a Uint16 in the
StrategyParameter field of the ICB Tag field. A value of 2 shall be recorded in the
MaximumNumberOfEntries field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also contain 1
direct entry and 1 indirect entry, where the indirect entry specifies the address of another
ICB of the same type. See the figure below:

DE
IE

DE
IE

DE
IE N

NOTE: This strategy builds an ICB hierarchy that is a simple linked list of direct entries.

upr2.60 DRAFTI12z DRAFT12z 118 DRAFT12z DRAFT12z February 28, 2005

6.7 Identifier Translation Algorithms

The following sample source code examples implement the File Identifier translation
algorithms described in this document.

The following basic algorithms may also be used to handle OS specific translations of the
Volumeldentifier, VolumeSetldentifier, LogicalVolumeldentifier and FileSetldentifier.

6.7.1 DOS Algorithm

/* OSTA UDF compliant file name translation routine for DOS and */
/* Windows short namespaces. */
/* Define constants for namespace translation */

#define DOS_NAME LEN 8
#define DOS_EXT LEN 3
#define DOS_LABEL_LEN 11
#define DOS_CRC LEN 4
#define DOS_CRC_MODULUS 41

/* Define standard types used in example code. */
typedef BOOLEAN int;

typedef short INT16;

typedef unsigned short UINT16;

typedef UINT16 UNICODE_CHAR;

#define FALSE 0

#define TRUE 1

static char crcChar[] =

"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ# ~-@";

/* FUNCTION PROTOTYPES */

UNICODE_CHAR UnicodeToUpper (UNICODE CHAR value) ;

BOOLEAN IsFileNameCharLegal (UNICODE CHAR value) ;

BOOLEAN IsVolumeLabelCharLegal (UNICODE CHAR value) ;

INT16 NativeCharLength (UNICODE CHAR value) ;

BOOLEAN IsDeviceName (UNICODE CHAR* name, UINT16 namelen) ;

/***/

/* UDFDOSName () */
/* Translate udfName to dosName using OSTA compliant algorithm. */
/* dosName must be a Unicode string buffer at least 12 characters */
/* in length. */

/***/

UINT16 UDFDOSName (UNICODE CHAR* dosName, UNICODE CHAR* udfName,
?INT16 udfNameLen)

INT16 index;

INT16 targetIndex;

INT16 crcIndex;

INT16 extLen;

INT16 namelen;

INT16 charLen;

INT1l6 overlayBytes;

INT16 bytesLeft;

UNICODE_CHAR current;

BOOLEAN needsCRC;

UNICODE_CHAR ext [DOS_EXT LEN];

needsCRC = FALSE;

/* Start at the end of the UDF file name and scan for a period */
/* ('.'"). This will be where the DOS extension starts (if */
/* any). */

index = udfNameLen;

while (index-- > 0) {

if (udfName [index] == '.'")
break;

if (index < 0) {
/* There name was scanned to the beginning of the buffer */
/* and no extension was found. */

upr2.60 DRAFTI12z DRAFT12z 119 DRAFT12z DRAFT12z February 28, 2005

UDF 2.60

extLen = 0;
namelLen = udfNameLen;

else {
/* A DOS extension was found, process it first. */
extLen = udfNameLen - index - 1;
nameLen = index;
targetIndex = 0;
bytesLeft = DOS_EXT LEN;

while (++index < udfNamelLen && bytesLeft > 0) {

/* Get the current character and convert it to upper */

/* case. */

current = UnicodeToUpper (udfName [index]) ;

if (current == ' ')
/* If a space is found, a CRC must be appended to */
/* the mangled file name. */
needsCRC = TRUE;

else {

/* Determine if this is a valid file name char and */

/* calculate its corresponding BCS character byte */

/* length (zero if the char is not legal or */

/* undisplayable on this system). */

charLen = (IsFileNameCharLegal (current)) ?
NativeCharLength (current) : 0;

/* If the char is larger than the available space */

/* in the buffer, pretend it is undisplayable. */

if (charLen > bytesLeft)
charLen = 0;

if (charLen == 0)
/* Undisplayable or illegal characters are */
/* substituted with an underscore (" "), and */

/* required a CRC code appended to the mangled */
/* file name. */

needsCRC = TRUE;

charLen 1;

current = ' _';

/* Skip over any following undiplayable or */
/* illegal chars. */
while (index +1 <udfNameLen &&
(!IsFileNameCharLegal (udfName [index + 1]) ||
NativeCharLength (udfName [index + 1]) == 0))
} index++;
/* Assign the resulting char to the next index in */
/* the extension buffer and determine how many BCS */
/* bytes are left. */
ext [targetIndex++] = current;
bytesLeft -= charLen;

}

/* Save the number of Unicode characters in the extension */
extLen = targetIndex;

/* If the extension was too large, or it was zero length */
/* (i.e. the name ended in a period), a CRC code must be */
/* appended to the mangled name. */
if (index < udfNameLen || extLen == 0)

needsCRC = TRUE;

}

/* Now process the actual file name. */
index = 0;
targetIndex = 0;
crcIndex = 0;
overlayBytes = -1;
bytesLeft = DOS_NAME LEN;
while (index < namelen && bytesLeft > 0) {
/* Get the current character and convert it to upper case. */
current = UnicodeToUpper (udfName [index]) ;
if (current ==' ' ||current == '.')
/* Spaces and periods are just skipped, a CRC code */
/* must be added to the mangled file name. */
needsCRC = TRUE;

DRAFTI12z DRAFTI12z 120 DRAFTI12z DRAFTI12z February 28,2005

else {

/* Determine if this is a valid file name char and */
/* calculate its corresponding BCS character byte */
/* length (zero if the char is not legal or */

/* undisplayable on this system). */

charLen = (IsFileNameCharLegal (current)) ?
NativeCharLength (current) : 0;

/* If the char is larger than the available space in */
/* the buffer, pretend it is undisplayable. */
if (charLen > bytesLeft)

charLen = 0;

if (charLen == 0)
/* Undisplayable or illegal characters are */
/* substituted with an underscore (" "), and */

/* required a CRC code appended to the mangled */
/* file name. */

needsCRC = TRUE;

charLen 1;

current = ' _';

/* Skip over any following undiplayable or illegal */
/* chars. */
while (index +1 <namelen &&
(!IsFileNameCharLegal (udfName [index + 1]) ||
NativeCharLength (udfName [index + 1]) == 0))
index++;

/* Terminate loop if at the end of the file name. */
if (index >= namelen)
break;

}

/* Assign the resulting char to the next index in the */
/* file name buffer and determine how many BCS bytes */
/* are left. */

dosName [targetIndex++] = current;

bytesLeft -= charLen;

/* This figures out where the CRC code needs to start */
/* in the file name buffer. */
if (bytesLeft »= DOS_CRC_LEN) {
/* If there is enough space left, just tack it */
/* onto the end. */
} crcIndex = targetIndex;
else {
If there is not enough space left, the CRC */
/* must overlay a character already in the file */
/* name buffer. Once this condition has been */
/* met, the value will not change. */

if (overlayBytes < 0) {
/* Determine the index and save the length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC might overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries line up. */
overlayBytes = (bytesLeft + charLen > DOS_CRC_LEN)?1 :0;
crcIndex = targetIndex - 1;

}

/* Advance to the next character. */
index++;

/* If the scan did not reach the end of the file name, or the */
/* length of the file name is zero, a CRC code is needed. */
if (index < nameLen || index == 0)

needsCRC = TRUE;

/* If the name has illegal characters or and extension, it */

/* 1s not a DOS device name. */

if (needsCRC == FALSE && extLen == 0) {
/* If this is the name of a DOS device, a CRC code should */
/* be appended to the file name. */

upr2.60 DRAFTI12z DRAFT12z 121 DRAFT12z DRAFT12z February 28, 2005

if (IsDeviceName (udfName, udfNameLen))
needsCRC = TRUE;

}

/* Append the CRC code to the file name, if needed. */

if (needsCrC) ({
/* Get the CRC value for the original Unicode string */
UINT16 udfCRCValue = CalculateCRC (udfName, udfNameLen) ;

/* Determine the character index where the CRC should */
/* begin. */
targetIndex = crcIndex;

/* If the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore. */
if (overlayBytes > 0)

dosName [targetIndex++] = ' _';

/* Append the encoded CRC value with delimiter. */
dosName [targetIndex++] = '#';
dosName [targetIndex++] =
crcChar [udfCRCValue / (DOS_CRC MODULUS * DOS_CRC_MODULUS)] ;
udfCRCValue $= DOS_CRC_MODULUS * DOS_CRC_MODULUS ;
dosName [targetIndex++] =
crcChar [udfCRCValue / DOS_CRC _MODULUS] ;
udfCRCValue %= DOS_CRC_MODULUS;
dosName [targetIndex++] = crcChar [udfCRCValue] ;

}

/* Append the extension, if any. */

if (extLen > 0)
/* Tack on a period and each successive byte in the */
/* extension buffer. */
dosName [targetIndex++] = '.';

for (index = 0; index < extLen; index++)
dosName [targetIndex++] = ext [index];

}

/* Return the length of the resulting Unicode string. */
return (UINT16)targetIndex;

/***/
/* UDFDOSVolumeLabel () */
/* Translate udfLabel to dosLabel using OSTA compliant algorithm. */
/* dosLabel must be a Unicode string buffer at least 11 characters */
/* in length. */
/***/
UINT16 UDFDOSVolumeLabel (UNICODE CHAR* dosLabel, UNICODE CHAR*
?deabel, UINT16 udfLabelLen)

INT16 index;

INT16 targetIndex;

INT16 crcIndex;

INT16 charLen;

INT16 overlayBytes;

INT16 bytesLeft;

UNICODE_CHAR current;

BOOLEAN needsCRC;

needsCRC = FALSE;

/* Scan end of label to see if there are any trailing spaces. */
index = udfLabellLen;
while (index-- > 0)

if (udfLabel [index] != ' ')

break;

/* If there are trailing spaces, adjust the length of the */
/* string to exclude them and indicate that a CRC code is */
/* needed. */
if (index +1 !=udfLabellen) {

udfLabellen = index + 1;

needsCRC = TRUE;

}

index = 0;
targetIndex = 0;

upr2.60 DRAFT12z DRAFTI12z 122 DRAFT12z DRAFT12z

February 28, 2005

crcIndex = 0;
overlayBytes = -1;
bytesLeft = DOS_LABEL LEN;
while (index < udfLabellLen && bytesLeft > 0) {
/* Get the current character and convert it to upper case. */
current = UnicodeToUpper (udfLabel [index]) ;
if (current == '.')
/* Periods are just skipped, a CRC code must be added */
/* to the mangled file name. */
needsCRC = TRUE;

else {
/* Determine if this is a valid file name char and */
/* calculate its corresponding BCS character byte */
/* length (zero if the char is not legal or */
/* undisplayable on this system). */
charLen = (IsVolumeLabelCharLegal (current)) °?
NativeCharLength (current) : 0;

/* If the char is larger than the available space in */
/* the buffer, pretend it is undisplayable. */

if (charLen > bytesLeft)

charLen = 0;

if (charLen == 0)
/* Undisplayable or illegal characters are */
/* substituted with an underscore (" "), and */

/* required a CRC code appended to the mangled */

/* file name. */

needsCRC = TRUE;

charLen 1;
1

current !

7

/* Skip over any following undiplayable or illegal */
/* chars. */
while (index +1 <udfLabellLen &&
(!IsVolumeLabelCharLegal (udfLabel [index + 1]) ||
NativeCharLength (udfLabel [index + 1]) == 0))
index++;

/* Terminate loop if at the end of the file name. */
if (index >= udfLabellLen)
break;

}

/* Assign the resulting char to the next index in the */
/* file name buffer and determine how many BCS bytes */
/* are left. */

dosLabel [targetIndex++] = current;

bytesLeft -= charLen;

/* This figures out where the CRC code needs to start */
/* in the file name buffer. */
if (bytesLeft >= DOS_CRC LEN) {
/* If there is enough space left, just tack it */
/* onto the end. */
crcIndex = targetIndex;

else {

/* If there is not enough space left, the CRC */

/* must overlay a character already in the file */

/* name buffer. Once this condition has been */

/* met, the value will not change. */

if (overlayBytes < 0)
/* Determine the index and save the length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC might overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries line up. */
overlayBytes = (bytesLeft + charLen > DOS_CRC_LEN)
?1 :0;
crcIndex = targetIndex - 1;

}

/* Advance to the next character. */
index++;

}

/* If the scan did not reach the end of the file name, or the */

upr2.60 DRAFTI12z DRAFT12z 123 DRAFT12z DRAFT12z February 28, 2005

/* length of the file name is zero, a CRC code is needed. */
if (index < udfLabellen || index == 0)
needsCRC = TRUE;

/* Append the CRC code to the file name, if needed. */

if (needsCrC)
/* Get the CRC value for the original Unicode string */
UINT16 udfCRCValue = CalculateCRC (udfName, udfNameLen) ;

/* Determine the character index where the CRC should */
/* begin. */
targetIndex = crcIndex;

/* If the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore. */
if (overlayBytes > 0)

dosLabel [targetIndex++] = ' _';

/* Append the encoded CRC value with delimiter. */

dosLabel [targetIndex++] = '#';

dosLabel [targetIndex++] =

crcChar [udfCRCValue / (DOS_CRC MODULUS * DOS_CRC MODULUS)] ;
udfCRCValue $= DOS_CRC_MODULUS * DOS_CRC_MODULUS;

dosLabel [targetIndex++] =

crcChar [udfCRCValue / DOS_CRC _MODULUS] ;

udfCRCValue %= DOS_CRC_MODULUS;

dosLabel [targetIndex++] = crcChar [udfCRCValue];

}

/* Return the length of the resulting Unicode string. */
return (UINT16)targetIndex;

/***/

/* UnicodeToUpper () */
/* Convert the given character to upper-case Unicode. */
/***/
?NICODE7CHAR UnicodeToUpper (UNICODE CHAR value)

/* Actual implementation will vary to accommodate the target */

/* operating system API services. */

/* Just handle the ASCII range for the time being. */

return (value >= 'a' && value <= 'z') ?

value - ('a' - 'A') : value;

/***/

/* IsFileNameCharLegal () */
/* Determine if this is a legal file name id character. */
/***/
BOOLEAN IsFileNameCharLegal (UNICODE CHAR value)
/* Control characters are illegal. */
if (value <' ')
return FALSE;

/* Test for illegal ASCII characters. */
switch (value) ({

case '"\\':
case '/':
case ':':
case '*':
case '?':
case '\"':
case '<':
case '>':
case '|':
case ';':
case '“':
case ',':
case '&':
case '+':
case '=':
case '[':
case ']'

return FALSE;

default:

upr2.60 DRAFTI12z DRAFT12z 124 DRAFT12z DRAFT12z February 28, 2005

return TRUE;

/***/

/* IsVolumeLabelCharLegal () */
/* Determine if this is a legal volume label character. */
/***/
BOOLEAN IsVolumeLabelCharLegal (UNICODE CHAR value)
/* Control characters are illegal. */
if (value <' ')
return FALSE;

/* Test for illegal ASCII characters. */
switch (value)
case '\\':
case '/':
case ':':
case '*':
case '?':
case '"\"':
case '<
case '
case '
case '
case '
case '
case '
case '
case '
case '
case '
case ' :
return FALSE;

default:
return TRUE;

/***/
/* NativeCharLength() */

/* Determines the corresponding native length (in bytes) of the */

/* given Unicode character. Returns zero if the character is */

/* undisplayable on the current system. */
/***/

INT16 NativeCharLength (UNICODE CHAR value)

/* Actual implementation will vary to accommodate the target */
/* operating system API services. */

/* This is an example of a conservative test. A better test */
/* will utilize the platform’s language/codeset support to */

/* determine how wide this character is when converted to the */
/* active variable width character set. */

return 1;

/***/
/* IsDeviceName () */

/* Determine if the given Unicode string corresponds to a DOS */

/* device name (e.g. "LPT1", "COM4", etc.). Since the set of */

/* valid device names with vary from system to system, and */

/* a means for determining them might not be readily available, */

/* this functionality is only suggested as an optional */

/* implementation enhancement. */
/***/

BOOLEAN IsDeviceName (UNICODE CHAR* name, UINT16 nameLen)

/* Actual implementation will vary to accommodate the target */
/* operating system API services. */

/* Just return FALSE for the time being. */

return FALSE;

upr2.60 DRAFTI12z DRAFT12z 125 DRAFT12z DRAFT12z February 28, 2005

6.7.2 OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm

/***
* OSTA UDF compliant file name translation routine for 0S/2,

Windows 95, Windows NT, Macintosh and UNIX.

Copyright 1995 Micro Design International, Inc.

Written by Jason M. Rinn.

Micro Design International gives permission for the free use of the

following source code.
R R R R R S S R R S R S R R R S R S S R R S S R R R R R R S R R R R R R R R O R R R R R

To use these routines with different operating systems.

0s/2
Define 0S2
Define MAXLEN = 254

Windows 95
Define WIN_ 95
Define MAXLEN = 255

Windows NT
Define WIN NT
Define MAXLEN = 255

Macintosh:
Define MAC.
Define MAXLEN = 31.

UNIX
Define UNIX.
Define MAXLEN as specified by unix version.

L R I R R N I R R R S
~

#define ILLEGAL CHAR MARK 0xO005F

#define CRC_MARK 0x0023
#define EXT SIZE 5
#define TRUE 1
#define FALSE 0
#define PERIOD 0x002E
#define SPACE 0x0020

/***
* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode t needs to
* be unsigned 16-bit.
*

typedef unsigned int unicode t;
typedef unsigned char byte;

/**% PROTOTYPES **%*/
int IsIllegal (unicode_ t ch);
unsigned short unicode cksum(register unsigned short *s, register int n);

/* Define a function or macro which determines if a Unicode character is

* printable under your implementation.
*/

int UnicodeIsPrint (unicode t) ;

/***
* Translates a long file name to one using a MAXLEN and an illegal

* char set in accord with the OSTA requirements. Assumes the name has
* already been translated to Unicode.

*

* RETURN VALUE

*

* Number of unicode characters in translated name.

*/

int UDFTransName (
unicode_t *newName,/* (Output) Translated name. Must be of length MAXLEN*/
unicode t *udfName, /* (Input) Name from UDF volume.*/

upr2.60 DRAFTI12z DRAFT12z 126 DRAFT12z DRAFT12z February 28, 2005

int udflen, /* (Input) Length of UDF Name. */
int index, newIndex = 0, needsCRC = FALSE;
int extIndex, newExtIndex = 0, hasExt = FALSE;
#ifdef (0S2 | WIN 95 | WIN NT)
int trailIndex = 0;
#endif
unsigned short valueCRC;
unicode t current;
const char hexChar[] = "0123456789ABCDEF";
for (index = 0; index < udflen; index++)

current = udfName [index] ;
if (IsIllegal(current) || !UnicodeIsPrint (current))
needsCRC = TRUE;
/* Replace Illegal and non-displayable chars with underscore. */
current = ILLEGAL_ CHAR MARK;
/* Skip any other illegal or non-displayable characters. */
while (index+1l < udfLen && (IsIllegal (udfName [index+1])
|| !UnicodeIsPrint (udfName [index+1])))
index++;
/* Record position of extension, if one is found. */
if (current == PERIOD && (udfLen - index -1) <= EXT_ SIZE)
if (udflLen == index + 1)
/* A trailing period is NOT an extension. */
hasExt = FALSE;
}
else
{
hasExt = TRUE;
extIndex = index;
newExtIndex = newlIndex;
} }
#ifdef (0S2 | WIN 95 | WIN NT)
/* Record position of last char which is NOT period or space. */
else if (current != PERIOD && current != SPACE)
trailIndex = newlIndex;
#endif
if (newIndex < MAXLEN)
newName [newIndex++] = current;
else
needsCRC = TRUE;
#ifdef (0S2 | WIN 95 | WIN NT)
/* For 0S2, 95 & NT, truncate any trailing periods and\or spaces. */
if (trailIndex != newIndex - 1)
newIndex = traillIndex + 1;
needsCRC = TRUE;
hasExt = FALSE; /* Trailing period does not make an extension. */
#endif

UDF 2.60

DRAFTI12z DRAFTI12z

127

DRAFT12z DRAFT12z February 28, 2005

if (needsCRC)
unicode t ext [EXT SIZE];
int localExtIndex = 0;
if (hasExt)

int maxFilenamelLen;

/* Translate extension, and store it in ext. */

for (index = 0; index<EXT SIZE && extIndex + index +1 < udflLen;
{ index++)

current = udfName [extIndex + index + 1];
if (IsIllegal (current) || !UnicodeIsPrint (current))

needsCRC = 1;
/* Replace Illegal and non-displayable chars
* with underscore.
*/
current = ILLEGAL CHAR MARK;
/* Skip any other illegal or non-displayable
* characters.
*/
while(index + 1 < EXT SIZE
&& (IsIllegal (udfName [extIndex + index + 2])
|| !UnicodeIsPrint (udfName [extIndex + index + 2])))

index++;
ext [localExtIndex++] = current;

/* Truncate filename to leave room for extension and CRC. */
maxFilenameLen = ((MAXLEN - 5) - localExtIndex - 1);
if (newIndex > maxFilenamelLen)

newIndex = maxFilenameLen;
else

newIndex = newExtIndex;

else if (newIndex > MAXLEN - 5)

/*If no extension, make sure to leave room for CRC. */
newIndex = MAXLEN - 5;

newName [newIndex++] = CRC_MARK; /* Add mark for CRC. */

/*Calculate CRC from original filename from FileIdentifier. */
valueCRC = unicode cksum(udfName, udfLen);

/* Convert 16-bits of CRC to hex characters. */

newName [newIndex++] = hexChar [(valueCRC & 0xf000) >> 12];
newName [newIndex++] hexChar [(valueCRC & 0x0f00) >> 8];
newName [newIndex++] hexChar [(valueCRC & 0x00£f0) >> 4];
newName [newIndex++] = hexChar [(valueCRC & 0x000f)];

/* Place a translated extension at end, if found. */
if (hasExt)

newName [newIndex++] = PERIOD;
for (index = 0;index < localExtIndex ;index++)

newName [newIndex++] = ext [index];
1

return (newIndex) ;

upr2.60 DRAFTI12z DRAFT12z 128 DRAFT12z DRAFT12z February 28, 2005

#ifdef (0S2 | WIN 95 | WIN NT)

/*************************;***
* Decides i1f a Unicode character matches one of a list

* of ASCII characters.

* Used by 0S2 version of IsIllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCII subset of Unicode.
* Works very similarly to the standard C function strchr().

*

* RETURN VALUE
*
* Non-zero if the Unicode character is in the given ASCII string.
*/

int UnicodeInString(

unsigned char *string, /* (Input) String to search through. x/

unicode_t ch) /* (Input) Unicode char to search for. */

int found = FALSE;
while (*string != '\0' && found == FALSE)

/* These types should compare, since both are unsigned numbers. */
if (*string == ch)

found = TRUE;
string++;
return (found) ;
#endif /* 0S2 */

/***

* Decides whether the given character is illegal for a given OS.
*

* RETURN VALUE
*

* Non-zero if char is illegal.
*/
int IsIllegal (unicode t ch)

{

#ifdef MAC
/* Only illegal character on the MAC is the colon. */
if (ch == 0x003R)

return (1) ;

}

else

{

return(0) ;

#elif defined UNIX
/* Illegal UNIX characters are NULL and slash. */
if (ch == 0x0000 || ch == 0x002F)

return (1) ;

}

else

{

return(0) ;

#elif defined (0S2 | WIN 95 | WIN NT)
/* Illegal char's for 0S/2 according to WARP toolkit. */
if (ch < 0x0020 || UnicodeInString ("\\/:*?\"<>|", ch))

return (1) ;

}

else

{

return(0) ;

#endif

upr2.60 DRAFTI12z DRAFT12z 129 DRAFT12z DRAFT12z February 28, 2005

6.8 Extended Attribute Header Checksum Algorithm
/*

Calculates a 16-bit checksum of the Implementation Use

Extended Attribute header or Application Use Extended Attribute
header. The fields AttributeType through ImplementationIdentifier
(or ApplicationIdentifier) inclusively represent the

data covered by the checksum (48 bytes).

/

Uint1l6é ComputeEAChecksum(byte *data)

* ook ok F X X X

Uintlé checksum = 0;
Uint count;

for(count = 0; count < 48; count++)

checksum += *data++;

}

return (checksum) ;

upr2.60 DRAFTI12z DRAFT12z 130 DRAFT12z DRAFT12z February 28, 2005

6.9 Requirements for DVD-ROM

This appendix defines the requirements and restrictions for UDF formatted DVD-ROM
discs.

e DVD-ROM discs shall be mastered with the UDF file system

e DVD-ROM discs shall consist of a single volume and a single partition.

NOTE-}: The disc may also include the ISO 9660 file system. If the disc contains both
UDF and ISO 9660 file systems it shall be known as a UDF Bridge disc. This UDF
Bridge disc will allow playing DVD-ROM media in computers, which may only
support ISO 9660. As UDF computer implementations are provided, the need for
ISO 9660 will disappear, and future discs should contain only UDF.

If you intend to do any DVD development with UDF, please make sure that you fill out
the OSTA UDF Developer Registration Form located in appendix 6.18. For planned
operating system, check the Other box and write in DVD.

6.9.1 Constraints imposed on UDF by DVD-Video

This section describes the restrictions and requirements for UDF formatted DVD-Video
discs for dedicated DVD content players. DVD-Video is one specific application of
DVD-ROM using the UDF format for the home consumer market. Due to limited
computing resources within a DVD player, restrictions and requirements were created so
that a DVD player would not have to support every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified by
ECMA 167 (2" edition) and UDF 1.02. This will ease playing of DVD-Video in
computer systems. Examples of such data include the time, date, permission bits, and a
free-space-maplree Space Table (indicating no free space). While DVD player
implementations may ignore these fields, a UDF computer system implementation will
not. Both entertainment-based and computer-based content can reside on the same disc.

NOTE 1: DVD-Video discs mastered according to a UDF 2-50revision other than 1.02
may not be compatible with DVD-Video players. DVD-Video players expect
media in UDF 1.02 format.

In an attempt to reduce code size and improve performance, all division described is
integer arithmetic; all denominators shall be 2", such that all divisions may be carried out
via logical shift operations.

e A DVD player shall only support UDF and not ISO 9660.

e Originating systems shall constrain individual files to be less than or equal to 2°° -
Logical Block Size bytes in length.

e The data of each file shall be recorded as a single extent. Each File Entry shall be
recorded using the ICB Strategy Type 4.

upr2.60 DRAFTI12z DRAFT12z 131 DRAFT12z DRAFT12z February 28, 2005

e File and directory names shall be compressed as 8 bits per character using OSTA
Compressed Unicode format.

e A DVD player shall not be required to follow symbolic links to any files.

e The DVD-Video files shall be stored in a subdirectory named "VIDEO TS" directly
under the root directory. Directory names are standardized in the DVD Specifications
for Read-Only Disc document.

NOTE 2: The DVD Specifications for Read-Only Disc is a document, published by
the DVD Format/Logo Licensing Corporation, see 6.9.3. This document
describes the names of all DVD-Video files and a DVD-Video directory,
which will be stored on the media, and additionally, describes the contents
of the DVD-Video files.

e The file named "VIDEO TS.IFO" in the VIDEO TS subdirectory shall be read first.

All the above constraints apply only to the directory and files that the DVD player needs
to access. There may be other files and directories on the media which are not intended
for the DVD player and do not meet the above listed constraints. These other files and
directories are ignored by the DVD player. This is what enables the ability to have both
entertainment-based and computer-based content on the same disc.

6.9.2 How to read a UDF DVD-Video disc
This section describes the basic procedures that a DVD player would go through to read a
UDF formatted DVD-Video disc.

6.9.2.1 Step 1. Volume Recognition Sequence
Find an ECMA 167 Descriptor in a volume recognition area, which shall start at
logical sector 16.

6.9.2.2 Step 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer, which is located at an anchor point, must be
found. Duplicate anchor points shall be recorded at logical sector 256 and logical
sector N, where N is the highest numbered logical sector on the disc. |

A DVD player only needs to look at logical sector 256; the copy at logical sector N is |
redundant and only needed for defect tolerance. The Anchor Volume Descriptor
Pointer contains three things of interest:

1. Static structures that may be used to identify and verify integrity of the disc.

2. Location of the Main Volume Descriptor Sequence (absolute logical sector
number)

3. Length of the Main Volume Descriptor Sequence (bytes)

The data located in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer may be
used for format verification if desired. Verifying the Tag Checksum in byte 4 and

upr2.60 DRAFTI12z DRAFTI12z 132 DRAFTI12z DRAFTI12Z February 28, 2005 |

Descriptor CRC in bytes 8-11 are good additional verifications to perform.
MVDS Location and MVDS_Length are read from this structure.

6.9.2.3 Step 3. Volume Descriptor Sequence
Read logical sectors:

MVDS Location through MVDS Location + (MVDS_ Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence cannot
be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with a tag identifier of 5. The partition
number and partition location shall be recorded in logical sector number.

Partition Location and Partition Length are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with a tag identifier of 6. The
location and length of the File Set Descriptor shall be recorded in the Logical
Volume Descriptor.

FSD Location, and FSD Length are returned from this structure.

6.9.2.4 Step 4. File Set Descriptor
The File Set Descriptor is located at logical sector numbers:

Partition Location + FSD_Location through
Partition Location + FSD Location + (FSD_Length - 1) / BlockSize

RootDir Location and RootDir Length shall be read from the File Set Descriptor in
logical block number.

6.9.2.5 Step 5. Root Directory File Entry
RootDir Location and RootDir Length define the location of a File Entry. The File
Entry describes the data space and permissions of the root directory.

The location and length of the Root Directory is returned.

6.9.2.6 Step 6. Root Directory
Parse the data in the root directory extent to find the VIDEO TS subdirectory.

Find the VIDEO_TS File Identifier Descriptor. The name shall be in 8 bit
compressed UDF format. Verify that VIDEO_TS is a directory.

Read the File Identifier Descriptor and find the location and length of a File Entry
describing the VIDEO_TS directory.

upr2.60 DRAFTI12z DRAFT12z 133 DRAFT12z DRAFT12z February 28, 2005

6.9.2.7 Step 7. File Entry of VIDEO_TS
The File Entry found in the step above describes the data space and permissions of
the VIDEO TS directory.

The location and length of the VIDEO_TS directory is returned.

6.9.2.8 Step 8. VIDEO_TS directory
The extent found in the step above contains sets of File Identifier Descriptors. In this

pass, verify that the entry points to a file and is named VIDEO_TS.IFO.

6.9.2.9 Step 9. File Entry of VIDEO_TS.IFO
The File Entry found in the step above describes the data space and permissions of
the VIDEO TS.IFO file.

The location and length of the VIDEO_TS.IFO file is returned.

Further files can be found in the same manner as the VIDEO TS.IFO file when
needed.

6.9.3 Obtaining DVD Documents

To obtain a copy of the DVD Specifications for Read-Only Disc document as well as
other DVD related material, contact:

DVD Format/Logo Licensing Corporation

Daimon Urbanist Bldg. 6F,Shiba-ShimizuBldeSE

2-3-6 Shibadaimon, Minato-ku,2-3-H-Shibadaimen;Minate-ku
Tokyo, 105-0012 JAPANFekye105-0012

Japan

TEL: +81-3-5777-2883
FAX: +81-3-5777-2884

upr2.60 DRAFTI12z DRAFT12z 134 DRAFT12z DRAFT12z February 28, 2005

6.10 Recommendations for CD Media

CD Media (CD-R and CD-RW) requires special consideration due to its nature. CD was
originally designed for Read-Only applications, which affects the way in which it is |
written. The following guidelines are established to ensure interchange.

Each file and directory shall be described by a single direct ICB. The ICB should be
written after the file data to allow for data underruns during writing, which will cause
logical gaps in the file data. The ICB can be written afterward which will correctly
identify all extents of the file data. The ICB shall be written in the data track, the file
system track (if it exists), or both.

6.10.1 Use of UDF on CD-R media

{Editorial note: The non-‘CD-R specific’ part of the UDF 2.50 text of sections 6.10.1
thru 6.10.1.3 was moved to the new UDF 2.60 section 6.11}

For CD-R, the rules of section 6.11 apply with the following additions:

The VAT may be located by using READ TRACK INFORMATION (for unfinished
media) or READ TOC or READ CD RECORDED CAPACITY for finished media. See
X3T10-1048D (SCSI-3 Multi Media Commands).

6.10.1.1 Mode requirements for CD-R

e Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or
Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on
one disc is not allowed.

NOTE: According to the Multisession CD Specification, all data sessions on a disc
must be of the same type (Mode 1, or Mode 2 Form 1).

e [fMode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

File number =0
Channel number =0
Submode = 08h
Coding information = 0

6.10.1.2 UDF “Bridge” formats for CD-R ’

If an ISO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA
extensions for ISO 9660 must be used. Further the rules of section 6.11.4 apply. |

6.10.2 Use of UDF on CD-RW media

CD-RW media is randomly readable and block writable. This means that while any
individual sector may be read, writing must occur in blocks containing multiple sectors.

upr2.60 DRAFTI12z DRAFT12z 135 DRAFT12z DRAFT12z February 28, 2005

CD-RW systems do not provide for sparing of bad areas. Writing rules and sparing
mechanisms have been defined.

6.10.2.1 Requirements

e Writing which conforms to this section of the standard shall be performed using fixed
length packets.

e Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,
either Mode 1 or Mode 2 Form 1 shall be used.
NOTE: According to the Multisession CD Specification, all data sessions on a disc
must be of the same type (Mode 1, or Mode 2 Form 1).

e IfMode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

File number = 0
Channel number = 0
Submode = 08h
Coding information = 0
e The host shall perform read/modify/write to enable the apparent writing of single 2K
sectors.

e The Packet Length shall be set when the disc is formatted. The Packet [.ength shall
be 32 sectors (64 KB).

e Defective packets known at format time shall be allocated by the Non-Allocatable
Space Stream (see 3.3.7.2).

e Sparing shall be managed by the host via the sparable partition and a Sparing Table.
e Discs shall be formatted prior to use.

6.10.2.2 Formatting

Formatting shall consist of writing a lead-in, user data area, and lead-out. These areas
may be written in any order. A verification pass may follow this physical format.
Defective packets found during the verification pass shall be enumerated in the Non-
Allocatable Space Stream (see 3.3.7.2). Finally, file system root structures shall be
recorded. These mandatory file system and root structures include the Volume
Recognition Sequence, Anchor Volume Descriptor Pointers, a Volume Descriptor
Sequence, a File Set Descriptor and a Root Directory.

The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256,
where N is the Physieal- AddressLogical Sector Number of the last addressable sector.
Allocation for sparing shall occur during the format process. The sparing allocation may
be zero in length.

The free space descriptors shall be recorded and shall reflect space allocated to defective
areas and sector sparing areas. The format may include all available space on the
medium. However, if requested by the user, a subset may be formatted to save formatting
time. That smaller format may be later “grown” to the full available space.

upr2.60 DRAFTI12z DRAFT12z 136 DRAFT12z DRAFT12z February 28, 2005

6.10.2.3 Growing the Format

If the medium is partially formatted, it may be later grown to a larger size. This operation
consists of:

e Optionally erase the lead-in of the last session.

e Optionally erase the lead-out of the last session.

e Write packets beginning immediately after the last recorded packet.
e Update the Sparing Table to reflect any new spare areas

e Adjust the Partition Map as appropriate

e Update the freespace-mapUnallocated Space Bitmap or Table to show new available
area

e Move the last AVDP to the new N - 256
e Write the lead-in (which reflects the new track size)
e Write the lead-out

6.10.2.4 Host Based Defect Management

The host shall perform defect management operations. The CD format was defined
without any defect management; to be compatible with existing technology and
components, the host must manage defects. There are two levels of defect management:
Marking bad sectors at format time and on-line sparing. The host shall keep the tables on
the media current.

6.10.2.5 Read Modify Write Operation

CD-RW media requires large writable units, as each unit incurs a 14KB overhead. The
file system requires a 2KB writable unit. The difference in write sizes is handled by a
read-modify-write operation by the host. An entire packet is read, the appropriate
portions are modified, and the entire packet written to the CD.

Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levels of Compliance

6.10.2.6.1 Level 1

The disc shall be formatted with exactly one lead-in, program area, and lead-out. The
program area shall contain exactly one track.

6.10.2.6.2 Level 2

The last session shall contain the UDF file system. All prior sessions shall be contained
in one read-only partition.

6.10.2.6.3 Level 3
No restrictions shall apply.

upr2.60 DRAFTI12z DRAFT12z 137 DRAFT12z DRAFT12z February 28, 2005

6.10.3 Multisession and Mixed Mode

{Editorial note: The non-‘CD-R/RW specific’ part of the UDF 2.50 text of sections
6.10.3 thru 6.10.3.3 was moved to the new UDF 2.60 section 6.11}

For CD-R and CD-RW, the multisession and bridge disc rules of 6.11 apply with the
following additions:

If random write mode is used, the media may be formatted with zero or one audio
sessions followed by exactly one writable data session containing one track. Other
session configurations are possible but not described here.

When recorded in Random Access mode, a duplicate Volume Recognition Sequence
should be recorded beginning at sector N - 16.

CD multisession discs may also contain audio sessions. The UDF Bridge format allows
CD enhanced discs to be created, see an example in 6.11.5.

upr2.60 DRAFTI12z DRAFT12z 138 DRAFT12z DRAFT12z February 28, 2005

6.11 Common aspects of recording for different media

In the following sections, common aspects of recording for different media are described.
These aspects are:

e Real-Time files

e Incremental recording using VAT

e Multisession discs

e UDF Bridge discs

Media that do not support sessions are assumed to have a single session that starts at
logical sector zero and ends at the highest addressable logical sector number. Media that
do not support tracks are assumed to have a single track per session with the same size
and start address as the session. For some media different terms may be used for ‘track’
and ‘session’, e.g. for DVD+R, a track is called a Fragment.

6-116.11.1 Real-Time Files

A Real-Time file shall be identified by file type 249 in the File Type field of the file's ICB
Tag. A Real-Time file is a file that requires a minimum data-transfer rate when writing or
reading, for example, audio and video data. For these files, special read and write
commands are needed. For example for CD and DVD devices these special commands

can be found in the SCSI-3 MMC command set MeuntFuji4-specification.

6.11.2 Incremental recording using VAT

This type of recording is used on sequential media that have a Virtual Partition Map
recorded in the Logical Volume Descriptor, see 2.2.8. VAT usage is described in 2.2.11.
The VAT ICB is recorded at the highest recorded Logical Sector Number on the medium.
This logical sector number may be located using the READ TRACK INFORMATION
command for the relevant medium, e.g. see SCSI-3 Multi Media Commands.

ECMA 167 requires at least two Anchor Volume Descriptor Pointers (AVDP) at Logical
Sector Numbers 256, N or (N - 256), where N is the highest valid Logical Sector Number
on the medium, see 2.2.3. Because the VAT ICB is recorded as last, N cannot be used for
an AVDP. Only if the last session is closed, there shall be an AVDP at (N - 256).

For open sessions, the file system may be in an intermediate state before closing and still
be interchangeable, but not strictly in compliance with ECMA 167. In the intermediate
state, only one AVDP exists. It should exist at sector 256 or, if not possible due to a track
reservation, it shall exist at sector 512. An AVDP at 512 must be ignored if an AVDP at
256, N-256, or N exists. An AVDP at 512 can point to a temporary Volume Descriptor
Sequence that is only used in the intermediate state.

Implementations should place file system control structures into virtual space and file

data into real space. Reader implementations may cache the entire VAT. The size of the
VAT should be considered by any UDF originating software.

upr260 DRAFT12z DRAFT12z 139 DRAFT12z DRAFT12z February 28, 2005

6.11.2.1 Requirements

e An intermediate state is allowed for media on which only one AVDP is recorded; this
single AVDP shall be at sector 256 or sector 512 and according to the multisession
rules in 6.11.3.

e The Logical Volume Integrity Descriptor shall be recorded and the volume marked as
open. Logical Volume integrity can be verified by finding the VAT ICB at the last
recorded Logical Sector Number. If the VAT ICB is present, the volume is clean;
otherwise it is dirty.

e The Partition Header Descriptor shall specify no Unallocated Space Table, no
Unallocated Space Bitmap, no Freed Space Table, and no Freed Space Bitmap. The
drive is capable of reporting free space directly, eliminating the need for a separate
descriptor.

e Each surface shall contain 0 or 1 read-only partitions, 0 or 1 write-once partitions, and
0 or 1 virtual partitions. Media using VAT should contain 1 write-once partition and
1 virtual partition.

6.11.2.2 End of session data

Some Read-Only drives (e.g. CD-ROM, DVD-ROM) can only read closed sessions. The
last complete session on the disc shall conform completely to ECMA 167 and have two
AVDPs recorded. This shall be accomplished by writing data according to the End of
session data table below.

End of session data

Count Description
1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user
data, file system structures, and/or link areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will
be enhanced. Implementations shall ensure that enough space is available to record the
end of session data. Recording the end of session data brings a volume into compliance
with ECMA 167.

6.11.3 Multisession Usage

The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by ECMA 167 to be at a location relative to the beginning of the disc. The
beginning of a disc shall be determined from a base address S for the purposes of finding
the VRS and AVDP.

‘S’ is the logical sector number of the first data sector in the last existent session of the
volume. It is the same value used in multisession ISO 9660 recording. The first track in
the last session shall be a data track.

‘N’ is the logical sector number of the highest addressable data sector on a volume.

upr260 DRAFT12z DRAFT12z 140 DRAFT12z DRAFT12z February 28, 2005

There shall be no more than one writable partition or session at one time, and this session
shall be the last session on the disc.

A new Main and Reserve Volume Descriptor Sequence may exist in each added session,
and may be different than earlier VDSs.

If the last session on a medium does not contain a valid UDF file system, the disc is not a
UDF disc. Only the UDF structures in the last session, and any UDF structures and data
referenced through them, are valid.

The UDF session may contain pointers to data or metadata in other sessions, pointers to
data or metadata only within the UDF session, or a combination of both.

6.11.3.1 Volume Recognition Sequence

The following descriptions are added to UDF (see also ECMA 167 Part 2) in order to
handle a multisession disc.

e The volume recognition area of the UDF Bridge format (see 6.11.4) shall be the part
of the volume space starting at sector S + 16 (assuming 2K sectors).

e The volume recognition space shall end in the session in which it begins. As a result
of this definition, the volume recognition area always exists in the last session of a
disc.

6.11.3.2 Anchor Volume Descriptor Pointer

The Anchor Volume Descriptor Pointers (AVDP) shall be recorded on at least 2 of the
following logical sector numbers: S+ 256, N - 256 and N. An AVDP at sector N or N -
256 shall not be recorded while a session is open. In an intermediate state, a single AVDP
may exist at S + 256 or S+ 512. An AVDP at § + 512 must be ignored when an AVDP
exists at S+ 256, N - 256 or N.

6.11.4 UDF Bridge format

The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF Bridge disc shall contain a UDF file system in its last session. The last
session shall follow the rules described in 6.11.3. The disc may contain sessions that are
based on ISO 9660, vendor unique, CD audio, or a combination of file systems.

ISO 9660 requires a Primary Volume Descriptor (ISO PVD) at sector 16 (assuming 2K
sectors). If an ISO 9660 file system is desired, it may contain references to the same files
as those referenced by ECMA 167 structures, or reference a different set of files, or a
combination of the two.

upr260 DRAFT12z DRAFT12z 141 DRAFT12z DRAFT12z February 28, 2005

6.11.5 Examples of UDF Multisession and UDF Bridge

Some examples of UDF Multisession discs and UDF Bridge discs are shown below.

Multisession UDF disc

Access to LSN=16+x Access to LSN=256

|First Session |Last Session

........... - i % |
16 sectors R \ 16 sectors R
256 sectors g N-256 / 256 sectors g

LSN=0 _LSN=S§

|:| : Volume recognition area

I : Anchor point

CD enhanced disc
1* session 2" session
UDF Session L 2
Playable by conventional CD-Player Used by UDF

ISO 9660 converted to UDF

1% session 2™ gession 3" session

9660 Session 9660 Session UDF Session

a

Written by conventional 9660 formatter software

Managed by UDF

UDF 2.60

DRAFTI12z DRAFTI12z 142 DRAFTI12z DRAFTI12z

February 28, 2005

Foreign format converted to UDF

s . . d .
1% session 2™ gession 3™ session

Data Session Data Session UDF Session -

Written by another file system

v

a

Managed by UDF

UDF 2.60

DRAFTI12z DRAFTI12z 143 DRAFTI12z DRAFTI12z February 28,2005

6.12 Requirements for DVD-R/-RW/-RAM interchangeability

This appendix defines the requirements and restrictions on volume and file structures for
writable DVD media, including but not limited to DVD-RAM discs (6.12.1), DVD-RW
discs (6.12.2) and DVD-R discs (6.12.3), to support the interchange of information
between users of both computer systems and consumer appliances. These requirements
do not apply to the discs that are used in a computer system environment only and have
no interchangeability with consumer appliances. The common requirements for these
DVD discs are summarized as follows:

1. The volume and file structure shall comply with UDF 2.00.

2. The Minimum UDF Read Revision and Minimum UDF Write Revision shall be
2.00.

3. The length of logical sector and logical block shall be 2048 bytes.

A Main Volume Descriptor Sequence and a Reserve Volume Descriptor Sequence
shall be recorded.

6.12.1 Requirements for DVD-RAM

The requirements for DVD-RAM discs are based on UDF 2.00. The volume and file
structure is simplified as for Overwritable discs using non-sequential recording. |
For Volume Structure:

1. Apartition on a DVD-RAM disc shall be an overwritable partition specified as
Access Type 4. |

2. Virtual Partition Map and Virtual Allocation Table shall not be recorded.
3. Sparable Partition Map and Sparing Table shall not be recorded.

For File Structure:

4. Unallocated Space Table or Unallocated Space Bitmap shall be used to indicate
a space set. Freed Space Table and Freed Space Bitmap shall not be recorded.

5. Non-Allocatable Space Stream shall not be recorded.
6.12.2 Requirements for DVD-RW

The requirements for DVD-RW discs under Restricted Overwrite mode are based on
UDF 2.00. The volume and file structure is simplified as for Rewritable discs using non- |
sequential recording.
For Volume Structure:
1. A disc shall consist of a single volume with a single sparable partition per side.
2. A Sparable Partition Map and Sparing Table shall be recorded.

3. Length of a packet shall be 16 sectors (32 KB) and the first sector number of a
packet shall be an integral multiple of 16.

4. Virtual Partition Map and Virtual Allocation Table shall not be recorded.

For File Structure:

5. Unallocated Space Bitmap shall be used to indicate a space set. Unallocated

upr2.60 DRAFTI12z DRAFTI12z 144 DRAFTI12z DRAFTI12z February 28,2005 |

Space Table, Freed Space Table and Freed Space Bitmap shall not be recorded.
6. Non-Allocatable Space Stream shall be recorded.
ICB Strategy Type 4 shall be used.

8. Short Allocation Descriptors or the embedded data shall be recorded in the
Allocation Descriptors field of the File Entry or Extended File Entry. Long
Allocation Descriptors shall not be recorded in this field.

6.12.3 Requirements for DVD-R

The requirements for DVD-R discs under Disc at once recording mode and under
Incremental recording mode are based on UDF 2.00. The volume and file structure is
simplified as for Write-Once discs using sequential recording.

For Volume Structure:

1. Length of a packet shall be an integral multiple of 16 sectors (32 KB) and the
first sector number of a packet shall be an integral multiple of 16.

Sparable Partition Map and Sparing Table shall not be recorded.

3. Under Incremental recording mode, only one Open Integrity Descriptor shall be
recorded in the Logical Volume Integrity Sequence.

4. Under Incremental recording mode, Virtual Partition Map shall be recorded.

For File Structure:
5. Unallocated Space Table, Unallocated Space Bitmap, Freed Space Table and
Freed Space Bitmap shall not be recorded.
6. Only one File Set Descriptor shall be recorded.
. Non-Allocatable Space Stream shall not be recorded.
8. Under Incremental recording mode, Virtual Allocation Table and VAT ICB shall
be recorded.
9. Under Incremental recording mode, ICB Strategy Type 4 shall be used.
10. Under Incremental recording mode, the VAT entries in VAT shall be assigned as
follows:
- The virtual address 0 shall be used for File Set Descriptor.
- The virtual address 1 shall be used for the ICB of the root directory.
- The virtual addresses in the range of 2 to 255 shall be assigned for the
File Entry of DVD RTAYV directory and File Entries of files under the
DVD_RTAV directory.

upr2.60 DRAFTI12z DRAFT12z 145 DRAFT12z DRAFT12z February 28, 2005

6.12.4 Requirements for Real-Time file recording on DVD discs

DVD Video Recording specification defines the DVD specific sub-directory

"DVD RTAV" and all DVD specific files under the DVD_RTAV directory. DVD
specific files consist of Real-Time files with the file type 249 and the related information
files.

For Volume Structure:

1. For DVD-RAM/RW discs, a disc shall consist of a single volume with a single
partition per side. For DVD-R discs, a disc shall consist of a single volume with
a write-once partition and a virtual partition per side. |
2. For DVD-RW discs, First Sparing Table and Second Sparing Table shall be
recorded.

For File Structure:
3. For DVD-RAM/RW discs, only Unallocated Space Bitmap shall be used.

4. For DVD-RW discs, the extent of Unallocated Space Bitmap should have the
length of Space Bitmap Descriptor for the available Data Recordable area.

5. Consumer Content Recorders record all their data in a special subdirectory,
DVD_RTAV, located in the root directory. The DVD RTAV directory and its
contents have special file system restrictions which are defined in DVD
Specifications published from DVD Format/Logo Licensing Corporation, see
6.9.3. An implementation or application should not create or modify files in this
directory unless it meets the restrictions defined by DVD Specifications
specified above.

upr2.60 DRAFTI12z DRAFT12z 146 DRAFT12z DRAFT12z February 28, 2005

6.13 Recommendations for DVD+R and DVD+RW Media
DVD+R and DVD+RW Media require special consideration due to their nature. The

following information and guidelines are established to ensure interchange.
e Logical Sector Size is 2048 Bytes
e 2048 Bytes user data transfer for read and write

e ECC Block Size is 32768 bytes (32KB) and the first sector number of an ECC
block shall be an integral multiple of 16.

6.13.1 Use of UDF for-ineremental-writing-on DVD+R media

{Editorial note: The complete UDF 2.50 text of sections 6.13.1 thru 6.13.1.4.3 was
moved to the new UDF 2.60 section 6.11}

For DVD+R, the rules of section 6.11 apply.

6.13.2 Use of UDF on DVD+RW 4.7 GBytes Basic Format media

DVD+RW 4.7 GBytes Basic Format media are random readable and writable, where
needed the DVD+RW drive performs Read-Modify-Write cycles to accomplish this. For
DVD+RW 4.7 GBytes Basic Format media the drive does not perform defect
management. The DVD+RW 4.7 GBytes Basic Format provides the following features:
Phvsical s Sizeof 2048 E

2048 Byte user data transler

e Random read and write access

e Background physical formatting

e The Media Type is Overwritable (partition Access Type 4, overwritable)

6.13.2.1 Requirements

e Sparing shall be managed by the host via the Sparable Partition and a Sparing
Table.

e The sparing Packet Length shall be 16 sectors (32 KB, one ECC block).

e Defective packets known at format time shall be allocated by the Non-Allocatable
Space Stream, {see 3.3.7.2).

upr2.60 DRAFTI12z DRAFT12z 147 DRAFT12z DRAFT12z February 28, 2005

6.13.2.2 Background Physical Formatting

Physical formatting is performed by the drive in background. In implementing the host
applications, the following requirements for the drive should be considered:

e After some minimal amount of formatting has been performed, the operation
continues in background.

e At the initialization of the file system, after the Background Physical Formatting
has been started, the host must record the first AVDP at sector 256. The second
AVDP must be recorded after the Background physical Formatting has been
finished. Before the second AVDP has been recorded, the file system is in an
intermediate state and is not strictly in compliance with ECMA 167. The disc can
be ejected before the background formatting has finished, and in that case only
one AVDP exists. Note that at an early eject the drive must format all non-
recorded areas up to the highest sector number recorded by the host, this could
cause a significant delay in the early eject process. Implementations are
recommended to allocate the lowest numbered blocks available while background
physical formatting is in progress.

e The background physical formatting status shall not influence the recording of the
LVID. At early eject the LVID shall be recorded in the same way as it will be
recorded on Rewritable media that do not support background physical
formatting.

The physical formating may be followed by a verification pass. Defects found during the
verification pass shall be enumerated in the Non-Allocatable Space Stream, see 3.3.7.2.

Finally, file system root structures shall be recorded. These mandatory file system and
root structures include the Volume Recognition Sequence, the Anchor Volume Descriptor
Pointers, the Volume Descriptor Sequences, a File Set Descriptor and a Root Directory.
Allocation for sparing shall occur during the formatting process. The sparing allocation
may be zero in length.

The unallocated space descriptors shall be recorded and shall reflect the space allocated to
not-spared defective areas and sector sparing areas.

The format may include all available space on the medium. However, formatting may be
interrupted upon request by the user. Formatting may later be continued to the full space.

upr2.60 DRAFTI12z DRAFT12z 148 DRAFT12z DRAFT12z February 28, 2005

6.14 Recommendations for Mount Rainier formatted media

The following guidelines are established to ensure interchange of Mount Rainier (MRW)
formatted media.

6.14.1 Properties of CD-MRW and DVD+MRW media and drives

The following is a list of key properties of MRW media and drives:
e A Physical Sector Size of 2048 Bytes

e The drive performs Read/Modify/Write cycles when needed. Data transfer between
the host and the MRW drive is in multiples of 2048 bytes.

e Random access read and write is possible

e Drive level defect management

e The drive performs background physical formatting

e The Media Type is Overwritable (partition Access Type 4, overwritable)

e A Non-Allocatable Space List, Non-Allocatable Space Stream and Sparing Table
shall not be used on MRW formatted media

6.14.2 Background Physical Formatting

At the initialization of the file system, after the Background Physical Formatting has been
started, the host must record the first AVDP at sector 256. The second AVDP must be
recorded after the Background physical Formatting has been finished. Before the second
AVDP has been recorded, the file system is in an intermediate state and is not strictly in
compliance with ECMA 167. The disc can be ejected before the background formatting is
finished, in that case only one AVDP exists on the MRW disc. Note that at an early eject
the drive must format all non-recorded areas up to the highest sector number recorded by
the host, this could cause a significant delay in the early eject process. Implementations
are recommended to allocate the lowest numbered blocks available while background
physical formatting is in progress.

The background physical formatting shall not influence the recording of the LVID. At
early eject the LVID shall be recorded in the same way as it will be recorded on
Rewritable media that do not support background physical formatting.

upr2.60 DRAFTI12z DRAFT12z 149 DRAFT12z DRAFT12z February 28, 2005

6.15 Introduction to the Pseudo OverWrite Mechanism

In previous UDF revisions (as described in speetfieationsUDF —1.50 through %2.50),
multiple sessions, or the VAT is used to achieve sequential recording functionality on
CD-R, DVD-R, and DVD+R media. Next generation drives supporting pseudo overwrite
capability on sequentially recordable media will contribute to a decrease in file system
complexity. The UDF Pseudo OverWrite method described in this appendix can be
applied to such pseudo-overwritable sequentially recordable media.

Benefits of the UDF Pseudo OverWrite method include:

e Increased compatibility as ensured by the drive supporting pseudo overwrite
functionality and defect management

e Reduced complexity in file system implementations since the entire volume space
is Overwritable (at logical sector granularity) while defect management is
implemented in the drive

e UDF implementations can use the Metadata File to locate metadata in a logically
contiguous manner. This metadata can optionally be duplicated in the Metadata
Mirror File in order to achieve the desired redundancy

6.15.1 Characteristics of Media formatted for Pseudo OverWrite

Media formatted for Pseudo OverWrite will support multi-track recording. All logical
sectors in the volume space on the media can be overwritten.

The file system can write concurrently to multiple tracks. A track is defined as reserved
or used, see 1.3.2. Each track is sequentially recordable only. The Next Writable Address
(or NWA) is obtained by the file system by querying the drive and points to the next
recordable logical sector within the track.

In addition to sequential recording, any logical sector in a track before the NWA can be
independently overwritten. Also sectors in a used track (having no valid NWA) can be
overwritten. Overwriting is supported by the drive by recording updated data either within
the Spare Area (by the linear replacement algorithm) or to some NWA within the volume
space. UDF does not currently propose any policy specifiable by the file system to control
physical placement of data being overwritten. While performing sequential recording on
the medium after requesting the NWA of a track, the drive system shall behave in such a
way that the NWA will not change unexpectedly, or without notification, until the UDF
implementation queries for the NWA of that track again. When pseudo overwrite is
performed all the NWAs become invalid.

The drive is entirely responsible for maintaining the remap entry information for the
logical sectors that can and may be persisted within the volume space.

upr260 DRAFT12z DRAFT12z 150 DRAFT12z DRAFT12z February 28, 2005

6.15.2 Write Strategy

Tracks can be utilized to record different data types in a logically contiguous manner (e.g.
metadata, metadata mirror and data, can be recorded in separate tracks). When all
unrecorded sectors in a reserved track have been exhausted, the UDF implementation can
assign a new reserved track (by splitting any existing reserved track) of an appropriate
size.

By allowing reserved tracks to be split, the drive enables recording of the AVDP
(comprising volume structure) at any two locations of: LSN 256, the last LSN in the
volume, or (Last LSN — 256) as per ECMA 167.

It is desirable for UDF implementations to duplicate the metadata in the Metadata Mirror
File.

Figure 1 below illustrates the track layout for a freshly formatted medium where the
Metadata Mirror File is not being recorded. Track #1 contains the volume structure
(including the AVDP at LSN 256) as well as related file structures. The Duplicate
Metadata Flag in the Metadata Partition Map is set to zero. The format utility has
allocated an extent (track) for metadata recording while Track #3 comprises the majority
of recordable volume space to be utilized as required.

Track #1 Track #2 Track #3 Track #4
(used) (reserved) (reserved) used)
¥ N
> -
o —
ollm % 5 S
131 oll2(l =l 5|= = = 151
= 2=l ell 2 -9
2 | 2|E||E]l 23| = E gl <
2] aflsfls][al e =] kel S e
=] ol BlIZ1 2] & 5 3 Z| 8
(=9 ElIBl =l &2 g 51 =%
7] SIS 8 & o) 3] 192)
sl|El|=llel sl = g
=2 gl 2= & 3
S)
2| |E
——
Metadata File extent
Volume Space

Figure 1: Freshly formatted medium — no Metadata Mirror File

upr2.60 DRAFTI12z DRAFT12z 151 DRAFT12z DRAFT12z February 28, 2005

Figure 2 below also illustrates the track layout for a freshly formatted medium where the
Metadata Mirror File will be recorded. The Duplicate Metadata Flag in the Metadata
Partition Map is set to one. Hence an extent has been allocated for the contents of the

Metadata Mirror File.
Track #1 Track #2 Track #3 Track #4 Track #5
(used) (reserved) (reserved) (reserved) ’ gused)
> = >
o _ _
o||lm < s E 5 g
sI|1=||Z||E] 8] s 3 28| s
s s|le|l=|l 5|5 &= g 5|5 g 3
< =l 2l gzl = 3 gl 3B 5| <
s |l2ll=|lEl|8le] € 2 alel 5 (|81 %
= ol Bl|= —| = = = —|E = =
= 1 E|=l=ll2 3 3 B s [&
[72) Sl &l]« oy 15 o z| & o N
I g el=gl £
S|[= g L:L; B = L:E =
= |E £
Y .
Metadata File extent Metadata Mirror File extent
Volume Space

Figure 2: Freshly formatted medium — Metadata Mirror File will be recorded

Figure 3 below illustrates track layout on media after files have been recorded (note that —
in this case — the Metadata Mirror File is not being recorded). In this illustration, Track #2
is in the used state; hence Track #4 was allocated for additional recording of metadata

(Track #3 is being used to record data).

Track #1 Track #2 Track #3 Track #4 Track #5 Track #6
(used) (used) (used) (reserved) (reserved) 5 gused)
> > >
o _
o|lm P 5 E o
5 —|l=l=s 3 P 7 < <
I B EEERRE gg| & g 5
2 | ElE] el 25| .| le <(=21zel v |9 o | &
A E S E R EE slg|2 < |z 2 S
® HIEIEEI ala | 5|88 = < 2 > g
g gll=ll<Il2 = AlA|<|= 3 A 8 <| §,
& EE I m [m |4 3 8 &
clIEIEEE N 2le| £ =
“1Z115]1E|2 z C ;
=l]2
Metadata File extent Metadata File extent
Volume Space

Figure 3: Recording data on medium (no Metadata Mirror File)

upr2.60 DRAFT12z DRAFTI12z 1

52

DRAFT12z DRAFT12z February 28, 2005

6.15.3 Requirements for UDF Implementations

UDF implementations are expected to conform to the following requirements:

For sequentially recordable media formatted for Pseudo OverWrite, the Access
Type in the Partition Descriptor shall be set to zero (pseudo-overwritable), see
section 2.2.14.2

The Unallocated Space Bitmap and Unallocated Space Table shall not be
recorded

The Metadata Partition Map shall be recorded
The Metadata Bitmap File shall not be recorded
Up to 4 tracks can be concurrently in a “reserved” state

Multisession/Multiborder recording shall not be used with Pseudo OverWrite

6.15.4 Implementation Notes for UDF Implementations

UDF 2.60

Query the drive to determine whether a pre-formatted medium supports Pseudo
OverWrite. At format time, set the pseudo overwrite attribute on the medium (as
per UDF implementation policy).

Writing data to previously unrecorded sectors will require querying the drive to
determine the NWA in a track — the returned value will be an absolute logical
sector number (relative to LSN 0 in the volume space).

Do not attempt to re-use sectors previously allocated to a file marked for deletion.
Minimize the amount of data being overwritten.

Prior to allocating a new reserved track (by splitting an existing reserved track)
ensure that the current track reserved for such data/metadata is in the used state.

The Metadata File and the Metadata Mirror File can have more than one extent in
a single track. The extents of these files should not be pre-allocated as some of
the sectors could be used by the drive for Pseudo OverWrite or defect
management.

DRAFTI12z DRAFTI12z 153 DRAFTI12z DRAFTI12z February 28,2005

6.16 Recommendations for Blu-ray Disc media

This appendix defines the requirements and recommendation on volume and file
structures for Blu-ray Disc (BD) media, to support data interchange among computer
systems and consumer appliances. These requirements do not apply to the discs when the
use of the discs is limited to computer systems and there is no necessity to provide
interchangeability with consumer appliances. Specific requirements related to BDAV and
BDMYV application usage are described in section 6.16.4.

Blu-ray Disc has the following three types of media:
e Blu-ray Disc Read-Only Format (BD-ROM)
e Blu-ray Disc Rewritable Format (BD-RE)
e Blu-ray Disc Recordable Format (BD-R)

BD-R can use either SRM with LOW or SRM without LOW, for details see section
6.16.3. BD-ROM, BD-RE and BD-R using SRM without LOW, all use UDF revision
2.50. BD-R using SRM with LOW uses UDF revision 2.60, rather than 2.50.
Common characteristics and requirements for these three media types are:

1. Logical sector size is 2048 bytes.

2. ECC Block Size is 65536 bytes (64KB)

3. Sparable Partition Map and Sparing Table shall not be recorded.
4. Non-Allocatable Space Stream shall not be recorded.

6.16.1 Requirements for Blu-ray Disc Read-Only Format (BD-ROM)

A Blu-ray Read-Only disc (BD-ROM) is a Read-Only medium.
The BD-ROM File System Format shall comply with UDF revision 2.50 and has the
following additional requirements:
For Volume Structure:
1. The Partition Descriptor Access Type shall be 1 (read-only).
2. Three Anchor Volume Descriptor Pointers should be recorded.

For File Structure:
3. Unallocated Space Table and Unallocated Space Bitmap shall not be recorded.
4. Metadata Bitmap File shall not be recorded.

NOTE: Duplication of Metadata File data is optional. When robustness is required, it is
recommended that duplication is used and that Metadata File and Metadata
Mirror File data and descriptors are recorded at the physically inner radius area
and outer radius area, respectively.

upr260 DRAFT12z DRAFT12z 154 DRAFT12z DRAFT12z February 28, 2005

6.16.2 Requirements for Blu-ray Disc Rewritable Format (BD-RE)

A Blu-ray Rewritable disc (BD-RE) is a non-sequential recording medium. A BD-RE
drive performs read modify write operations when needed. Defect free logical space is
provided by a BD-RE drive which performs defect management using the linear
replacement algorithm.

The BD-RE File System Format shall comply with UDF revision 2.50 and has the
following additional requirements:

For Volume Structure:
1. The Partition Descriptor Access Type shall be 4 (overwritable).

For File Structure:

2. An Unallocated Space Bitmap shall be recorded, no Unallocated Space Table.

NOTE 1: Duplication of Metadata File data is optional. When the user requires
robustness rather than write performance, it is recommended that duplication
is used and that Metadata File and Metadata Mirror File data and descriptors
are recorded at the physically inner radius area and outer radius area,
respectively.

Requirements for Defect Management:

Spare Area shall be assigned on a Blu-ray Rewritable disc, as the UDF file system
requires Drive Defect Management by the drive system. In general, Spare Areas with the
default size are assigned at format time.

NOTE 2: When the available clusters in Spare Area are exhausted, additional Spare
Area can be allocated after all data is backed up to the other media. On the
other hand, if a special utility tool can move some file data and volume
structure on the disc in order to shorten the volume space, the Spare Area can
be expanded preserving the file data on the disc.

6.16.3 Requirements for Blu-ray Disc Recordable Format (BD-R)

A Blu-ray Recordable disc (BD-R) is a Write-Once medium that can use Sequential
Recording Mode (SRM) either with or without Logical OverWrite (LOW). Drive based
defect management using the linear replacement algorithm is supported.

The Pseudo OverWrite (POW) Method as described in 6.15 can be applied on BD-R
media formatted using SRM with LOW.

The BD-R File System Format shall comply with UDF revision 2.60 for SRM with LOW
(POW) and shall comply with UDF 2.50 for SRM without LOW (non-POW). The
following additional requirements are applied:

For Volume Structure:

upr260 DRAFT12z DRAFT12z 155 DRAFT12z DRAFT12z February 28, 2005

1. For SRM with LOW, the Partition Descriptor Access Type shall be 0 (pseudo-
overwritable).

2. For SRM without LOW, the Partition Descriptor Access Type shall be 1 (read-
only) or 2 (write-once).
For File Structure:

3. Unallocated Space Table and Unallocated Space Bitmap shall not be recorded.
4. Only ICB Strategy Type 4 shall be used.

Requirements for Defect Management:

Spare Area shall be assigned for a BD-R medium formatted for SRM with LOW (POW).
In general, Spare Areas with the default size are assigned at format time.

6.16.4 Information about AV Applications

The Blu-ray Disc Format has two types of AV Application Formats that are called
“BDAYV Application” and “BDMV Application”.

Information about BDAV Application Use

The "BDAV Application” is a Video Recording Format for BD-RE discs and BD-R
discs, including AV Stream and database for playback the AV Stream.

The “BDAV”, “BDAV1”, “BDAV2”, “BDAV3”, and “BDAV4” directories immediately
under the root directory are reserved for the BDAV application.

Information about BDMYV Application Use

The "BDMYV Application” is a Video Application Format for BD-ROM discs, including
AV Stream and database for playback the AV Stream.

The “BDMV” directory immediately under the root directory is reserved for the BDMV
application.

6.16.4.1 Requirements for BDAV and BDMYV Application usage

The following additional requirements are applied for BDAV and BDMV Application
usage:

1. A volume set shall consist of only one volume.

2. Only one prevailing Partition Descriptor shall be recorded in the Volume
Descriptor Sequence.

3. A Metadata Partition Map shall be recorded.

. Symbolic Links shall not be used for all files and directories (the value of the File
Type field in the ICB shall not be 12).

5. Hard Link shall not be used for all files and directories.
6. Multisession and VAT recording shall not be used.

upr260 DRAFT12z DRAFT12z 156 DRAFT12z DRAFT12z February 28, 2005

6.17 UDF Media Format Revision History

The following table shows when changes to the UDF Specification have taken place that
affect the UDF format that can be recorded on a piece of media. The Document Change
Notices (DCNs), which document a specific change, are referenced in the table. The
column Update in UDF Revision describes which revision of the UDF specification that
the change was included. The fields Minimum UDF Read Revision and Minimum UDF
Write Revision relate to the Revision Access Control fields described in 2.2.6.4.

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
UDF 1.02
Allocation Extent Descriptor 2-002 1.02 1.02 1.02
Path Component File Version Number 2-003 1.02 1.02 1.02
Parent Directory Entries 2-004 1.02 1.02 1.02
Device Specification Extended Attribute 2-005 1.02 1.01 1.02
Maximum Logical Extent Length 2-006 1.02 1.02 1.02
Unallocated Space Entry 2-008 1.02 1.01 1.02
DVD Copyright Management Information 2-009 1.02 1.02 1.02
Logical Volume Identifier 2-010 1.02 1.01 1.02
Extent Length Field of an Allocation Descriptor 2-012 1.02 1.01 1.02
Non-relocatable & Contiguous Flags 2-013 1.02 1.01 1.02
Revision of Requirements for DVD-ROM 2-014 1.02 1.02 1.02
Revision Access Control 2-015 1.02 1.01 1.02
Volume Set Identifier 2-017 1.02 1.01 1.02
UniquelDs for Extended Attributes 2-018 1.02 1.02 1.02
Clarification of Dstrings 2-019 1.02 1.01 1.02
Application FreeEASpace Extended Attribute 2-020 1.02 1.02 1.02
Update of Identifier Suffix to 1.02 2-021 1.02 1.02 1.02
UDF 1.50
Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50
Virtual Partition Map Entry 2-026 1.50 1.50 1.50
Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50
Addition of Virtual Allocation Table 2-028 1.50 1.50 1.50
Addition of Sparing Table 2-029 1.50 1.50 1.50
Addition of Non-Allocatable Space List 2-030 1.50 1.02 1.50
Reccommmendations for CD Media 2-031 1.50 1.50 1.50

upr2.60 DRAFTI12z DRAFT12z 157 DRAFT12z DRAFT12z February 28, 2005

Desciption DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
UDF 2.00
Change 1.50 to 2.00 2-033 2.00 1.02 2.00
Clarified Domain flags 2-034 2.00 1.02 2.00
Unicode 2.0 Support 2-035 2.00 1.02 2.00
Named Streams 2-036 2.00 2.00 2.00
Unique ID Table as a Named Stream 2-037 2.00 1.02 2.00
Mac Resource Fork as a Named Stream 2-038 2.00 2.00 2.00
Location Field of the Extended Attribute Header 2-043 2.00 1.02 2.00
Access Control Lists 2-044 2.00 2.00 2.00
Descriptor Tags spanning block boundaries 2-047 2.00 1.02 2.00
Power Calibration Stream 2-048 2.00 1.02 2.00
Support for CD-R Multisession Required 2-050 2.00 1.50 2.00
Value of fields in LVID for virtual partition on CD-R 2-051 2.00 1.50 2.00
System Stream to indicate volume backup time 2-055 2.00 2.00 2.00
New VAT 2-056 2.00 2.00 2.00
Restricting Virtual Addresses 2-057 2.00 1.50 2.00
File Times Extended Attribute 2-058 2.00 1.02 2.00
0S/2 EA Stream 2-061 2.00 2.00 2.00
Non-Allocatable Space Stream 2-062 2.00 1.02 2.00
UDF 2.01

Tag serial number & disaster recovery 5000 2.01 1.02 1.02
Change to DOS name transform algorithm 5002 2.01 - 1.02
Directory search order for dual namespaces 5004 2.01 1.02 1.02
Termination in strategy 4096 clarification 5006 2.01 1.02 1.02
Compression Ids 254/255 clarification 5007 2.01 2.00 2.00
Mac Resource Fork can only be in files 5008 2.01 2.00 2.00
Requirements for CD media 5009 2.01 1.50 1.50
AVDP Placement 5013 2.01 1.50 1.50
Non relocatable bit clarification 5014 2.01 1.02 1.02
Various editorial corrections 5015 2.01 - -
PCA stream fix 5018 2.01 2.00 2.00
Parent of system stream directory 5019 2.01 2.00 2.00
0S/400 updates 5020 2.01 2.00 2.00
Missing EntityID definitions 5021 2.01 2.00 2.00
Various editorial corrections 5024 2.01 - -
New OS types 5025 2.01 2.00 2.00
PVD Application Identifier field clarification 5026 2.01 1.02 1.02
Descriptor CRC length 5027 2.01 1.02 1.02
POSIX permissions clarifications 5029 2.01 2.00 2.00
Clarification of 3,2,1,1 5030 2.01 2.00 2.00
Volume recognition sequence 5031 2.01 1.02 2.00
Path length 5032 2.01 1.02 1.02
FID LengthOflmplementationUse 5034 2.01 1.02 1.02
Editorial — non-allocatable space stream 5035 2.01 - -
Allocation extent descriptor CRC length 5036 2.01 2.00 2.00
File types 248 to 255 5037 2.01 2.00 2.00
Real-time files on DVD-RAM 5038 2.01 2.00 2.00
Packet length specification 5039 2.01 2.00 2.00
Overlapping structures with conflicting field 5040 2.01 2.00 2.00
Information length reconstruction 5041 2.01 2.00 2.00
Timezone interpretation 5042 2.01 1.02 1.02
Missing partition descriptor and sparable partition 5044 2.01 1.02 1.02
Basic restrictions & requirements PD correction 5045 2.01 1.50 1.50
PVD and LVD volume sequence number 5046 2.01 1.02 1.02
Additions to 5.1 informative table 5047 2.01 2.00 2.00
Clarify uniquelD use for EAs/streams 5048 2.01 2.00 2.00
upr2.60 DRAFTI12z DRAFT12z 158 DRAFT12z DRAFT12z February 28, 2005

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
UDF 2.50
FID File Identifier length and Unicode uniqueness 5049 2.50 1.02 2.01
Disallow overlapping partitions 5061 2.50 1.02 1.02
Strategy 4096 only for WORM media 5062 2.50 1.02 1.02
UDF Unique ID Mapping Data 5063 2.50 2.50 2.50
Extended Attribute block alignment 5064 2.50 1.02 1.02
UDF Defined Named Streams section 5065 2.50 2.00 2.00
File Identifier translation code repair 5066 2.50 1.02 1.02
Correction of is_fileset soft protected rule 5069 2.50 2.00 2.00
Disallow hard linked directories 5070 2.50 1.02 2.50
Requirements for DVD-RAM/RW/R interchangeability 5071 2.50 2.00 2.00
Unique ID for System Stream Directory 5072 2.50 2.50 2.50
Shared description for some LVID and VAT fields 5074 2.50 2.01 2.01
Recommendations for Mount Rainier formatted media 5075 2.50 1.02 1.02
Recommendations for DVD+R and DVD+RW 5076 2.50 1.50 1.50
Section 3.3.6 put out of order 5077 2.50 2.00 2.00
UDF UniquelD clarifications 5078 2.50 2.00 2.00
Clarify partition Access Type 3 and 4 5079 2.50 2.01 2.01
Icbtag Parent ICB Location issue 5081 2.50 1.02 2.50
Clarification of Volume Recognition Sequence 5082 2.50 1.02 2.01
Metadata Partition Map 5086 2.50 2.50 2.50
Partition Alignment & ECC Block Size Definition 5089 2.50 1.02 2.50
Non-allocatable space stream usage clarifications 5090 2.50 1.50 1.50
UDF 2.60

Editorial corrections for UDF revision after UDF 2.50. 5100 2.60 - -

Virtual, metadata and read-only partitions 5101 2.60 2.50 2.50
No Metadata Bitmap File required for read-only 5102 2.60 2.50 2.50
Equivalence for Metadata File and Mirror File 5103 2.60 2.50 2.50
Next extent for Metadata File and Metadata Mirror File 5104 2.60 2.50 2.50
Terminating Descriptor in Metadata Partition 5105 2.60 2.50 2.50
Metadata Mirror File FEs and AEDs always far apart 5106 2.60 2.50 2.50
Clarify overlapping of Sparing Table with a partition 5107 2.60 1.50 1.50
Descriptor CRC Length Uint16 overflow rules 5108 2.60 1.02 1.02
Clarification of NOTE on page 41 5109 2.60 2.50 2.50
Appoint OS Identifier for UNIX - NetBSD 5110 2.60 1.02 1.02
Pseudo -OverWrite Method 5111 2.60 2.60 2.60
BD non-POW media recommendations for UDF 2.50 5112 2.60 2.50 2.50
Main and Reserve VDS far apart 5113 2.60 2.50 2.50
BD-R recommendations for UDF 2.60 5114 2.60 2.60 2.60
Enable UDF 2.50 POW read compatibility 5115 2.60 2.50 2.50
Consequences of Pseudo OverWrite Method 5116 2.60 2.60 2.60
Common aspects of recording for different media 5117 2.60 2.01 2.01
Clarify location of Partition Header Descriptor 5118 2.60 1.02 1.02
Zero Inf. Length for Non-Allocatable Space Stream 5119 2.60 2.60 2.60
Minimum UDF Read Revision for UDF 2.60 media 5120 2.60 2.60 2.60
Clarification of Directory bit in parent FID 5121 2.60 2.00 2.00

upr2.60 DRAFTI12z DRAFT12z 159 DRAFT12z DRAFT12z February 28, 2005

6.18 Developer Registration Form

Any developer that plans on implementing ECMA 167 according to this document should
complete the Developer Registration Form on the following page. By becoming a |
registered OSTA developer you receive the following benefits:

e You will receive a list of the current OSTA registered developers and their
associated Developer IDs. The developers on this list are encouraged to
interchange media to verify data interchange among implementations.

e Notification of OSTA Fechnical UDF Committee meetings. You may attend |
a limited number of these meetings without becoming an official OSTA
member.

e You can be added to the OSTA UDF email reflector. This reflector provides
you the opportunity to post technical questions on the OSTA Universal Disk
Format Specification.

e You will receive an invitation to participate in the development of the next
revision of this document.

Note 2 in section 2.1.5.2 explains how a Developer ID should look like.

For the latest information on OSTA and UDF visit the OSTA web site,
see POINTS OF CONTACT on the first page of this document.

The Developer Registration Form is printed on the next page of this document.

upr2.60 DRAFTI12z DRAFT12z 160 DRAFT12z DRAFT12z February 28, 2005

AACTA_ OSTA Universal Disk Format Specification

II X) .
Optical Storage Developer Registration Form

Technology Association

Name:

Company:
Address:

City:

State/Province:

Zip/Postal Code:

Country:
Phone: FAX:

Email:

Please indicate on which operating systems you plan to support UDF:

O DOS O 0S/2 O Macintosh O Linux

O UNIX/POSIX O 0S/400 O Windows 9x O Windows NT/2000 O Windows XP
O Other

Please indicate which media types you plan to support:

O Magneto Optical O WORM O Phase Change

O CD-ROM O CD-R O CD-RW O CD-MRW
O DVD-ROM O DVD-R O DVD-RW O DVD-RAM
O DVD-Video O DVD-Audio

O DVD+RW O DVD+R O DVD+MRW

O BD-ROM O BD-RE O BD-R

O HD DVD-ROM O HD DVD-Rewritable O HD DVD-R

O Other

Please indicate what value you plan to use as EntityID “*Developer ID” to identify
your implementation. The Developer ID should uniquely identify your company as well
as your product, see section 2.1.5.2 note 2 in the latest UDF specification.

O Please add my email address to the OSTA Eile Interchange-CommitteeUDF email reflector. |
O Please send an OSTA Membership kit.

Send completed form to OSTA. For address, see http://www.osta.org/osta/contact.htm.

upr2.60 DRAFTI12z DRAFT12z 161 DRAFT12z DRAFT12z February 28, 2005

http://www.osta.org/osta/contact.htm

A

Access Control List, 95, 96, 157

Access Type, 9, 28, 33, 47, 48, 56, 143, 146, 148,
152, 153, 154, 155, 158

ACL. See Access Control List

AD. See Allocation Descriptor

Alignment Unit Size, 34, 42

Allocation Descriptor, 7, 9, 34, 39, 40, 42, 43, 44, 46,
57,58, 60, 61, 62, 63,91, 144, 156

Allocation Extent Descriptor, 8, 9, 42, 63, 106

Allocation Unit Size, 34, 42

Anchor Volume Descriptor Pointer, 7, 8, 19, 21, 24,
49, 106, 131, 135, 136, 138, 139, 140, 147, 148,
150, 153, 157

Application Entity Identifier. See Entity Identifier

Application Identifier Suffix. See Entity Identifier

AVDP. See Anchor Volume Descriptor Pointer

B

BD. See Blu-ray Disc

BeOS, 110, 111

Blu-ray Disc, 153, 154, 155
BDAV, 153, 155
BDMYV, 153, 155
BD-R, 153, 154, 155
BD-RE, 153, 154, 155
BD-ROM, 153, 155

bridge. See UDF Bridge

C

CD-MRW, 148
CD-R, 3,4, 5,32,35,91, 134, 136, 137, 149
CD-ROM, 4,94, 134, 139
CD-RW, 4, 32,37, 134, 137
Character Set, 11, 12, 22, 23, 25, 30, 50, 51, 98
charspec, 12, 22, 23, 25, 30, 50, 51
checksum
EA Header Checksum, 78, 79, 80, 81, 83, 84, 85,
129
Tag Checksum, 21, 49, 131
CRC
CRC Calculation, 114, 116
Descriptor CRC, 8, 21, 49, 132
Descriptor CRC Length, 8, 21, 43, 49, 61, 63
File Identifier CRC, 101, 102, 103, 104, 105
CSo, 11, 12, 16, 23, 25, 30, 51, 97, 99, 101, 102, 103,
104, 105, 112

D

defect management, 32, 37, 136, 146, 148, 149, 152,
154, 155

Descriptor CRC. See CRC

Descriptor CRC Length. See CRC

Descriptor Tag, 19, 21, 38, 43, 49, 55, 61, 63

Developer ID, 15, 16, 77, 159, 160

upr2.60 DRAFT12z DRAFTI12z

162

Developer Registration Form, 1, 110, 130, 159, 160

direct entry, 117

Domain, 1, 17, 25, 26, 51, 52, 108, 157

Domain Entity Identifier. See Entity Identifier

Domain Identifier, 15, 17, 25, 26, 50, 51, 52

Domain Identifier Suffix. See Entity Identifier

DOS, 68, 69, 73, 74, 79, 100, 110, 111, 118

dstring, 12, 13, 16, 23, 30, 31, 36, 51, 156

Duplicate Metadata Flag, 34, 39, 40, 42, 43, 44, 150,
151

DVD, 79, 108, 109, 130, 131, 132, 133, 156

DVD Copyright Management Information, 79, 108,
156

DVD+MRW, 148

DVD+R, 146, 149

DVD+RW, 146

DVD-R, 143, 144, 145, 149

DVD-RAM, 143, 145

DVD-ROM, 130, 139

DVD-RW, 143, 145

DVD-Video, 130, 131

E

EA. See Extended Attribute

ECC block, 4, 24, 34, 38, 48, 146, 153, 158

ECMA 167,1,2, 3,4, 159

EFE. See Extended File Entry

Entity Identifier, 8, 14, 15, 26, 29, 52, 55, 108, 109,
110
Application Entity Identifier, 14, 19
Application Identifier Suffix, 14, 15, 19
Domain Entity Identifier, 14, 17
Domain Identifier Suffix, 14, 15, 17
Identifier Suffix, 14, 17, 18, 19, 26, 32, 33, 34, 38,

52,110, 156

Implementation Entity Identifier, 14, 18
Implementation Identifier Suffix, 14, 15, 16, 18
Suffix Type, 14, 15, 16
UDF Entity Identifier, 14, 18, 108, 109
UDF Identifier Suffix, 14, 15, 16, 18

Extended Attribute, 3, 7, 43, 44, 58, 71, 75, 78, 79,
80, 81, 83, 84, 85, 87, 108

Extended Attribute Header Descriptor, 75, 106

Extended File Entry, 7, 54, 59, 66, 67, 75, 76, 85, 86,
87, 106, 144

Extent Length, 8, 9, 10, 42, 59, 60, 62, 156

F

FE. See File Entry

FID. See File Identifier Descriptor

File Entry, 6, 7, 9, 15, 34, 35, 39, 40, 42, 43, 44, 46,
54,58, 59, 66, 67, 71, 74, 75, 76, 80, 81, 83, 85,
86, 88, 90, 91, 106, 130, 132, 133, 144

File Identifier, 12, 53, 54, 55, 68, 98, 99, 100, 101,
102, 103, 104, 105, 118, 158

File Identifier CRC. See CRC

DRAFT12z DRAFT12z February 28, 2005

File Identifier Descriptor, 6, 7, 9, 12, 15, 29, 42, 53,
54, 55,59, 66, 67, 68, 74, 86, 87, 88, 89, 90, 95,
98, 106, 132, 133, 157, 158

File Link Count, 40, 58, 59, 86

File Set Descriptor, 7, 9, 15, 17, 26, 40, 42, 50, 51,
52, 85, 87, 88,90, 92, 106, 132, 135, 147

File Set Descriptor Sequence, 26

File Set Identifier, 50, 97, 118

File Structure, 4, 17, 49, 68, 97, 143, 144, 145, 150,
153,154, 155

File Type, 35, 42, 43, 56, 77, 87, 97, 138, 145, 155,
157

free space, 27, 28, 130, 139

Free Space Table, 27, 28, 35, 130

Freed Space Bitmap, 47, 52, 139, 143, 144

Freed Space Table, 47, 52, 139, 143, 144

FSD. See File Set Descriptor

H
HardWriteProtect, 17, 18, 26, 50, 52

I

ICB
ICB, 4, 6,7, 35, 36, 37, 39, 40, 42, 43, 44, 50, 53,
54, 56, 58, 60, 62, 66, 67, 68, 69, 71, 75, 86,
87, 89,90, 94, 97,98, 117, 134, 144, 155
ICB hierarchy, 88, 117
ICB Tag, 9, 42, 43, 56, 58, 60, 69, 71, 77, 87, 91,
97,117, 138, 158
Parent ICB Location, 56, 158
VAT ICB. See VAT
Identifier Suffix. See Entity Identifier
Implementation Entity Identifier. See Entity Identifier
Implementation Identifier Suffix. See Entity Identifier
Implementation Use Volume Descriptor, 7, 15, 30,
106
Indirect Entry, 106, 117
Information Control Block. See ICB
Information Length, 36, 37, 42, 43, 44, 45, 46, 58, 59,
80,91, 157
Integrity Sequence, 9, 25, 26, 144
interchange level
FSD Interchange Level, 50, 51
PVD Interchange Level, 22, 23, 61
IUVD. See Implementation Use Volume Descriptor

L

Logical Block Size, 8, 9, 25, 34, 40, 42, 60, 63, 106,
130

Logical Sector Size, 8, 25, 132, 146, 153

Logical Volume, 6, 7, 8, 9, 25, 26, 27, 28, 29, 30, 37,
52,53, 61, 66, 81,99, 107, 108, 139

Logical Volume Descriptor, 6, 7, 8,9, 15, 17, 25, 26,
29,32, 33,37,41, 106, 132, 138, 157

Logical Volume Header Descriptor, 54, 59, 66

Logical Volume Identifier, 9, 25, 30, 36, 37, 50, 51,
97,118, 156

DRAFTI12z DRAFTI12z 163

UDF 2.60

Logical Volume Integrity Descriptor, 7, 9, 16, 26, 27,
28, 35,37, 61, 66, 67, 74, 88, 106, 139, 147, 148,
157,158

Logical Volume Integrity Sequence. See Integrity
Sequence

LV. See Logical Volume

LVD. See Logical Volume Descriptor

LVID. See Logical Volume Integrity Descriptor

M

Mac OS. See Macintosh

Macintosh, 3, 29, 66, 68, 69, 73, 74, 78, 80, 81, 82,
83, 84, 95,100,102, 108, 110, 111, 125

Maximum UDF Write Revision, 28, 29, 36, 37

Metadata bit, 86, 87, 88, 95

Metadata Bitmap File, 34, 35, 39, 40, 41, 43, 44, 45,
46, 56, 152, 153, 158

Metadata File, 34, 35, 39, 40, 42, 43, 44, 45, 46, 56,
149, 152, 153, 154, 158

Metadata Mirror File, 34, 35, 39, 40, 41, 42, 43, 44,
56, 58, 149, 150, 151, 152, 153, 154, 158

Metadata Partition, 33, 35, 39, 40, 41, 43, 44, 46, 53,
58,108

Metadata Partition Map, 16, 33, 34, 39, 40, 42, 43, 44,
53, 58, 62, 150, 151, 152, 155, 158

Minimum UDF Read Revision, 10, 28, 29, 36, 37, 48,
143, 156, 158

Minimum UDF Write Revision, 28, 29, 36, 37, 143,
156, 158

Mount Rainier, 148

MRW. See Mount Rainier

Multisession, 3, 134, 135, 137, 138, 139, 140, 141,
152, 155, 157

N

Named Stream. See streams

Next Writable Address, 5, 7, 149, 152

Non-Allocatable Space, 38, 39, 88, 90, 135, 143, 144,
146, 147, 148, 153, 156, 157, 158

Number of Directories, 28, 29, 35, 36, 37

Number of Files, 28, 29, 36, 37

NWA. See Next Writable Address

(0]

Orphan Space, 107

OS Class, 18, 110, 111

OS Identifier, 18, 110, 111, 158

0S/2, 3, 68, 69, 73, 74, 78, 80, 84, 95, 98, 100, 101,
108,109, 110, 111, 125, 157

0S/400, 68, 70, 73, 74, 83, 105, 108, 109, 110, 111,
157

OSTA contact information, i, 110, 159

OSTA CS0 Charspec. See CS0O

OSTA email reflector, i, 110, 159, 160

OSTA UDF Committee, i, 110, 159

Overwritable, 4, 8, 47, 143, 146, 149

DRAFT12z DRAFT12z February 28, 2005

overwritable (Partition Access Type), 9, 33, 40, 47,
48, 143, 146, 148, 154

P

packet, 4, 5, 6, 32, 33, 37, 38, 39, 91, 135, 136, 143,
144, 146

Packet Length, 32, 33, 34, 38, 48, 135, 146, 157

Parent ICB Location. See ICB

Partition Access Type. See Access Type

Partition Descriptor, 7, 9, 15, 33, 34, 38, 47, 52, 106,
132,152, 153, 154, 155, 157

Partition Header Descriptor, 48, 52, 139, 158

Partition Integrity Entry, 9, 16, 61, 106

Partition Map, 5, 6, 9, 25, 26, 32, 33, 34, 35, 37, 41,
136

Partition Number, 6, 32, 33, 34,47, 132

Partition Reference Number, 5, 41, 89, 90

Path Component, 64

Pathname, 64

PD. See Partition Descriptor

POW. See Pseudo OverWrite

power calibration, 16, 88, 91, 92, 93, 94, 157

Primary Volume Descriptor, 7, 8, 9, 15, 22, 106, 157

Pseudo OverWrite, 5, 7, 47, 149, 152, 154, 155, 158

pseudo-overwritable (Partition Access Type), 9, 28,
33,39, 41,47, 48, 52, 149, 152, 155

PVD. See Primary Volume Descriptor

R

Read-Only, 4, 48, 73, 88, 131, 133, 134, 139, 153

read-only (Partition Access Type), 9, 28, 33, 39, 40,
41, 48, 52, 136, 139, 153, 155, 158

Real-Time file, 56, 138, 145, 157

Record Structure, 10, 64

Recordable, 4, 91, 153, 154

reserved track, 5, 150, 152

Rewritable, 4, 5, 8, 36, 47, 52, 61, 63, 88, 143, 147,
148, 153, 154

rewritable (Partition Access Type), 9, 47

Root Directory, 26, 29, 35, 50, 53, 59, 66, 81, 131,
132, 135, 144, 145, 147, 155

S

SBD. See Space Bitmap Descriptor

session, 4, 5, 134, 135, 136, 137, 138, 139, 140, 149

Size Table, 27, 28, 35

SoftWriteProtect, 17, 18, 26, 52

Space Bitmap Descriptor, 7, 8, 43, 44, 46, 61, 106,
145

Sparable Partition Map, 16, 32, 33, 34, 37, 38, 48, 90,
143, 144, 153, 156

sparing, 38, 39, 91, 134, 135, 136, 146, 147

Sparing Table, 16, 21, 32, 33, 37, 38, 49, 106, 108,
109, 135, 136, 143, 144, 145, 146, 148, 153, 156,
158

Strategy Type, 9, 50, 56, 107, 117, 130, 144, 155

Stream Directory. See streams

upr2.60 DRAFT12z DRAFTI12z

164

streams
Named Stream, 4, 29, 38, 39, 40, 53, 59, 62, 66,
69, 70, 80, 85, 86, 87, 88, 95, 96, 157
Stream Directory, 29, 40, 42, 43, 44, 53, 54, 59,
62, 66, 85, 86, 87
System Stream, 85, 87, 88, 90, 92, 94, 157
System Stream Directory, 50, 54, 66, 85, 86, 87,
88, 90
Suffix Type. See Entity Identifier
Symbolic Link, 97, 131, 155
System Stream. See streams
System Stream Directory. See streams

T

Tag Location, 21, 44, 49, 62

Tag Serial Number, 19, 21, 49, 157
Terminal Entry, 106

Terminating Descriptor, 42, 106, 107
Timestamp, 8, 13, 14, 65, 80, 93, 94

U

UDF Bridge, 130, 134, 137, 138, 140, 141

UDF Entity Identifier. See Entity Identifier

UDF Identifier Suffix. See Entity Identifier

Unallocated Space Bitmap, 41, 46, 52, 90, 136, 139,
143, 144, 145, 152, 153, 154, 155

Unallocated Space Descriptor, 7, 8, 9, 27, 106

Unallocated Space Entry, 9, 60, 106, 156

Unallocated Space Table, 52, 90, 136, 139, 143, 144,
152,153, 154, 155

Unicode, 11, 12, 55,98, 99, 101, 112, 131, 157, 158

UniquelD
Next UniquelD, 27, 66, 67, 89
UDF UniquelD, 54, 59, 66, 67, 88, 89, 90, 158
UniquelD, 27, 58, 59, 66, 71, 74, 156

UNIX, 68, 70, 73, 74, 83, 95, 96, 97, 100, 104, 110,
111,125,158

unrecorded sector, 107, 150, 152

USD. See Unallocated Space Descriptor

used track, 5, 149

User Interface, 2, 97

\%

VAT

VAT, 6, 7, 16, 32, 35, 36, 37, 67, 88, 134, 138,
139, 143, 144, 156

VAT ICB, 6, 35, 36, 37, 67, 74, 138, 139, 144
Virtual Allocation Table. See VAT

VDS. See Volume Descriptor Sequence

Virtual Allocation Table. See VAT

virtual partition, 32, 139

Virtual Partition Map, 6, 16, 32, 33, 35, 62, 138, 143,
144, 156

Volume Descriptor Pointer, 106

Volume Descriptor Sequence, 7, 10, 24, 131, 132,
135, 138, 140, 143, 147, 155, 158

Volume Identifier, 22, 97, 118

DRAFT12z DRAFT12z February 28, 2005

Volume Recognition Sequence, 7, 8§, 19, 20, 131, 135, Windows CE, 110, 111

137, 139, 140, 147, 157, 158 Windows NT, 68, 69, 73, 74, 79, 96, 103, 110, 111,
Volume Set, 8, 9, 22, 23, 25, 26, 30, 155, 156 125
Volume Set Identifier, 22, 23, 97, 118 WORM, 8, 9, 26, 50, 56, 107, 158
Volume Structure, 4, 17, 21, 49, 66, 97, 143, 144, Write-Once, 4, 5, 9, 24, 48, 55, 56, 88, 144, 154
145, 150, 153, 154 write-once (Partition Access Type), 9, 56, 139, 145,
VRS. See Volume Recognition Sequence 155
\W4

Windows, 68, 69, 79, 111
Windows 95, 68, 69, 73, 74,79, 103, 110, 111, 125

upr2.60 DRAFTI12z DRAFT12z 165 DRAFT12z DRAFT12z February 28, 2005

	Introduction
	Document Layout
	Compliance
	General References
	References
	Definitions
	Terms
	Acronyms

	Basic Restrictions & Requirements
	Part 1 - General
	Character Sets
	OSTA CS0 Charspec
	Dstrings
	Timestamp
	Uint16 TypeAndTimezone;

	Entity Identifier
	Uint8 Flags
	char Identifier[23]
	char IdentifierSuffix[8]

	Descriptor Tag Serial Number at Formatting Time
	Volume Recognition Sequence

	Part 3 - Volume Structure
	Descriptor Tag
	Uint16 TagSerialNumber
	Uint16 DescriptorCRCLength

	Primary Volume Descriptor
	Uint16 InterchangeLevel
	Uint16 MaximumInterchangeLevel
	Uint32 CharacterSetList
	Uint32 MaximumCharacterSetList
	dstring VolumeSetIdentifier[128]
	struct charspec DescriptorCharacterSet
	struct charspec ExplanatoryCharacterSet
	struct EntityID ImplementationIdentifier
	struct EntityID ApplicationIdentifier

	Anchor Volume Descriptor Pointer
	struct MainVolumeDescriptorSequenceExtent
	struct ReserveVolumeDescriptorSequenceExtent

	Logical Volume Descriptor
	struct charspec DescriptorCharacterSet
	Uint32 LogicalBlockSize
	struct EntityID DomainIdentifier
	byte LogicalVolumeContentsUse[16]
	struct EntityID ImplementationIdentifier;
	struct extent_ad IntegritySequenceExtent
	byte PartitionMaps[]

	Unallocated Space Descriptor
	Logical Volume Integrity Descriptor
	byte LogicalVolumeContentsUse[32]
	Uint32 FreeSpaceTable[]
	Uint32 SizeTable[]
	byte ImplementationUse[]

	Implementation Use Volume Descriptor
	EntityID ImplementationIdentifier
	bytes ImplementationUse[460]
	charspec LVICharset
	dstring LogicalVolumeIdentifier[128]
	dstring LVInfo1[36], LVInfo2[36] and LVInfo3[36]
	struct EntityID ImplementationID
	bytes ImplementationUse[128]

	Virtual Partition Map
	Sparable Partition Map
	Metadata Partition Map
	Virtual Allocation Table
	Sparing Table
	Metadata Partition
	Metadata File (and Metadata Mirror File)
	Metadata Bitmap File
	Procedure for allocating blocks for new metadata.
	Procedure for de-allocating metadata blocks.
	Recommended procedure for extending the Metadata Partition
	Recommended procedure for reclaiming space from the Metadata Partition

	Partition Descriptor
	Struct EntityID PartitionContents
	Uint32 AccessType
	Uint32 PartitionStartingLocation
	Uint32 PartitionLength
	Struct EntityID ImplementationIdentifier
	byte PartitionContentsUse[128]

	Part 4 - File StructureSystem
	Descriptor Tag
	Uint16 TagSerialNumber
	Uint16 DescriptorCRCLength
	Uint32 TagLocation

	File Set Descriptor
	Uint16 InterchangeLevel
	Uint16 MaximumInterchangeLevel
	Uint32 CharacterSetList
	Uint32 MaximumCharacterSetList
	struct charspec LogicalVolumeIdentifierCharacterSet
	struct charspec FileSetCharacterSet
	struct EntityID DomainIdentifier

	Partition Header Descriptor
	struct short_ad PartitionIntegrityTable

	File Identifier Descriptor
	Uint16 FileVersionNumber
	Uint8 FileCharacteristics
	Deleted bit
	Parent bit and Directory bit

	struct long_ad ICB
	Uint16 LengthofImplementationUse
	byte ImplementationUse[]
	char FileIdentifier[]

	ICB Tag
	Uint16 StrategyType
	Uint8 FileType
	File Type 249

	ParentICBLocation
	Uint16 Flags

	File Entry
	Uint8 RecordFormat;
	Uint8 RecordDisplayAttributes;
	Uint32 RecordLength;
	Uint64 InformationLength
	Uint64 LogicalBlocksRecorded
	struct EntityID ImplementationIdentifier;
	Uint64 UniqueID
	FileLinkCount

	Unallocated Space Entry
	byte AllocationDescriptors[]

	Space Bitmap Descriptor
	struct Tag DescriptorTag

	Partition Integrity Entry
	Allocation Descriptors
	Long Allocation Descriptor

	Allocation Extent Descriptor
	Struct tag DescriptorTag
	Uint32 PreviousAllocationExtentLocation

	Pathname
	Path Component
	Uint16 ComponentFileVersionNumber

	Part 5 - Record Structure

	System Dependent Requirements
	Part 1 - General
	Timestamp
	Uint8	Centiseconds;
	Uint8	HundredsofMicroseconds;
	Uint8	Microseconds;

	Part 3 - Volume Structure
	Logical Volume Header Descriptor
	Uint64 UniqueID

	Part 4 - File StructureSystem
	File Identifier Descriptor
	Uint8 FileCharacteristics
	MS-DOS, OS/2, Windows 95, Windows NT, Macintosh
	UNIX and OS/400

	ICB Tag
	Uint16 Flags
	MS-DOS, OS/2, Windows 95, Windows NT
	Macintosh
	UNIX
	OS/400

	File Entry
	Uint32 Uid
	Uint32 Gid
	Uint32 Permissions
	Uint64 UniqueID
	byte ExtendedAttributes[]

	Extended Attributes
	Extended Attribute Header Descriptor
	Alternate Permissions
	File Times Extended Attribute
	byte FileTimes

	Device Specification Extended Attribute
	ImplementationUse[IU_L]

	Implementation Use Extended Attribute
	All Operating Systems
	FreeEASpace
	DVD Copyright Management Information

	MS-DOS, Windows 95, Windows NT
	OS/2
	OS2EALength

	Macintosh OS
	MacVolumeInfo
	MacFinderInfo

	UNIX
	OS/400
	OS400DirInfo

	Application Use Extended Attribute
	All Operating Systems
	FreeAppEASpace

	Named Streams
	Named Streams Restrictions
	UDF Defined Named Streams (Metadata)

	Extended Attributes as Named Streams
	UDF Defined System Streams
	Unique ID Mapping Data Stream
	UDF Unique ID Mapping Data
	UDF Unique ID Mapping Entry

	Non-Allocatable Space Stream
	Power Calibration Stream
	Power Calibration Table Stream

	UDF Backup Time

	UDF Defined Non-System Streams
	Macintosh Resource Fork Stream
	OS/2 EA Stream
	Access Control Lists

	User Interface Requirements
	Part 3 - Volume Structure
	Part 4 - File StructureSystem
	ICB Tag
	FileType

	File Identifier Descriptor
	char	FileIdentifier[]
	MS-DOS
	OS/2
	Macintosh
	Windows 95 & Windows NT
	UNIX
	OS/400

	Informative
	Descriptor Lengths
	Using Implementation Use Areas
	Entity Identifiers
	Orphan Space

	Boot Descriptor
	Clarification of Unrecorded Sectors

	Appendices
	UDF Entity Identifier Definitions
	UDF Entity Identifier Values
	Operating System Identifiers
	OS Class
	OS Identifier

	OSTA Compressed Unicode Algorithm
	CRC Calculation
	Algorithm for ICB Strategy Type 4096
	Identifier Translation Algorithms
	DOS Algorithm
	OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm

	Extended Attribute Header Checksum Algorithm
	Requirements for DVD-ROM
	Constraints imposed on UDF by DVD-Video
	How to read a UDF DVD-Video disc
	Step 1. Volume Recognition Sequence
	Step 2. Anchor Volume Descriptor Pointer
	Step 3. Volume Descriptor Sequence
	Step 4. File Set Descriptor
	Step 5. Root Directory File Entry
	Step 6. Root Directory
	Step 7. File Entry of VIDEO_TS
	Step 8. VIDEO_TS directory
	Step 9. File Entry of VIDEO_TS.IFO

	Obtaining DVD Documents

	Recommendations for CD Media
	Use of UDF on CD-R media
	Mode requirements for CD-R
	UDF “Bridge” formats for CD-R

	Use of UDF on CD-RW media
	Requirements
	Formatting
	Growing the Format
	Host Based Defect Management
	Read Modify Write Operation
	Levels of Compliance
	Level 1
	Level 2
	Level 3

	Multisession and Mixed Mode

	Common aspects of recording for different media
	Real-Time Files
	Incremental recording using VAT
	Requirements
	End of session data

	Multisession Usage
	Volume Recognition Sequence
	Anchor Volume Descriptor Pointer

	UDF Bridge format
	Examples of UDF Multisession and UDF Bridge

	Requirements for DVD-R/-RW/-RAM interchangeability
	Requirements for DVD-RAM
	Requirements for DVD-RW
	Requirements for DVD-R
	Requirements for Real-Time file recording on DVD discs

	Recommendations for DVD+R and DVD+RW Media
	Use of UDF for incremental writing on DVD+R media
	Use of UDF on DVD+RW 4.7 GBytes Basic Format media
	Requirements
	Background Physical Formatting

	Recommendations for Mount Rainier formatted media
	Properties of CD-MRW and DVD+MRW media and drives
	Background Physical Formatting

	Introduction to the Pseudo OverWrite Mechanism
	Characteristics of Media formatted for Pseudo OverWrite
	Write Strategy
	Requirements for UDF Implementations
	Implementation Notes for UDF Implementations

	Recommendations for Blu-ray Disc media
	Requirements for Blu-ray Disc Read-Only Format (BD-ROM)
	Requirements for Blu-ray Disc Rewritable Format (BD-RE)
	Requirements for Blu-ray Disc Recordable Format (BD-R)
	Information about AV Applications
	Requirements for BDAV and BDMV Application usage

	UDF Media Format Revision History
	Developer Registration Form

